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Abstract 

 

Hydrothermal alteration zones are among the key indicators in the exploration of porphyry copper deposits. In this study, a remote 

sensing-based approach was implemented to map hydrothermal alteration zones using ASTER satellite data and built-in classification 

algorithms available in the ENVI software environment. The study area is the Koldar massif, located in southeastern Kazakhstan within 

the Balkhash–Ili metallogenic belt, known for its intense hydrothermal alteration processes. 

Four classification methods were applied: Spectral Angle Mapper (SAM), Support Vector Machine (SVM), Maxi-mum Likelihood 

(ML), and Minimum Distance (MD). The training samples were generated based on geological maps, lithogeochemical data, and expert 

visual interpretation. The focus was placed on mapping four types of alteration: argillic, phyllic, propylitic, and potassic zones. 

Among the tested algorithms, the SVM method demonstrated the highest performance, achieving an overall classification accuracy of 

84.12% and a kappa coefficient of 0.79. Propylitic and phyllic zones were effectively identified, while argillic and potassic zones 

showed partial spectral confusion due to similar spectral characteristics. The resulting maps show good agreement with geological 

structures and known mineralized zones of the Koldar intrusion, confirming the applicability of the chosen approach at early stages of 

exploration in arid environments. This approach provides a reproducible framework for mapping hydrothermal alteration zones and 

can be adapted for other porphyry systems using medium-resolution multispectral satellite data. 

 

 

1. Introduction 

Porphyry copper deposits are among the most significant sources 

of copper and molybdenum worldwide and are characterized by 

the development of extensive zones of hydrothermal alteration, 

which serve as key indicators in prospecting and exploration 

activities (Lowell, 1970; Zvezdov 1993). The for-mation of such 

deposits is associated with granitoid intru-sions within magmatic 

arcs, where concentric zonation of potassic, phyllic, argillic, and 

propylitic alterations is typically observed, reflecting the 

conditions of ore for-mation and hydrothermal activity (Sillitoe, 

2010). The identification and analysis of these alteration zones 

are critical for enhancing the efficiency of mineral exploration, 

reducing the cost of detailed fieldwork, and increasing the 

likelihood of discovering promising targets. 

Traditional methods for studying hydrothermal alteration zones 

involve extensive field surveys, geochemical sampling, and 

petrographic analysis, which require considerable time and 

financial resources, particularly in remote and mountainous 

regions (Mars, 2006). In this context, remote sensing (RS) offers 

unique opportunities to obtain spatially continuous data on the 

distribution and morphology of alteration zones over large areas 

with high temporal efficiency and repeatability. These 

capabilities make remote sensing approaches increasingly 

valuable in modern geological exploration systems (Kruse, 2012; 

Van der Meer, 2012). 

The use of multispectral and hyperspectral data (ASTER, 

Sentinel-2, Landsat-8, Hyperion, PRISMA) sig-nificantly 

enhances the ability to identify minerals characteristic of various 

types of hydrothermal alterations by analyzing their spectral 

features in the VNIR and SWIR regions (Hu, 2018; Beiranvand, 

2014; Rockwell, 2008). ASTER data have proven effective in 

detecting Al-OH, Fe-OH, and Mg-OH bearing minerals 

associated with phyllic, argillic, and propylitic alteration zones 

(Mars, 2006; Beiranvand, 2014; Testa, 2018). Sentinel-2 data, 

with their high spatial resolution and frequent revisit times, are 

promising for mapping zones of oxidized ores and iron-bearing 

minerals (Bahrami, 2024; Khaleghi, 2020), while the integration 

of Landsat-8 and ASTER imagery improves the level of detail 

and accuracy in delineating alteration zones (Safari, 2018; 

Tompolidi, 2020). Hyperspectral data, such as those from EO-1 

Hyperion, allow for more precise identification of the 

mineralogical composition of alteration zones, even in areas with 

vegetation cover and complex topography (Rejith, 2022). 

As the conceptual framework for the analysis and interpretation 

of the spatial structure of hydrothermal alter-ation zones in 

porphyry copper systems, this study adopts the classical porphyry 

copper deposit model proposed by Lowell and Guilbert (Lowell, 

1970) (Figure 1). This model illustrates the typical concentric 

zonation that develops around a magmatic center and includes 

potassic, phyllic, argillic, and propylitic alteration zones. These 

zones are associated with specific minerals (e.g., feldspar, 

sericite, chlorite, kaolinite, epidote, etc.) and ore deposition 

environments. 

