
WEBGPU: A NEW GRAPHIC API FOR 3D WEBGIS APPLICATIONS

Z. Usta

Department of Geomatic Engineering, Engineering Faculty, Artvin Çoruh University, Artvin, Turkey - ziyausta@artvin.edu.tr

KEY WORDS: WebGPU, Visualization, 3D Graphics, 3D Rendering, 3D City Model, WebGIS, Digital Twins.

ABSTRACT:

As smart city applications increase today, the importance of web-based representations of data that serve as inputs for these

applications, such as 3D city models and digital twins, is growing. Since 2011, GPU hardware has greatly advanced, and detailed

3DCMs and digital twins have increased the size of the data to be displayed, which in turn increases performance requirements.

WebGL, which couldn’t fully harness the capabilities and power of modern GPUs, began to struggle to meet the increasing performance

demands over time and become a bit outdated. Consequently, a new graphic API named WebGPU was developed by W3C as a response

to limitations of WebGL and went live with Chrome 113. Now, we have a brand-new graphic API called WebGPU which harness the

full power of modern GPUs and more performant than WebGL. As WebGPU is a new graphic API, its potential enhancements and

what it can bring over WebGL in the terms of WebGIS have not been examined yet. Hence, the main idea and contribution of this

work is to investigate WebGPU in real-world use cases for WebGIS applications and discuss what it brings over WebGL. For this

purpose, a side-by-side performance comparison has been made. The comparisons have been made in the terms of API differences and

performance. And finally, an experiment has been carried out how much data can be rendered can be rendered at minimum 60fps in

both APIs. The experiments show that WebGPU is more low-level and way more performant than WebGL and it has a lot to offer in

the terms of WebGIS applications.

1. INTRODUCTION

1.1 Background

HTML5 and WebGL are two de facto technologies that are used

together to display 3D content on the web. HTML is a markup

language that defines the structure and content of web pages, and

HTML5 is the latest version of this language. On the other hand,

WebGL (Web Graphic Library) is a graphic application

programming interface (API) used to create browser-based 3D

graphics that run on the ’canvas’ element of HTML5 without

using any software or additional plug-ins. Before the invention of

WebGL, in order to visualize 3D content via browsers and

developing 3D web applications, additional plug-ins must be

used or standalone software had to be installed on the client’s

device, such as Flash and Silverlight. Plugins for browsers such

as Cortona3D, FreeWRL, or Java applets such as XNavigator

have been used for visualizing 3D contents on the web. Nasa

WorldWind and Google Earth were able to work web-based but

had to be downloaded and installed. After being redeveloped

using WebGL, Google Earth now can be used without any

additional installation. Another example is Unity Web Player

which and had to be installed for displaying video games that

were developed using Unity3D in the browsers. is now

deprecated.

Using HTML5 and WebGL technologies, many studies have

visualized 3D city models (3DCMS) and digital twins on the web

without any software or plug-in installation and visualizing these

3D geospatial data on the web has become an import- ant topic

in the field of WebGIS. Gesquie`re and Manin (2012) visualized

CityGML data using WebGL. Jaillot (2020) visualized time-

dynamic data along with 3DCMs and Gaillard et al. (2020)

developed an approach which visualizes 3DCMs in multi-scale

resolutions.

WebGL is based on OpenGL, originally developed in 1992 and

started to get a bit old in today’s technology stack. Today,

modern GPUs are more complex and powerful hence, to better

take advantage of modern GPUs’ advanced features WebGPU

has emerged as a new graphic API for the web. WebGPU a brand-

new graphic API, represents a significant evolution in web

graphics technology, offering a powerful and modern approach

to rendering on the web. As an emerging standard, WebGPU

aims to overcome the limitations of its predecessor, WebGL, by

providing developers with a lower-level, explicit API for

accelerated graphics and parallel computation on the web

platform. Hence, WebGPU introduces a paradigm shift by

providing developers with a sophisticated and efficient API

designed to fully exploit the capabilities of modern GPUs for

immersive 3D experiences. Unlike WebGL, which is based on

OpenGL and designed for immediate mode rendering, WebGPU

is built on a more modern and efficient foundation. It provides a

lower-level abstraction that allows developers to take advantage

of the full capabilities of modern GPUs while being more closely

aligned with the design principles of contemporary graphics

hardware which undergone significant development since the

release of WebGL in 2011.

