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ABSTRACT: 

 

The objective of the study is to conduct a comprehensive examination of how different neighbourhood types, namely spherical, 

cylindrical, and k-nearest neighbour (kNN), influence the feature extraction capabilities of the PointNet++ architecture in the semantic 

segmentation of Airborne Laser Scanning (ALS) point clouds. Two datasets are utilized for semantic segmentation analysis: the Dayton 

Annotated LiDAR Earth Scan (DALES) and the ISPRS 3D Semantic Labelling Benchmark datasets. In the experiments, the kNN 

method exhibited approximately 1% higher accuracy in weighted mean F1 and intersection over union (IoU) metrics compared to the 

spherical and cylindrical neighbourhood types on the DALES dataset. However, in the generalization experiment conducted on the 

ISPRS dataset, the spherical neighbourhood achieved the best results in these metrics, outperforming the cylindrical neighbourhood 

by a small margin. Notably, the kNN method was the least accurate, with a decrease in accuracy of approximately 1% in both weighted 

mean IoU and F1 scores. These findings suggest that the features extracted from spherical and cylindrical neighbourhood types are 

more generalizable compared to those from the kNN method. 

 

 

1. INTRODUCTION 

Airborne Laser Scanning (ALS) technique plays a crucial role in 

gathering data about real-world environments. The utilization of 

point cloud data obtained from ALS extends across many 

different fields, covering mapping and surveying, 3D object 

detection, forestry, disaster monitoring, and the preservation of 

cultural heritage (Nong et al., 2023). However, due to the 

complexity of urban scenes, assigning each 3D point in the 

irregularly distributed point cloud to a semantic class is a 

challenging task (Niemeyer et al., 2014). 

 

Following advancements in computer systems, 3D deep neural 

networks (DNNs) have increasingly been employed for 3D 

semantic segmentation task. Research on deep learning-based 

semantic segmentation of point clouds is broadly classified into 

three categories by Lin et al. (2022), depending on the structure 

of the input data: projection-based, voxel-based, and point-based 

approaches. Guo et al., (2021), point out that converting point 

clouds to uniform data formats for integration with 

Convolutional Neural Networks (CNNs) might introduce 

additional computational overhead and lead to a notable loss of 

information. Additionally, Öngün and Temizel (2021) note that 

point clouds are the predominant data type in the three-

dimensional perception of reality, extensively utilized across 

various domains such as 3D scanning, robotics, autonomous 

vehicles, and face recognition. Consequently, without the need to 

convert into any regular data formats, architectures have been 

developed that can directly handle 3D point clouds in their 

original form.  

 

As highlighted by Luo et al. (2022), most pointwise semantic 

segmentation methods typically follow a process flow that 

includes sampling points, searching for neighbours, aggregating 

features, and finally, classification. In this study, we specifically 
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concentrated on the neighbourhood selection stage. The 

PointNet++ architecture, introduced by Qi et al. (2017b) 

recognized as a pioneering point-wise method, selects 

neighbouring points through its set abstraction layer, which 

involves both sampling and grouping operations. The primary 

operation for identifying neighbouring points is the grouping 

mechanism. In this process, after representative points are 

sampled using Farthest Point Sampling (FPS), PointNet++ 

groups points by employing a spherical neighbourhood around 

each sampled point to effectively capture the local spatial 

relationships within the point cloud. According to Thomas et al. 

(2018), for classifying 3D points, the two predominant 

neighbourhood definitions employed are the spherical 

neighbourhood and the k-nearest neighbours (kNN). 

Additionally, they note that a third definition, often applied in 

airborne LiDAR datasets, is the cylindrical neighbourhood. 

 

The motivation of the study is to conduct an in-depth analysis of 

the impact of different neighbourhood types on the feature 

extraction capabilities in semantic segmentation applications 

carried out with the PointNet++ (Qi et al., 2017b) for ALS point 

clouds. We have restructured the four layers of PointNet++ to 

construct feature vectors using different neighbourhood types. 