The potassic zone, located in the central part of the system, is 

characterized by the presence of potassium feldspar, quartz, 

biotite, and anhydrite. It gradually transitions outward into the 

phyllic zone, dominated by sericite and quartz, and further into 

the argillic and propylitic zones, where chlorite, epidote, 

kaolinite, and carbonates are prevalent. These altered rock zones 

are spatially associated with ore deposition zones, represented by 

a core of low-grade ores, shells of high- and low-pyrite content 

mineralization, and peripheral halos of porphyry-style 

mineralization involving copper, pyrite, molybdenite, and 

precious metals (Lowell, 1970). 
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Figure 1. Schematic model of a porphyry copper deposit (after 

Lowell and Guilbert, 1970), illustrating the spatial zonation of 

hydrothermal alterations (propylitic, phyllic, argillic, and 

potassic) and the distribution of ore bodies associated with each 

alteration zone. 

 

The application of this model in the present study enables the 

correlation of alteration zones interpreted from remote sensing 

(RS) data with the geological structure of porphyry copper 

systems and the localization of ore bodies, forming a basis for 

predicting ore potential. This approach provides a scientific 

rationale for delineating target zones for further mineral 

exploration and contributes to the overall efficiency of integrated 

porphyry copper exploration strategies in Kazakhstan. 

Despite the high informational value of RS data, practical 

applications are complicated by factors such as spectral similarity 

among minerals, vegetation cover, atmospheric interference, and 

pixel mixing effects (Bedini, 2009; Van der Meer, 2012; 

Beiranvand, 2014). To improve the accuracy of alteration zone 

mapping and geological interpretation, machine learning (ML) 

methods have been increasingly adopted in recent years. These 

methods allow for the processing of large volumes of 

multidimensional data and enable the detection of subtle spectral 

features associated with mineralization (Belgiu, 2016; Fu, 2023). 

Support Vector Machine (SVM) and Random Forest (RF) 

algorithms have proven to be effective tools for classifying both 

multispectral and hyperspectral data due to their robustness to 

noise and ability to handle im-balanced datasets (Pal, 2005; 

Rodriguez-Galiano, 2012), while the Spectral Angle Map-per 

(SAM) method continues to be widely used for hyperspectral 

data analysis (Kruse, 1993; Shahriari, 2015). 

The integration of remote sensing data with machine learning 

techniques enhances the precision and efficiency of hydrothermal 

alteration zone detection, facilitating more targeted planning of 

ground-based geological exploration activities and reducing their 

cost (Beiranvand, 2014; Testa, 2018). Nevertheless, the 

application of such approaches in Kazakhstan remains limited, 

despite the region's high ore-forming potential and favorable 

conditions for remote sensing, including an arid climate, sparse 

vegetation, and extensive rock exposures. 

Despite the high efficiency of remote sensing (RS) and machine 

learning (ML) methods in prospecting and exploration, their 

application in Kazakhstan remains limited. However, the arid 

climate, widespread rock outcrops, and high mineral potential 

provide favorable conditions for the implementation of such 

approaches. A promising area is the Koldar Massif in Central 

Kazakhstan, where the presence of porphyry copper and 

polymetallic deposits is assumed, yet no systematic studies using 

RS data and classification algorithms have been conducted to 

date. 

The aim of this study is to adapt and test an integrated 

methodology for the detection and mapping of hydrothermal 

alteration zones associated with porphyry copper systems, using 

ASTER satellite data in combination with automated 

classification algorithms. 

To achieve this aim, the following objectives were pursued: 

1. Identification of phyllic, argillic, and propylitic alteration 

zones using the Minimum Distance (MD), Maximum Likelihood 

(ML), Spectral Angle Mapper (SAM), and Support Vector 

Machine (SVM) classification methods. 

2. Analysis of the spatial relationship between the identified 

alteration zones and tectonic structures to delineate prospective 

areas. 

