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ABSTRACT: 

 

As smart city applications increase today, the importance of web-based representations of data that serve as inputs for these 

applications, such as 3D city models and digital twins, is growing. Since 2011, GPU hardware has greatly advanced, and detailed 

3DCMs and digital twins have increased the size of the data to be displayed, which in turn increases performance requirements. 

WebGL, which couldn’t fully harness the capabilities and power of modern GPUs, began to struggle to meet the increasing performance 

demands over time and become a bit outdated. Consequently, a new graphic API named WebGPU was developed by W3C as a response 

to limitations of WebGL and went live with Chrome 113. Now, we have a brand-new graphic API called WebGPU which harness the 

full power of modern GPUs and more performant than WebGL. As WebGPU is a new graphic API, its potential enhancements and 

what it can bring over WebGL in the terms of WebGIS have not been examined yet. Hence, the main idea and contribution of this 

work is to investigate WebGPU in real-world use cases for WebGIS applications and discuss what it brings over WebGL. For this 

purpose, a side-by-side performance comparison has been made. The comparisons have been made in the terms of API differences and 

performance. And finally, an experiment has been carried out how much data can be rendered can be rendered at minimum 60fps in 

both APIs. The experiments show that WebGPU is more low-level and way more performant than WebGL and it has a lot to offer in 

the terms of WebGIS applications. 

 

1. INTRODUCTION 

1.1 Background 

HTML5 and WebGL are two de facto technologies that are used 

together to display 3D content on the web. HTML is a markup 

language that defines the structure and content of web pages, and 

HTML5 is the latest version of this language. On the other hand, 

WebGL (Web Graphic Library) is a graphic application 

programming interface (API) used to create browser-based 3D 

graphics that run on the ’canvas’ element of HTML5 without 

using any software or additional plug-ins. Before the invention of 

WebGL, in order to visualize 3D content via browsers and 

developing 3D web applications, additional plug-ins must be 

used or standalone software had to be installed on the client’s 

device, such as Flash and Silverlight. Plugins for browsers such 

as Cortona3D, FreeWRL, or Java applets such as XNavigator 

have been used for visualizing 3D contents on the web. Nasa 

WorldWind and Google Earth were able to work web-based but 

had to be downloaded and installed. After being redeveloped 

using WebGL, Google Earth now can be used without any 

additional installation. Another example is Unity Web Player 

which and had to be installed for displaying video games that 

were developed using Unity3D in the browsers. is now 

deprecated. 

 

Using HTML5 and WebGL technologies, many studies have 

visualized 3D city models (3DCMS) and digital twins on the web 

without any software or plug-in installation and visualizing these 

3D geospatial data on the web has become an import- ant topic 

in the field of WebGIS. Gesquie`re and Manin (2012) visualized 

CityGML data using WebGL. Jaillot (2020) visualized time-

dynamic data along with 3DCMs and Gaillard et al. (2020) 

developed an approach which visualizes 3DCMs in multi-scale 

resolutions. 

 

WebGL is based on OpenGL, originally developed in 1992 and 

started to get a bit old in today’s technology stack. Today, 

modern GPUs are more complex and powerful hence, to better 

take advantage of modern GPUs’ advanced features WebGPU 

has emerged as a new graphic API for the web. WebGPU a brand-

new graphic API, represents a significant evolution in web 

graphics technology, offering a powerful and modern approach 

to rendering on the web. As an emerging standard, WebGPU 

aims to overcome the limitations of its predecessor, WebGL, by 

providing developers with a lower-level, explicit API for 

accelerated graphics and parallel computation on the web 

platform. Hence, WebGPU introduces a paradigm shift by 

providing developers with a sophisticated and efficient API 

designed to fully exploit the capabilities of modern GPUs for 

immersive 3D experiences. Unlike WebGL, which is based on 

OpenGL and designed for immediate mode rendering, WebGPU 

is built on a more modern and efficient foundation. It provides a 

lower-level abstraction that allows developers to take advantage 

of the full capabilities of modern GPUs while being more closely 

aligned with the design principles of contemporary graphics 

hardware which undergone significant development since the 

release of WebGL in 2011. 