We used two datasets to investigate the effects of different 

neighbourhood types on the performance of PointNet++. The 

ISPRS 3D Semantic Labelling Benchmark dataset, a widely 

utilized benchmarking dataset for point cloud classification 

(Niemeyer et al., 2014), serves as one of the two datasets 

employed. The other point cloud dataset used in this study is the 

Dayton Annotated LiDAR Earth Scan (DALES) (Varney et al., 

2020), a large-scale aerial LiDAR point cloud specifically 

created for semantic segmentation tasks. The evaluation of three 

neighbourhood types was conducted using both qualitative and 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W9-2024 
GeoAdvances 2024 – 8th International Conference on GeoInformation Advances, 11–12 January 2024, Istanbul, Türkiye

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W9-2024-7-2024 | © Author(s) 2024. CC BY 4.0 License.

 
7



 

quantitative results, focusing on class-based accuracies as well as 

overall accuracies. 

 

2. RELATED WORK 

In the field of computer vision, a variety of point-based 

architectures has been established for the classification of 3D 

point cloud. These architectures employ different approaches for 

neighbour selection, with some utilizing kNN and others 

adopting spherical neighbourhood types. PointNet++ (Qi et al., 

2017b) architecture employs a spherical neighbourhood to 

effectively gather local sets of points based on spatial proximity, 

facilitating the capture of local structures within the data. 

SpiderCNN employs the kNN approach for determining local 

neighbourhood characteristics, as opposed to using a radius-

based method (Xu et al., 2018). In PointASNL, Yan et al. (2020) 

initially conduct a k-NN query to group the neighbours of 

sampled points, and then apply a general self-attention 

mechanism for the updating of group features. Zhao et al. (2019) 

employs kNN method to group neighbour points in their 

PointWeb architecture. For neighbor selection, Point Trasformer 

architecture (Zhao et al., 2021) utilizes kNN method to select 

neighbour points. They also investigate the setting of the number 

of neighbours, denoted as k, which is used in determining the 

local neighbourhood around each point. The best performance 

was achieved when k was set to 16. They noted that smaller 

neighbourhoods might not provide sufficient context for accurate 

predictions, while larger neighbourhoods could introduce 

excessive noise, lowering the accuracy of the model. Thomas et 

al. (2019) prefer neighbourhoods defined by radius rather than 

using kNN in their KPConv architecture. Thomas et al. (2018) 

demonstrated that manually crafted 3D point features yield 

superior representations when calculated using neighbourhoods 

defined by radius, rather than through kNN, a finding further 

discussed by Thomas et al. (2019). In SO-Net, Li et al. (2018) 

achieved systematic adjustment of the receptive field of the 

network by implementing a point-to-node k nearest neighbour 

search. Wu et al. (2019) describe that the input features are 

derived from the kNN method in PointConv. Turgut and 

Dutagaci (2024) propose a module designed to adjust the radii for 

each center point, in contrast to the conventional method of using 

a fixed radius specific to each layer for grouping. 

 

In the domain of point-based classification of ALS data, Li et al. 

(2021), Chen et al. (2021) and Winiwarter et al. (2019) adapted 

PointNet++ for the semantic segmentation of ALS point clouds 

using spherical neighbourhoods. Meanwhile, Kada and Kuramin 

(2021) introduced an additional branch in the first of the four set 

abstraction layers of PointNet++, designed to compute extra 

features from cylindrical neighbourhoods. Then, at the end of the 

first set abstraction layer, they concatenated features from 

spherical and cylindrical neighbourhoods. They noted that the 

inclusion of cylindrical neighbourhoods in the first abstraction 

layer of PointNet++ further improved its performance, 

particularly in distinguishing between facades and roof points. 

Inspired by Kada and Kuramin (2021), we have expanded this 

concept by individually incorporating three types of 

neighbourhoods into each layer of the network, not just the first. 

 

 

3. METHODOLOGY 

3.1 Neighbourhood Types 

Regarding a specific point P, the spherical neighbourhood 

consists of points located within a predetermined radius from P, 

while the k-nearest neighbours encompass a set number of points 

nearest to P. Additionally, a third definition often applied in 

airborne LiDAR dataset is the cylindrical neighbourhood. This 

includes points within a certain radius from P on a 2D projection 

of the cloud, commonly on the horizontal plane (Thomas et al., 

2018). Figure 1 provides a visual representation of three distinct 

types of neighbourhoods and how each neighbourhood interacts 

with the point cloud.   