WebGPU is developed by the W3C GPU for the Web

Community Group with engineers from big software vendors

such as Apple, Mozilla, Microsoft, and Google and draft version

of the API has been released in 2021 (W3C, 2021). WebGPU,

which has been in development for a while, went live and started

to be supported by the standard versions of major browsers with

the release of Chrome 113. WebGPU offers developers relatively

direct access to GPU resources that were previously inaccessible,

and it additionally offers general computation functionality

beyond rendering that was not previously accessible in WebGL,

thanks to the inclusion of compute shaders (Fransson and

Hermansson, 2023). WebGPU is a cutting-edge technology that

is poised to revolutionize 3D graphics on the web. It offers low-

level, general-purpose access to GPUs, enabling the development

of sophisticated web-based graphics applications (Galera, 2023).

As a completely new API, WebGPU is not investigated

extensively hence, the aim of this study is to examine the

WebGPU API in the context of 3D WebGIS applications. The

render performance of the WebGPU API has been tested with

real-world datasets, and the differences from the WebGL API

both in the terms of API design and in the terms of performance

have been analysed.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W9-2024
GeoAdvances 2024 – 8th International Conference on GeoInformation Advances, 11–12 January 2024, Istanbul, Türkiye

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W9-2024-377-2024 | © Author(s) 2024. CC BY 4.0 License.

377

1.2 Related Work

Goh et al. (2022) states that although WebGPU is in an

experimental phase it can be used for front-end deep learning

apps. Franke and Haehn (2020) emphasize the use of WebGPU

for three-dimensional computer graphics and augmented/virtual

reality devices, indicating its potential for modern scientific

visualization. Bohak et al (2023) have been developed an engine

based on WebGPU. Beyer et al. (2022) mention the potential of

WebGPU for building high-performance terascale frameworks,

further underlining its significance in the field of computer

science. Furthermore, Wang and Durrant (2022) emphasize the

role of WebGPU in enabling GPU-accelerated graphics and

calculations, indicating its relevance in computer-aided drug

discovery. Additionally, Kenwright (2022) provides an

introduction to the WebGPU API, further underlining its

significance in the field of computer science. Hidaka et al. (2017)

dis- covered that their execution of a deep neural network (DNN)

with WebGPU achieved approximately 36 times greater speed

(91 ms compared to 3297 ms) when compared to another widely

used DNN implementation on the web, which relies on the

emulated compute capabilities of WebGL. Usher and Pascucci

(2020) conducted a comparison between the compute capabilities

of WebGPU and native Vulkan, revealing a notable similarity in

performance, especially when handling compute-intensive tasks.

The study utilized the marching cubes algorithm applied to a

scalar field as a representative example of compute-intensive

operations. The findings demonstrated com- parable

performance, with WebGPU typically falling within the same

order of magnitude and frequently even closer to the time-to-

render values achieved by the Vulkan implementation. Dyken et

al. (2022) examined the comparative rendering performance of

large-scale graph layouts on the web using libraries relying on

different technologies, including WebGPU (GraphWaGu),

WebGL (NetV and Stardust), and non-GPU- accelerated

counterparts (like D3 Canvas). With the computational

capabilities of WebGPU, GraphWaGu stands out as the sole

GPU-utilizing library capable of concurrently computing

iterations of graph algorithms. When handling 100,000 nodes and

2,000,000 edges, only GraphWaGu sustains an interactive

rendering frame rate of ten or more. In contrast, NetV achieves a

frame rate of three, and StarDust is unable to render the graph

layout altogether. Pushing GraphWaGu to its limits, it

successfully renders a maximum of 200,000 nodes and 4,000,000

edges a remarkable achievement unmatched by any other tested

library, whether WebGL-based or not. Fransson and Hermansson

(2023) examined and quantified the performance diference

between WebGL and WebGPU using Godot Engine as backhand.