 

WebGPU is developed by the W3C GPU for the Web 

Community Group with engineers from big software vendors 

such as Apple, Mozilla, Microsoft, and Google and draft version 

of the API has been released in 2021 (W3C, 2021). WebGPU, 

which has been in development for a while, went live and started 

to be supported by the standard versions of major browsers with 

the release of Chrome 113. WebGPU offers developers relatively 

direct access to GPU resources that were previously inaccessible, 

and it additionally offers general computation functionality 

beyond rendering that was not previously accessible in WebGL, 

thanks to the inclusion of compute shaders (Fransson and 

Hermansson, 2023). WebGPU is a cutting-edge technology that 

is poised to revolutionize 3D graphics on the web. It offers low-

level, general-purpose access to GPUs, enabling the development 

of sophisticated web-based graphics applications (Galera, 2023). 

 

As a completely new API, WebGPU is not investigated 

extensively hence, the aim of this study is to examine the 

WebGPU API in the context of 3D WebGIS applications. The 

render performance of the WebGPU API has been tested with 

real-world datasets, and the differences from the WebGL API 

both in the terms of API design and in the terms of performance 

have been analysed.  
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1.2 Related Work 

Goh et al. (2022) states that although WebGPU is in an 

experimental phase it can be used for front-end deep learning 

apps. Franke and Haehn (2020) emphasize the use of WebGPU 

for three-dimensional computer graphics and augmented/virtual 

reality devices, indicating its potential for modern scientific 

visualization. Bohak et al (2023) have been developed an engine 

based on WebGPU. Beyer et al. (2022) mention the potential of 

WebGPU for building high-performance terascale frameworks, 

further underlining its significance in the field of computer 

science. Furthermore, Wang and Durrant (2022) emphasize the 

role of WebGPU in enabling GPU-accelerated graphics and 

calculations, indicating its relevance in computer-aided drug 

discovery. Additionally, Kenwright (2022) provides an 

introduction to the WebGPU API, further underlining its 

significance in the field of computer science. Hidaka et al. (2017) 

dis- covered that their execution of a deep neural network (DNN) 

with WebGPU achieved approximately 36 times greater speed 

(91 ms compared to 3297 ms) when compared to another widely 

used DNN implementation on the web, which relies on the 

emulated compute capabilities of WebGL. Usher and Pascucci 

(2020) conducted a comparison between the compute capabilities 

of WebGPU and native Vulkan, revealing a notable similarity in 

performance, especially when handling compute-intensive tasks. 

The study utilized the marching cubes algorithm applied to a 

scalar field as a representative example of compute-intensive 

operations. The findings demonstrated com- parable 

performance, with WebGPU typically falling within the same 

order of magnitude and frequently even closer to the time-to-

render values achieved by the Vulkan implementation. Dyken et 

al. (2022) examined the comparative rendering performance of 

large-scale graph layouts on the web using libraries relying on 

different technologies, including WebGPU (GraphWaGu), 

WebGL (NetV and Stardust), and non-GPU- accelerated 

counterparts (like D3 Canvas). With the computational 

capabilities of WebGPU, GraphWaGu stands out as the sole 

GPU-utilizing library capable of concurrently computing 

iterations of graph algorithms. When handling 100,000 nodes and 

2,000,000 edges, only GraphWaGu sustains an interactive 

rendering frame rate of ten or more. In contrast, NetV achieves a 

frame rate of three, and StarDust is unable to render the graph 

layout altogether. Pushing GraphWaGu to its limits, it 

successfully renders a maximum of 200,000 nodes and 4,000,000 

edges a remarkable achievement unmatched by any other tested 

library, whether WebGL-based or not. Fransson and Hermansson 

(2023) examined and quantified the performance diference 

between WebGL and WebGPU using Godot Engine as backhand. 

Five different games namely Checkers, Snake, Evader, Ponder 

and Falling Cats Deck Before Dawn were rendered with using 

both WebGL and WebGPU in Godot Engine environment. In 

every game, WebGPU sur- passes WebGL in terms of both 

average CPU and GPU frame times. The acceleration achieved 

by employing the WebGPU Rasterizer varies between 

approximately 6.8 and 35.6, indicating a significant outcome. 

Moreover, WebGPU is expected to open new possibilities for 3D 

games in web browsers, lever- aging the advantages of GPU 

APIs, as highlighted by (Mehannaand Rudametkin, 2023).  

Helmrich and Käll, (2023) have parallelized Boolean operations 

using WebGPU. Yee t al. (2023) optimized occlusion culling 

based on WebGPU. Additionally, Ammann et al (2022) have 

developed a cross platform map renderer based on Rust and 

WebGPU and Erazo et al (2023) have been developed a high-

performance client-side computational library specifically 

designed for web-based hydrological and environmental science 

applications using WebGPU, Web Assembly, and native 

JavaScript. 