 

 
 

Figure 1. The types of neighbourhoods, adapted from Guo et al. 

(2015) and Ozdemir (2021), include: a) cylindrical 

neighbourhood, b) spherical neighbourhood, and c) k-nearest 

neighbours. 

 

There is a range of opinions concerning the application of kNN 

and spherical neighbourhood search methods. Some researchers 

support the use of KNN for its benefits, whereas others favor the 

spherical neighbourhood search method, each emphasizing the 

strengths of these approaches. Hermosilla et al. (2018) noted that 

kNN method lacks resilience in settings with non-uniform 

sampling, as introducing additional points into a spatial region 

diminishes the k nearest neighbours to a limited area surrounding 

each point. This results in the capture of features that differ from 

those on which the kernel was initially trained, meaning the area 

of focus contracts in regions with high point density and expands 

in less dense areas. Hackel et al. (2016) mentioned that from a 

theoretical standpoint, radius search is ideally suited for point 

clouds with uniform point density, as it matches a constant 

geometric scale in object space. However, this method becomes 

less practical with significant variations in point density. 

Consequently, due to these constraints, Hackel et al. (2016) 

expressed a preference for the kNN search, which acts as an 

effective approximation to a radius that adjusts to the fluctuating 

densities within the point cloud. According to Thomas et al. 

(2018), in contrast to kNN, a spherical neighbourhood aligns with 

a specific, unchanging section of space. This attribute is essential 

for providing a more stable geometric context to the features. 

Nonetheless, within this consistent spatial area, the count of 

points may fluctuate depending on the density of the point cloud. 

They highlighted that in spherical neighbourhoods, a small-scale 

area may lack a sufficient number of points for an accurate 

description, whereas a larger-scale area is capable of providing 

the necessary information. Qi et al. (2017b) recommend using the 

spherical method because it ensures fixed-size local regions 

through its radius, which leads to the extraction of more 

generalizable features across different spaces.  

 

Considering the relative advantages and disadvantages of these 

methods, we examined their effects on the semantic segmentation 

of 3D point clouds under the same conditions using PointNet++. 

The impact of each of the three methods on the generalization 

performance of the architecture has also been evaluated. 

 

3.2 Review of PointNet++ 

In point-wise deep learning domain for semantic segmentation, 

PointNet was introduced by Qi et al. (2017a) to directly classify 

point clouds, but inherent to its design, PointNet does not 
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encompass the local structures. Therefore, PointNet++, 

developed by Qi et al. (2017b), addresses the limitations of 

PointNet by iteratively applying its architecture to local regions, 

marking a foundational advancement in point-wise deep neural 

networks. Neighbourhoods, formed around center points chosen 

to cover the entire input point cloud, represent local regions and 

enable the division of the point cloud into overlapping sub-

regions. PointNet++ uses the FPS method to select center points 

from the input point cloud, defining local regions as the 

neighbouring points within a specified radius around these 

centers, ensuring even coverage across the entire point cloud. Its 

hierarchical feature learning architecture is specifically designed 

for tasks like semantic segmentation and classification, as 

illustrated in Figure 2. 

 

 
 

Figure 2. An example of PointNet++ architecture with two set 

abstraction layers, adapted from Qi et al. (2017b).  

 

In PointNet++, a spherical neighbourhood is used to group 

points. The radius values for the four multi-layer perceptron 

(MLP) layers are set at doubled increments, starting from 0.1. 

Due to the unsuitability of directly applying standard radius 

values to ALS point clouds, we employed radius values of 1, 2, 

4, and 8 meters, considering the number of points to be sampled 

within the radius and the point density. We randomly sampled 32 

points within each neighbourhood.  

 

 

4. EXPERIMENTAL RESULTS 

In the study, three experiments were carried out using spherical, 

kNN, and cylindrical neighbourhoods only employing X, Y and 

Z coordinates on the PointNet++ architecture to highlight the 

advantages and limitations of each neighbourhood type.  