Five different games namely Checkers, Snake, Evader, Ponder

and Falling Cats Deck Before Dawn were rendered with using

both WebGL and WebGPU in Godot Engine environment. In

every game, WebGPU sur- passes WebGL in terms of both

average CPU and GPU frame times. The acceleration achieved

by employing the WebGPU Rasterizer varies between

approximately 6.8 and 35.6, indicating a significant outcome.

Moreover, WebGPU is expected to open new possibilities for 3D

games in web browsers, lever- aging the advantages of GPU

APIs, as highlighted by (Mehannaand Rudametkin, 2023).

Helmrich and Käll, (2023) have parallelized Boolean operations

using WebGPU. Yee t al. (2023) optimized occlusion culling

based on WebGPU. Additionally, Ammann et al (2022) have

developed a cross platform map renderer based on Rust and

WebGPU and Erazo et al (2023) have been developed a high-

performance client-side computational library specifically

designed for web-based hydrological and environmental science

applications using WebGPU, Web Assembly, and native

JavaScript.

When the related work investigated, it can be seen that most of

the works focused on the computation capabilities of the

WebGPU utilizing compute shader. However, by comparing only

computation capabilities, full render performance is not

compared and rasterizing capabilities have been neglected. It is

also important for 3D WebGIS applications to compare full

render performance. In this context only Fransson and

Hermansson (2023) compares rendering performance of WebGL

and WebGPU. But in their work, they compared using Godot

engine. A side-by side comparison in the browser environment

have not been done yet. Additionally, none of the works have

examined differences between two APIs in the context of geo-

spatial applications.

2. METHODOLOGY

2.1 Examining Key API Differences Between WebGPU and

WebGL

One of the biggest differences between WebGL and WebGPU

APIs lies in the way they handle resource management, work

preparation, and GPU (graphics processing unit) submission.

While WebGL relies on a single context object that oversees all

aspects and encompasses a considerable amount of associated

state, WebGPU takes a different approach by segregating these

functionalities into distinct contexts (Figure 1). In summary, this

division enables sophisticated web applications to stream data

through one or more workers. This aligns with multi-threading

scenarios seen in native graphics-intensive applications,

facilitating the effective utilization of multi-core processors

hence, this makes WebGPU more parallel than WebGL.

Additionally, Since WebGL’s global state model posed

challenges in developing resilient, modular libraries, and

applications due to its complexity and fragility, WebGPU has

notably minimized the volume of state that developers must

manage when issuing commands to the GPU.

Figure 1. WebGPU Different Resources (URL 1).

The difference between the two graphic APIs starts at the

beginning in the initialization. WebGL is initialized using the

canvas method “get context()” on the canvas element then by

selecting “WebGLRenderingContext”. WebGPU initializzation

starts with creating a GPU device, a swap chain, and a com-mand

encoder. “The navigator.gpu.requestAdapter()” method is used to

obtain a GPU adapter. Unlike WebGL, The GPU which

WebGPU runs on can be selected at this stage. This is useful for

modern machines with multiple GPUs.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W9-2024
GeoAdvances 2024 – 8th International Conference on GeoInformation Advances, 11–12 January 2024, Istanbul, Türkiye

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W9-2024-377-2024 | © Author(s) 2024. CC BY 4.0 License.

378

In these graphic APIs, there are small piece of programs called

“Vertex Shader” and “Fragment Shader”. Vertex shader is

responsible for calculation of the 2D screen coordinates of the

object’ vertices from 3D object coordinates and fragment shader

operates on each fragment (or pixel) generated by the

rasterization process, determining the final colour and other

attributes of the pixel. Fragment shaders are responsible for tasks

such as computing lighting effects, applying textures, and

handling transparency. They receive interpolated data from the

vertex shader, such as colour, texture coordinates, and normals,

allowing for detailed and dynamic rendering. GLSL (OpenGL

Shading Language) is used for programming shaders in WebGL

and WGSL (WebGPU Shading Language) is used for same

purpose in WebGPU. GLSL has a C-like syntax while WGSL has

a Rust-like syntax.