 

When the related work investigated, it can be seen that most of 

the works focused on the computation capabilities of the 

WebGPU utilizing compute shader. However, by comparing only 

computation capabilities, full render performance is not 

compared and rasterizing capabilities have been neglected. It is 

also important for 3D WebGIS applications to compare full 

render performance. In this context only Fransson and 

Hermansson (2023) compares rendering performance of WebGL 

and WebGPU. But in their work, they compared using Godot 

engine. A side-by side comparison in the browser environment 

have not been done yet. Additionally, none of the works have 

examined differences between two APIs in the context of geo- 

spatial applications. 

 

 

2. METHODOLOGY 

2.1 Examining Key API Differences Between WebGPU and 

WebGL 

One of the biggest differences between WebGL and WebGPU 

APIs lies in the way they handle resource management, work 

preparation, and GPU (graphics processing unit) submission. 

While WebGL relies on a single context object that oversees all 

aspects and encompasses a considerable amount of associated 

state, WebGPU takes a different approach by segregating these 

functionalities into distinct contexts (Figure 1). In summary, this 

division enables sophisticated web applications to stream data 

through one or more workers. This aligns with multi-threading 

scenarios seen in native graphics-intensive applications, 

facilitating the effective utilization of multi-core processors 

hence, this makes WebGPU more parallel than WebGL. 

Additionally, Since WebGL’s global state model posed 

challenges in developing resilient, modular libraries, and 

applications due to its complexity and fragility, WebGPU has 

notably minimized the volume of state that developers must 

manage when issuing commands to the GPU. 

 

 
 

Figure 1. WebGPU Different Resources (URL 1). 

 

The difference between the two graphic APIs starts at the 

beginning in the initialization. WebGL is initialized using the 

canvas method “get context()” on the canvas element then by 

selecting “WebGLRenderingContext”. WebGPU initializzation 

starts with creating a GPU device, a swap chain, and a com-mand 

encoder. “The navigator.gpu.requestAdapter()” method is used to 

obtain a GPU adapter. Unlike WebGL, The GPU which 

WebGPU runs on can be selected at this stage. This is useful for 

modern machines with multiple GPUs. 
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In these graphic APIs, there are small piece of programs called 

“Vertex Shader” and “Fragment Shader”. Vertex shader is 

responsible for calculation of the 2D screen coordinates of the 

object’ vertices from 3D object coordinates and fragment shader 

operates on each fragment (or pixel) generated by the 

rasterization process, determining the final colour and other 

attributes of the pixel. Fragment shaders are responsible for tasks 

such as computing lighting effects, applying textures, and 

handling transparency. They receive interpolated data from the 

vertex shader, such as colour, texture coordinates, and normals, 

allowing for detailed and dynamic rendering. GLSL (OpenGL 

Shading Language) is used for programming shaders in WebGL 

and WGSL (WebGPU Shading Language) is used for same 

purpose in WebGPU. GLSL has a C-like syntax while WGSL has 

a Rust-like syntax. 

 

In WebGL operations are generally synchronous, with some 

asynchronous capabilities through the use of callbacks. WebGPU 

provides more explicit support for asynchronous operations, 

especially in the context of parallel computation and 

multithreading. 

 

There are some differences in space convention that effects the 

calculations and must be taken into account when migrating from 

WebGL to WebGPU. First, In WebGL texture coordinates starts 

from bottom-left and in WebGPU texture coordinates starts from 

upper-left. Same difference is true for clip space convention 

(Figure 2).  

 

 
 

Figure 2. Viewport Space Convention 

 

 

Second, in WebGL, the Z clip space range spans from -1 to 1, 

whereas in WebGPU, it ranges from 0 to 1. Consequently, objects 

with a z value of 0 are considered the closest to the camera, while 

those with a z value of 1 are perceived as the farthest away. Hence 

there are no negative values in WebGPU (Figure 3). 

 

  
 

Figure 3. Z values in clip space in both APIs. 

 

While, WebGL automatically handles the canvas upon the 

creation of a WebGL context and the provision of context 

attributes like alpha, antialias, colorSpace, depth, 

preserveDrawingBuffer, or stencil, WebGPU requires lower 

level manual canvas management. WebGL takes care of canvas 

management for you. When establishing the WebGL context, you 

specify parameters such as antialias, preserveDrawingBuffer, 

stencil, depth, and alpha. Following this setup, WebGL 

automatically handles the canvas, and your only responsibility is 

providing canvas.width and canvas.height parameters. In 

WebGPU, a significant portion of these tasks requires manual 

intervention. If you require a depth buffer, you must create it 

independently, with the option of including a stencil buffer. 