 

4.1 Parameter Selection for PointNet++  

In the study, we utilized and modified the Pytorch 

implementation of PointNet++ developed by Yan (2019). This 

implementation sets itself apart from the standard PointNet++ by 

using a sample rate to divide all input point clouds into fixed 

block sizes, enabling the architecture to observe almost all the 

data. We established the block sizes at 32m32m for both 

spherical and cylindrical neighbourhood searches, considering 

the radius values and center points, to ensure as much as possible 

an overlapping receptive field. For both spherical and cylindrical 

neighbourhoods, we utilized radius values of 1, 2, 4, and 8 

meters. The number of points selected from within the 

neighbourhood was fixed at 32. In cases where a neighbourhood 

has fewer points than required, the points were duplicated to 

achieve desired number of points. For the kNN approach, the 

nearest 32 points were utilized. In all applications, the number of 

epochs was set to 32. For testing, we choose the best model of 

each experiment. We configured the batch size to 8 and set the 

learning rate at 0.001. The number of center points was 

maintained as in the original architecture, starting with 1024 in 

the first layer and reducing by a factor of 1/4 in each subsequent 

layer. The dimensions of the layers were kept the same as in the 

original architecture.  

 

To assess the performance of each neighbourhood type in 

handling sparsely sampled point clouds and their ability to 

generalize across different datasets, we conducted training using 

the DALES dataset and tested the trained model on both the 

DALES and ISPRS datasets. In the study, all applications were 

carried out on a computer configured with an Intel Core i5-

11400F CPU, 24 GB of RAM, and an RTX 3060 12GB GPU, 

using Pytorch 2.0. 

 

4.2 Datasets 

In this study, DALES and ISPRS 3D Semantic Labelling 

Benchmark datasets were used. The DALES dataset is a large-

scale ALS point cloud, consisting of 40-point cloud tiles, each 

spanning an area of 500×500 meters and has a density of 

approximately 50 pts/m2 (Varney et al., 2020). The DALES 

dataset has nine classes: unknown, ground, vegetation, car, truck, 

power line, fence, pole, and building (Figure 3a). The ISPRS 

dataset (Niemeyer et al., 2014) is a widely utilized in point cloud 

classification research. The training subset of the dataset has 

753,876 points with an average point density of 7.3 pts/m2, and 

the test subset has 411,722 points with an average point density 

of 4.8 pts/m2. ISPRS dataset has nine categories: power lines, low 

vegetation, impervious surfaces, cars, fences, roofs, facades, 

shrubs, and trees (Figure 3b). 

 

 
 

Figure 3. Datasets used in the study. A sample area of DALES 

dataset (a) and ISPRS Vaihingen Dataset (b). 

4.3 Evaluation Metrics 

In the study, the performance of semantic segmentation of 3D 

point clouds was evaluated using F1 score, Intersection over 

Union (IoU), and Overall Accuracy (OA) metrics. F1 and IoU 

values were calculated both per class and as a weighted mean 

(Equation 1). 

 

mIoU =
∑ wiIoUi
N
i=1

N
 

(1) 
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Here, N represents the number of classes, and w denotes the class 

weights. Precision, Recall, F1-score, and overall accuracy were 

calculated using the following equations, from Equation 2 to 

Equation 5 respectively. 

 

Precision =
TP

TP + FP
 

 

  (2) 

 

Recall =
TP

TP + FN
 

 

(3) 

 

F1 =
2 × Precision × Recall

Precision + Recall
 

 

(4) 

 

OA =
TP + TN

(TP + FN + FP + TN)
 

(5) 

 

 

 

Where TP represents the true positives, FP stands for false 

positives, TN denotes true negatives, and FN signifies false 

negatives for each class. 

4.4 Results and Discussion 

In the DALES dataset, all three neighbourhood methods 

demonstrated high performance across most classes, with the 

exception of trucks, fences, and pole classes. It has been observed 

that the kNN method is approximately 1% more accurate in terms 

of OA, weighted mIoU, and F1 metrics. Among these three 

methods, the kNN method resulted in higher accuracies across all 

classes, followed closely by the spherical neighbourhood method 

in terms of achieving the next highest accuracies. The cylindrical 

neighbourhood, although closely following the spherical in 

performance, had slight decreases in F1-score and IoU except for 

the poles class, as shown in Table 1.  