In WebGL operations are generally synchronous, with some

asynchronous capabilities through the use of callbacks. WebGPU

provides more explicit support for asynchronous operations,

especially in the context of parallel computation and

multithreading.

There are some differences in space convention that effects the

calculations and must be taken into account when migrating from

WebGL to WebGPU. First, In WebGL texture coordinates starts

from bottom-left and in WebGPU texture coordinates starts from

upper-left. Same difference is true for clip space convention

(Figure 2).

Figure 2. Viewport Space Convention

Second, in WebGL, the Z clip space range spans from -1 to 1,

whereas in WebGPU, it ranges from 0 to 1. Consequently, objects

with a z value of 0 are considered the closest to the camera, while

those with a z value of 1 are perceived as the farthest away. Hence

there are no negative values in WebGPU (Figure 3).

Figure 3. Z values in clip space in both APIs.

While, WebGL automatically handles the canvas upon the

creation of a WebGL context and the provision of context

attributes like alpha, antialias, colorSpace, depth,

preserveDrawingBuffer, or stencil, WebGPU requires lower

level manual canvas management. WebGL takes care of canvas

management for you. When establishing the WebGL context, you

specify parameters such as antialias, preserveDrawingBuffer,

stencil, depth, and alpha. Following this setup, WebGL

automatically handles the canvas, and your only responsibility is

providing canvas.width and canvas.height parameters. In

WebGPU, a significant portion of these tasks requires manual

intervention. If you require a depth buffer, you must create it

independently, with the option of including a stencil buffer.

Similarly, for anti-aliasing, you need to generate your own

multisample textures and then resolve them into the canvas

texture. To illustrate, achieving antialiasing in WebGPU involves

the creation of a multisample texture for rendering. Subsequently,

the multisample texture needs to be resolved to a standard

texture, which is then drawn onto the canvas. This hands-on

canvas management in WebGPU offers the flexibility to output

to multiple canvases from a single GPUDevice object, a

capability not present in WebGL, which is limited to creating

only one context per canvas. Hence, in WebGPU multiple

canvases can be created for a single GPUDevice object.

In WebGL, numerous elements are linked through names. In

contrast, within WebGPU, all connections are solely established

through byte offsets or indices, commonly referred to as

locations. It is the burden of the developer to maintain

synchronization between the locations in the WGSL code and

JavaScript.

WebGPU API uses 4-byte-aligment for memory access hence,

buffer sizes must be a multiple of 4. This 4-byte-aligment make

memory access faster but in return while creating buffers, buffer

sizes must be round up to the closest multiple of four.

In WebGL, buffers and textures can be resized. It is possible to

create a buffer or texture and modify its size at any point. For

instance. However, in WebGPU, the sizes, usage, and formats of

textures and buffers are immutable. While you can alter their

contents, other aspects cannot be modified.

In WGSL, if you do not explicitly define the type of a variable, it

will be inferred from the type of the expression on the right. This

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W9-2024
GeoAdvances 2024 – 8th International Conference on GeoInformation Advances, 11–12 January 2024, Istanbul, Türkiye

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W9-2024-377-2024 | © Author(s) 2024. CC BY 4.0 License.

379

is in contrast to GLSL, where you are obligated to always specify

the type of a variable.

Another distinction between WebGL and WebGPU is that in

WebGPU, it is possible to include multiple shaders within the

same source. In WebGL, the entry point for a shader was

invariably named "main," whereas in WebGPU, when utilizing a

shader, you specify the particular function to invoke.

Additionally, multiple shaders can be compiled at once in

WebGPU which is not possible in WebGL.

In WebGL, when your shader didn't compile, you had to

manually verify the COMPILE_STATUS using

gl.getShaderParameter. If it failed, you had to extract the error

messages by calling gl.getShaderInfoLog. If this check wasn't

performed, no errors would be displayed, and you might

encounter an error later when attempting to use the shader

program.