Similarly, for anti-aliasing, you need to generate your own 

multisample textures and then resolve them into the canvas 

texture. To illustrate, achieving antialiasing in WebGPU involves 

the creation of a multisample texture for rendering. Subsequently, 

the multisample texture needs to be resolved to a standard 

texture, which is then drawn onto the canvas. This hands-on 

canvas management in WebGPU offers the flexibility to output 

to multiple canvases from a single GPUDevice object, a 

capability not present in WebGL, which is limited to creating 

only one context per canvas. Hence, in WebGPU multiple 

canvases can be created for a single GPUDevice object.  

In WebGL, numerous elements are linked through names. In 

contrast, within WebGPU, all connections are solely established 

through byte offsets or indices, commonly referred to as 

locations. It is the burden of the developer to maintain 

synchronization between the locations in the WGSL code and 

JavaScript. 

 

WebGPU API uses 4-byte-aligment for memory access hence, 

buffer sizes must be a multiple of 4. This 4-byte-aligment make 

memory access faster but in return while creating buffers, buffer 

sizes must be round up to the closest multiple of four.  

 

In WebGL, buffers and textures can be resized. It is possible to 

create a buffer or texture and modify its size at any point. For 

instance. However, in WebGPU, the sizes, usage, and formats of 

textures and buffers are immutable. While you can alter their 

contents, other aspects cannot be modified. 

 

In WGSL, if you do not explicitly define the type of a variable, it 

will be inferred from the type of the expression on the right. This 
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is in contrast to GLSL, where you are obligated to always specify 

the type of a variable.  

 

Another distinction between WebGL and WebGPU is that in 

WebGPU, it is possible to include multiple shaders within the 

same source. In WebGL, the entry point for a shader was 

invariably named "main," whereas in WebGPU, when utilizing a 

shader, you specify the particular function to invoke. 

Additionally, multiple shaders can be compiled at once in 

WebGPU which is not possible in WebGL. 

 

In WebGL, when your shader didn't compile, you had to 

manually verify the COMPILE_STATUS using 

gl.getShaderParameter. If it failed, you had to extract the error 

messages by calling gl.getShaderInfoLog. If this check wasn't 

performed, no errors would be displayed, and you might 

encounter an error later when attempting to use the shader 

program. 

 

In WebGPU, most implementations will automatically display an 

error in the JavaScript console. While you can still manually 

check for errors, it's advantageous that even without explicit 

checks, you'll still receive useful information if an issue occurs. 

 

2.2 Comparing WebGL and WebGPU performance  

In this section same datasets, different 3D city models which 

consist of different number of objects, rendered using both 

WebGL and WebGPU, and runtimes have been measured. For 

this purpose, an experiment has been designed using pure 

WebGL and WebGPU avoiding to use third party libraries such 

as THREE.js or Babylon.js. This decision has been made to 

exclude post-processing and any other advanced optimization 

techniques which these kinds of libraries heavily use and only to 

focus raw rendering performance differences of two APIs. 

Additionally, since WebGPU respectively new graphic API, 

renderers of such libraries based on WebGPU is not as mature as 

renderers of such libraries based on WebGL. Hence, it is not fair 

to compare a mature fully optimized renderer with a new not fully 

optimized one. 

 

First, started with the simplest single building which consists of 

8 vertices and 12 indices. Then, by gradually increasing the data 

size, rendering performance has been measured as runtime in 

milliseconds. Larger datasets mean more vertices and indices to 

render for the APIs. Table 1 shows the sizes of the test datasets 

in the terms of number of vertices and number of indices. 

 

Number of 

Objects 

Number of 

vertices 

Number of 

Indices 

200 2462 4124 

400 5096 8592 

600 7298 12196 

800 10724 18248 

1000 14380 24760 

2000 28570 49362 

3000 43280 74420 

 

Table 1. Datasets used in the comparison. 

 

3. RESULTS 

 

WebGPU outperforms WebGL in all datasets. Results of the 

comparison has been showed in Figure 4. Even for a simplest 

single building which consist of 8 vertices and 12 indices 

WebGPU is 2.5x faster than WebGL. The difference between 

performances increases even more as the data size grows. 

Experiments shows that for rendering 3D city models in a 

browser environment without using any optimization techniques 

WebGPU performs 2.5x-3x better performance than WebGL.  