 

Class Names 
Spherical Cylindrical kNN 

F1 IoU F1 IoU F1 IoU 

Unknown 5.701 2.934 5.186 2.662 19.324 10.695 

Ground 96.860 93.910 96.781 93.763 97.348 94.833 

Vegetation 93.674 88.101 93.513 87.816 94.237 89.102 

Cars 76.304 61.687 73.272 57.818 81.352 68.566 

Trucks 26.793 15.469 21.820 12.246 31.480 18.680 

Powerlines 91.653 84.591 91.407 84.174 92.816 86.595 

Fences 57.389 40.241 54.028 37.012 61.065 43.952 

Poles 60.327 43.191 60.938 43.821 64.684 47.803 

Buildings 95.070 90.603 94.901 90.296 96.117 92.524 

OA (%) 94.849 94.700 95.529 

Weighted mIoU(%) 94.677 90.776 94.512 90.522 95.409 91.958 

 

Table 1. The results of Spherical, Cylindrical, and kNN 

neighbourhood types on DALES test dataset. 

The kNN approach was superior in handling trucks, fences, and 

poles classes, but showed marginal improvement in ground and 

vegetation classes compared to the other two methods. The 

flexibility of the kNN approach in adjusting to local point density 

seems beneficial for distinguishing complex structures. Figure 4 

illustrates an example of DALES test dataset results for three 

neighbourhood types.  

 
 

Figure 4. A visual comparison of spherical, cylindrical, and kNN 

methods on a sample tile from the DALES test dataset. 

In Figure 4, all three neighbourhood types struggled with the 

segmentation of the roof of a large building. This issue may occur 

if the block size selected is insufficient to cover the building 

along with its surrounding ground information. Especially, the 

misclassification is more pronounced with the cylindrical 

neighbourhood compared to the spherical and KNN. 

Additionally, the spherical neighbourhood type was significantly 

more accurate in classifying trees near the large building at the 

upper left corner of the image, as opposed to the other two 

neighbourhood types. In general, kNN and spherical 

neighbourhood types has less confusion on the vegetation class 

compared to cylindrical. Contrary to the relatively low accuracy 

on the DALES dataset, the cylindrical neighbourhood type was 

relatively successful in classifying the ground class, whereas the 

spherical and kNN types confused small sections of the ground 

as buildings. We found that all neighbourhood types commonly 

confused the less represented car and truck classes with each 

other and with buildings. Such confusions typically occur when 

the two classes are in close proximity. 
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Upon examining the confusion matrix, it was observed that the 

cylindrical neighbourhood method resulted in the least confusion 

for the ground and powerline classes (Figure 5). Conversely, the 

kNN method showed superior performance in identifying poles 

and buildings. Specifically, the performance of kNN in 

classifying buildings was approximately 3% higher compared to 

both cylindrical and spherical neighbourhood methods. It was 

noted that the cylindrical neighbourhood method exhibited 

approximately 2% higher error rates compared to the other two 

methods in vegetation class. 

 

 
 

Figure 5. Confusion matrix of the neighbourhood types on all 

DALES test dataset. a) spherical b) cylindrical c) kNN  

To assess the generalization performance of the architecture, it is 

essential to test it on datasets with varying characteristics. For 

this purpose, the ISPRS dataset, which contrasts the DALES 

dataset with its lower point density, presented a different 

challenge. After class label matching, the model trained on the 

DALES dataset was evaluated on the ISPRS test dataset. Upon 

reviewing the results, the weighted mIoU and F1 metric findings 

indicate that the spherical neighbourhood method performed 

better in generalization. The results from the ISPRS test are 

presented in Table 2. 