In WebGPU, most implementations will automatically display an

error in the JavaScript console. While you can still manually

check for errors, it's advantageous that even without explicit

checks, you'll still receive useful information if an issue occurs.

2.2 Comparing WebGL and WebGPU performance

In this section same datasets, different 3D city models which

consist of different number of objects, rendered using both

WebGL and WebGPU, and runtimes have been measured. For

this purpose, an experiment has been designed using pure

WebGL and WebGPU avoiding to use third party libraries such

as THREE.js or Babylon.js. This decision has been made to

exclude post-processing and any other advanced optimization

techniques which these kinds of libraries heavily use and only to

focus raw rendering performance differences of two APIs.

Additionally, since WebGPU respectively new graphic API,

renderers of such libraries based on WebGPU is not as mature as

renderers of such libraries based on WebGL. Hence, it is not fair

to compare a mature fully optimized renderer with a new not fully

optimized one.

First, started with the simplest single building which consists of

8 vertices and 12 indices. Then, by gradually increasing the data

size, rendering performance has been measured as runtime in

milliseconds. Larger datasets mean more vertices and indices to

render for the APIs. Table 1 shows the sizes of the test datasets

in the terms of number of vertices and number of indices.

Number of

Objects

Number of

vertices

Number of

Indices

200 2462 4124

400 5096 8592

600 7298 12196

800 10724 18248

1000 14380 24760

2000 28570 49362

3000 43280 74420

Table 1. Datasets used in the comparison.

3. RESULTS

WebGPU outperforms WebGL in all datasets. Results of the

comparison has been showed in Figure 4. Even for a simplest

single building which consist of 8 vertices and 12 indices

WebGPU is 2.5x faster than WebGL. The difference between

performances increases even more as the data size grows.

Experiments shows that for rendering 3D city models in a

browser environment without using any optimization techniques

WebGPU performs 2.5x-3x better performance than WebGL.

4. DISCUSSION AND CONCLUSION

This study has demonstrated that, although the performance

difference may vary depending on the type of application, the

hardware specifications of the test machine, and the features

utilized by the rendering application, WebGPU is three times

more efficient than WebGL in terms of raw performance when it

comes to displaying 3D city models in the browser. There are

several reasons why WebGPU exhibits better performance.

First, WebGPU is designed with a lower-level API, providing

developers with more direct access to GPU resources. This

allows for finer control and optimization opportunities,

contributing to improved performance by providing better tuning

opportunities.This allows for optimized control over the

rendering pipeline and efficient utilization of the underlying

hardware

WebGPU is explicitly designed to support parallelism and

multithreading, making more efficient use of multi-core

processors, hence, takes advantage of modern multi-core

processors more efficiently. This is particularly beneficial for

graphics-intensive tasks and computations which are very

suitable for parallelism such as matrix multiplications.

Historically, WebGL lacked explicit support for parallelism,

which could limit its performance in scenarios involving parallel

processing.

Tailored to leverage the capabilities of modern graphics

hardware, WebGPU supports advanced features and

optimizations. This ensures that it can take full advantage of the

latest technologies and hardware enhancements, hence it can

align with modern graphic hardware more efficiently, While

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W9-2024
GeoAdvances 2024 – 8th International Conference on GeoInformation Advances, 11–12 January 2024, Istanbul, Türkiye

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W9-2024-377-2024 | © Author(s) 2024. CC BY 4.0 License.

380

WebGL is compatible with a wide range of devices, it may not

fully exploit the capabilities of the latest graphics hardware due

to its design origins. WebGPU incorporates newer technologies

and optimizations designed to enhance graphics rendering. These

innovations contribute to faster and more efficient execution of

graphics operations. Being an earlier technology, WebGL may

not benefit from the latest optimizations and advancements

introduced in more recent graphics APIs like WebGPU.