 

 

 
 

4. DISCUSSION AND CONCLUSION 

 

This study has demonstrated that, although the performance 

difference may vary depending on the type of application, the 

hardware specifications of the test machine, and the features 

utilized by the rendering application, WebGPU is three times 

more efficient than WebGL in terms of raw performance when it 

comes to displaying 3D city models in the browser. There are 

several reasons why WebGPU exhibits better performance. 

 

First, WebGPU is designed with a lower-level API, providing 

developers with more direct access to GPU resources. This 

allows for finer control and optimization opportunities, 

contributing to improved performance by providing better tuning 

opportunities.This allows for optimized control over the 

rendering pipeline and efficient utilization of the underlying 

hardware 

 

WebGPU is explicitly designed to support parallelism and 

multithreading, making more efficient use of multi-core 

processors, hence, takes advantage of modern multi-core 

processors more efficiently. This is particularly beneficial for 

graphics-intensive tasks and computations which are very 

suitable for parallelism such as matrix multiplications. 

Historically, WebGL lacked explicit support for parallelism, 

which could limit its performance in scenarios involving parallel 

processing.  

 

Tailored to leverage the capabilities of modern graphics 

hardware, WebGPU supports advanced features and 

optimizations. This ensures that it can take full advantage of the 

latest technologies and hardware enhancements, hence it can 

align with modern graphic hardware more efficiently, While 
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WebGL is compatible with a wide range of devices, it may not 

fully exploit the capabilities of the latest graphics hardware due 

to its design origins. WebGPU incorporates newer technologies 

and optimizations designed to enhance graphics rendering. These 

innovations contribute to faster and more efficient execution of 

graphics operations. Being an earlier technology, WebGL may 

not benefit from the latest optimizations and advancements 

introduced in more recent graphics APIs like WebGPU. 

 

WebGPU provides developers with explicit control over resource 

management, allowing for efficient handling of textures, buffers, 

and other GPU resources. This flexibility contributes to better 

performance in diverse scenarios. While WebGL automates 

certain aspects of resource management, the level of control may 

not be as granular as in WebGPU, potentially affecting 

performance in specific use cases. 

 

It is worth mentioning, before designing the experiment, 

WebGPU renderer of THREE.js library has been utilized for 

testing purposes. Due to the observing significant performance 

differences among various versions of the THREE.js library, it 

was decided to conduct tests without using the library. For 

instance, rendering same data with THREE.js r154 runtime has 

been measured as 3,2ms while rendering same data with 

THREE.js r156 was 6,7ms. This result indicates that WebGPU 

renderers of libraries are still not sufficiently optimized. 

 

On the other hand, when it comes to the disadvantages of 

WebGPU, as a side effect of lower-level API design, it is much 

more verbose than WebGL. For instance, for handling canvas or 

generation mipmap, a lot of calculations or operations must be 

done by developer itself while WebGL automatically handle 

these kinds of tasks for developers. 

 

Additionally, it has been observed that WebGPU maintains some 

of the limitations that WebGL has in terms of web-based 3D 

geospatial applications. First, as in WebGL, there is only triangle 

as primitive hence, 3D solids or multi-surfaces in CityGML have 

to be triangulated before passing the data to the WebGPU. 

Second, there is a limitation for float values such as vertex 

coordinates. The decimal number precision used in WebGPU is 

typically based on the 32-bit floating-point format known as 

'float32.' This implies that decimal numbers have an approximate 

accuracy of 7 digits. In other words, a floating-point number of 

this type can provide precise results up to 7 decimal places. In 

terms of geospatial applications, georeferenced coordinates 

usually have more digits than 7 hence, to solve a technique called 

high precision rendering must be applied. Hence, vertex data 

Translated to local coordinates for which 32-bit floating point 

precision is adequate. At runtime, the model-view matrix is then 

computed in a way that avoids 32-bit subtraction of large 

translation components on the GPU (Schilling et al, 2016). 

 

In summary, WebGPU's superior performance compared to 

WebGL can be attributed to its lower-level API design, explicit 

support for parallelism, compatibility with modern hardware, 

innovative optimizations, explicit resource management, and 

improved error handling capabilities. These factors collectively 

contribute to a more efficient and powerful graphics rendering 

engine. Still, we are not as comfortable as in desktop 

environments in browsers and the large dataset are needed to 

decompose into smaller data chunks. But what WebGPU brings 

over WebGL is that data size of the chunks can be 3 times bigger 

than WebGL without any performance drop. 

 

More test must be done as a future work such as testing 

RenderBundle feature of WebGPU. Because there are a lot of 

room for optimization in WebGPU and WebGPU based renderers 

will be more and more performant in the near future. 
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