Class Names 
Spherical Cylindrical kNN 

F1 IoU F1 IoU F1 IoU 

Ground 94.017 88.709 94.270 89.161 93.815 88.351 

Vegetation 78.046 63.997 75.475 60.610 74.251 59.048 

Cars 63.056 46.045 59.312 42.159 57.983 40.828 

Powerlines 39.865 24.895 47.209 30.898 46.769 30.521 

Fences 5.025 2.577 1.668 0.841 4.048 2.066 

Buildings 89.063 80.282 89.613 81.181 89.271 80.621 

Accuracy (%) 87.370 87.756 87.067 

Weighted mIoU(%) 87.541 79.742 87.248 79.547 86.722 78.702 

 

Table 2. The results of the generalization capability on ISPRS 

test dataset. 

In Table 2, the cylindrical neighbourhood achieved results very 

close to those of the spherical method. The spherical 

neighbourhood method continued to show strong performance 

with the ground, vegetation, and buildings classes, yet its 

effectiveness was significantly lower for the fences and 

powerline classes. The cylindrical neighbourhood showed slight 

improvements in powerlines and buildings over the spherical 

neighbourhood but underperformed in fences and cars classes. 

Especially, in vegetation class, spherical neighbourhood method 

achieved a significant accuracy gain compared to other ones.  The 

results suggest the cylindrical neighbourhoods may help with 

linear features like powerlines, buildings, and ground classes.  

However, despite achieving the highest accuracies on the 

DALES test dataset, the kNN method was found to yield the 

lowest accuracies on the ISPRS dataset. The kNN method had 

comparable or slightly lower performance than spherical in most 

classes and did not offer significant gains in any specific class. 

This indicates that while adaptable to local point densities, did 

not demonstrate a significant improvement in segmentation 

accuracy, suggesting that in less dense environments, its 

advantages might be less pronounced. This situation serves as an 

example of Qi et al. (2017b)'s recommendation to employ the 

spherical method, which guarantees fixed-size local regions 

through its radius, thereby facilitating the extraction of more 

generalizable features across various spaces, as demonstrated in 

the case of ALS point clouds. The results for the ISPRS test 

dataset are displayed in Figure 6. 
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Figure 6. A visual comparison of spherical, cylindrical, and kNN 

methods on ISPRS test dataset. 

Considering the point density differences, it is evident that the 

adaptability of kNN is more beneficial in the denser DALES 

dataset, helping it better handle the complexity of objects and 

irregular shapes. The consistent behaviour of spherical and 

cylindrical neighbourhoods across both datasets, despite the 

differences in point density, indicates inherent characteristics of 

these neighbourhood types that are somewhat independent of 

dataset density. Higher point density of the DALES dataset likely 

provides a more informative context for feature extraction, which 

may increase the effectiveness of the chosen neighbourhood type. 

However, neighbourhood parameterization is another aspect to 

consider, given the variations in point density. On one hand, 

while spherical and cylindrical neighbourhood types offer more 

stable neighbourhood definitions, they first need to be accurately 

parameterized for the selected dataset and task, which involves 

selecting the appropriate radius. On the other hand, kNN is easier 

to parameterize compared to the other two methods and offers 

similar, if not better, performance on a homogeneous dataset. 

5. CONCLUSION

In the study, spherical, cylindrical, and kNN neighbourhood 

types were compared in the PointNet++ architecture for the 

semantic segmentation of ALS data. The research attempts to 

enhance the extraction of representative feature vectors by 

examining these neighbourhood types within the PointNet++ 

architecture. All three neighbourhood types achieved remarkable 

results in the semantic segmentation of the ALS datasets. While 

the kNN method showed better results on the DALES dataset, it 

slightly fell behind in generalization to the ISPRS dataset. 

Spherical and cylindrical neighbourhood types had slightly lower 

accuracy than kNN on the DALES dataset, but they offered 

higher generalization ability. The conducted study provides 

additional perspectives on the adaptability of PointNet++ in ALS 

data processing. While these neighbourhoods demonstrated 

varying degrees of effectiveness, their performance was highly 

influenced by the characteristics of the dataset, particularly the 

point density.  

This observation suggests that dataset characteristics, along with 

architectural design, should be considered in the neighbourhood 

type selection stage. In light of these findings, future research in 

this area should focus on developing strategies for more 

advanced adaptations of neighbourhood types. 
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