WebGPU provides developers with explicit control over resource

management, allowing for efficient handling of textures, buffers,

and other GPU resources. This flexibility contributes to better

performance in diverse scenarios. While WebGL automates

certain aspects of resource management, the level of control may

not be as granular as in WebGPU, potentially affecting

performance in specific use cases.

It is worth mentioning, before designing the experiment,

WebGPU renderer of THREE.js library has been utilized for

testing purposes. Due to the observing significant performance

differences among various versions of the THREE.js library, it

was decided to conduct tests without using the library. For

instance, rendering same data with THREE.js r154 runtime has

been measured as 3,2ms while rendering same data with

THREE.js r156 was 6,7ms. This result indicates that WebGPU

renderers of libraries are still not sufficiently optimized.

On the other hand, when it comes to the disadvantages of

WebGPU, as a side effect of lower-level API design, it is much

more verbose than WebGL. For instance, for handling canvas or

generation mipmap, a lot of calculations or operations must be

done by developer itself while WebGL automatically handle

these kinds of tasks for developers.

Additionally, it has been observed that WebGPU maintains some

of the limitations that WebGL has in terms of web-based 3D

geospatial applications. First, as in WebGL, there is only triangle

as primitive hence, 3D solids or multi-surfaces in CityGML have

to be triangulated before passing the data to the WebGPU.

Second, there is a limitation for float values such as vertex

coordinates. The decimal number precision used in WebGPU is

typically based on the 32-bit floating-point format known as

'float32.' This implies that decimal numbers have an approximate

accuracy of 7 digits. In other words, a floating-point number of

this type can provide precise results up to 7 decimal places. In

terms of geospatial applications, georeferenced coordinates

usually have more digits than 7 hence, to solve a technique called

high precision rendering must be applied. Hence, vertex data

Translated to local coordinates for which 32-bit floating point

precision is adequate. At runtime, the model-view matrix is then

computed in a way that avoids 32-bit subtraction of large

translation components on the GPU (Schilling et al, 2016).

In summary, WebGPU's superior performance compared to

WebGL can be attributed to its lower-level API design, explicit

support for parallelism, compatibility with modern hardware,

innovative optimizations, explicit resource management, and

improved error handling capabilities. These factors collectively

contribute to a more efficient and powerful graphics rendering

engine. Still, we are not as comfortable as in desktop

environments in browsers and the large dataset are needed to

decompose into smaller data chunks. But what WebGPU brings

over WebGL is that data size of the chunks can be 3 times bigger

than WebGL without any performance drop.

More test must be done as a future work such as testing

RenderBundle feature of WebGPU. Because there are a lot of

room for optimization in WebGPU and WebGPU based renderers

will be more and more performant in the near future.

REFERENCES

Ammann, M., Drabble, A., Ingensand, J., & Chapuis, B. (2022).

Maplibre-rs: toward portable map renderers. The International

Archives of the Photogrammetry, Remote Sensing and Spatial

Information Sciences; Proceedings of Free and Open Source

Software for Geospatial (FOSS4G) 2022–Academic Track.

Beyer, J., Troidl, J., Boorboor, S., Hadwiger, M., Kaufman, A.,

& Pfister, H. (2022, June). A Survey of Visualization and

Analysis in High‐Resolution Connectomics. In Computer

Graphics Forum (Vol. 41, No. 3, pp. 573-607).

Bohak, C., Kovalskyi, D., Linev, S., Tadel, A. M., Strban, S.,

Tadel, M., & Yagil, A. (2023). RenderCore--a new WebGPU-

based rendering engine for ROOT-EVE. arXiv preprint

arXiv:2312.11729.

Dyken, L., & Poudel, P. (2022, June). GraphWaGu: GPU

Powered Large Scale Graph Layout Computation and Rendering

for the Web. In Eurographics Symposium on Parallel Graphics

and Visualization.

Erazo, C. V., Sermet, M. Y., & Demir, I. (2023). HydroCompute:

An Open-Source Web-Based Computational Library for

Hydrology and Environmental Sciences.

Franke, L., & Haehn, D. (2020, September). Modern scientific

visualizations on the web. In Informatics (Vol. 7, No. 4, p. 37).

MDPI.

Fransson, E., & Hermansson, J. (2023). Performance comparison

of WebGPU and WebGL in the Godot game engine. Master of

Science in Engineering: Game and Software Engineering.

Blekinge Institute of Technology

Gaillard, J, Peytavie, A., and Gesguiere G., 2020. Visualization

and Perdonalization of Multi-Representations City Models.

International Journal of Digital Earth. Vol 13. No.5. P.627-644.

2020.

Galera, A. P., de Oliveira, D. R., Gutierrez, F. D., Pires, G. P.,

Passarin, T. A., Guarneri, G. A., & Pipa, D. R. (2023). A

WebGPU-base acoustic wave simulator for ultrasound NDT.

Gesquière, G., & Manin, A. (2012). 3D visualization of urban

data based on CityGML with WebGL. International Journal of 3-

D Information Modeling (IJ3DIM), 1(3), 1-15.

Goh, H. A., Ho, C. K., & Abas, F. S. (2023). Front-end deep

learning web apps development and deployment: a review.

Applied Intelligence, 53(12), 15923-15945.

Helmrich, M., & Käll, L. (2023). Parallelization of boolean

operations for CAD Software using WebGPU.

Hidaka, M., Kikura, Y., Ushiku, Y., & Harada, T. (2017,

October). Webdnn: Fastest dnn execution framework on web

browser. In Proceedings of the 25th ACM international

conference on Multimedia (pp. 1213-1216).

Jaillot, V., 2020. 3D, Temporal and Documented Cities:

Formalization, Visualization and Navigation. PhD Thesis.

University of Lyon. 2020.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W9-2024
GeoAdvances 2024 – 8th International Conference on GeoInformation Advances, 11–12 January 2024, Istanbul, Türkiye

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W9-2024-377-2024 | © Author(s) 2024. CC BY 4.0 License.

381

Kenwright, B. (2022, December). Introduction to computer

graphics and ray-tracing using the webgpu api. In 15th ACM

SIGGRAPH Conference and Exhibition on Computer Graphics

and Interactive Techniques in Asia 2022.

Mehanna, N., & Rudametkin, W. (2023). Caught in the Game:

On the History and Evolution of Web Browser Gaming. arXiv

preprint arXiv:2304.14791.

Schilling, A., Bolling, J., & Nagel, C. (2016, July). Using glTF

for streaming CityGML 3D city models. In Proceedings of the

21st International Conference on Web3D Technology (pp. 109-

116).

URL 1. A Taste of WebGPU in Firefox.

https://hacks.mozilla.org/2020/04/experimental-webgpu-in-

firefox/. Accessed 25.11.2023.

Usher, W., & Pascucci, V. (2020, October). Interactive

visualization of terascale data in the browser: Fact or fiction?. In

2020 IEEE 10th Symposium on Large Data Analysis and

Visualization (LDAV) (pp. 27-36). IEEE.

W3C, 2021. WebGPU [Online]. Available:

https://www.w3.org/TR/2021/WD-webgpu-20210518/

Wang, A., & Durrant, J. D. (2022). Open-Source Browser-Based

Tools for Structure-Based Computer-Aided Drug Discovery.

Molecules, 27(14),

Ye, L., Liu, G., Chen, G., Li, K., Chen, Q., Fan, W., & Zhang, J.

(2023). 3D Model Occlusion Culling Optimization Method

Based on WebGPU Computing Pipeline. Computer Systems

Science & Engineering, 47(2)

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W9-2024
GeoAdvances 2024 – 8th International Conference on GeoInformation Advances, 11–12 January 2024, Istanbul, Türkiye

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W9-2024-377-2024 | © Author(s) 2024. CC BY 4.0 License.

382

https://hacks.mozilla.org/2020/04/experimental-webgpu-in-firefox/
https://hacks.mozilla.org/2020/04/experimental-webgpu-in-firefox/