3. Validation of results based on geological data. 

The findings of this research will help assess the effectiveness of 

integrating remote sensing data with machine learning algorithms 

for mineral prospecting in Central Asia. The proposed approach 

can be applied to enhance accuracy, reduce exploration costs, and 

optimize targeting strategies in Kazakhstan and other regions 

with similar geological settings. 

 

1.1 Study Area 

The study area is the Koldar intrusive massif, located within the 

Aktogay ore field in the East Kazakhstan region. The massif is a 

multiphase intrusive body of laccolithic form, elongated in a 

sublatitudinal direction for 17–18 km and covering an area of 

approximately 75 km². It is composed of rocks ranging from 

gabbro-diorites to granites, including diorites, granodiorites, 

plagiogranite-porphyries, and porphyritic granites, which were 

formed in several magmatic phases. 

 

 

 
 

Figure 2. Geology, hydrothermal alterations, and mineralization 

in the Koldar massif 

 

The Koldar massif intrudes into the volcanogenic-sedimentary 

deposits of the Keregetas and Koldar suites and is structurally 

associated with the Koldar horst-anticline. Geophysical data 

indicate the presence of a feeding magmatic conduit extending to 

a depth of up to 4.5 km, confirming the massif’s active magmatic 

evolution. The massif is controlled by a system of regional faults 

(Aktogay, Koldar, Ikbas), which play a significant role in the 

localization of ore bodies and the development of hydrothermal 

alterations. 
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The intrusive rocks of the massif are significantly altered due to 

processes such as quartzification, K-feldspar alteration, 

biotitization, and other types of metasomatism. The Koldar 

massif is a source of magmatic and hydrothermal activity that led 

to the formation of stockwork-type porphyry copper 

mineralization, represented by zones of propylitization, quartz-

sericite, K-feldspar–biotite, and other hydrothermal alterations. It 

is spatially and genetically associated with the Aktogay, Aidarli, 

and Kyzylkiya deposits, which together form a single porphyry 

copper cluster in the region. 

 

2. Materials and methods 

The primary data source used in this study was an ASTER Level 

1A image acquired on August 14, 2004. This satellite product 

includes: VNIR (3 bands, 15 m spatial resolution), SWIR (6 

bands, 30 m), and TIR (5 bands, 90 m) (Rouskov, 2005). 

The main emphasis was placed on the SWIR bands, which are 

most sensitive to spectral features of hydrothermal alteration 

minerals (Al-OH, Fe-OH, Mg-OH). 

Data processing was performed using ENVI 5.6 software, and 

included the following steps: 

1. Radiometric and geometric correction, 

2. Atmospheric correction using the FLAASH module, 

3. Creation of a VNIR + SWIR image stack for further analysis. 

To eliminate the influence of vegetation cover, masking was 

applied based on the NDVI values calculated using the standard 

formula: 

 

𝑁𝐷𝑉𝐼 =  (𝑁𝐼𝑅 − 𝑅𝐸𝐷) / (𝑁𝐼𝑅 + 𝑅𝐸𝐷) 

 

where RED corresponds to ASTER Band 2 and NIR to Band 3N 

(Huang, 2021). Pixels with NDVI > 0.3 were excluded from 

analysis to focus the classification on exposed surface areas. 

The formation of training data is a critical step in the task of 

automated classification of hydrothermal alteration zones. In this 

study, training samples were derived from a combination of 

geological and remote sensing data obtained from published 

sources (Orynbassarova, 2025), including maps of hydrothermal 

alteration zones. Expert knowledge was additionally employed to 

refine the spatial boundaries of classes and to adapt the data to 

the geological context of the Koldar massif. 

Initially, regional geological maps at a scale of 1:200,000 were 

used, containing information on lithology, structural features, 

and previously identified alteration zones. These maps enabled 

delineation of preliminary contours of ore-bearing areas and 

provided orientation within structural-tectonic blocks subjected 

to hydrothermal activity. 

A key role in the interpretation of alteration zones was played by 

visual analysis of color-synthesized ASTER composites, 

particularly those derived from SWIR bands, where 

hydrothermally altered rocks exhibit distinctive spectral 

signatures. Complex band combinations (e.g., SWIR6/SWIR8, 

SWIR5/SWIR6) were effective in highlighting zones with high 

concentrations of clay and sericitic minerals. These images were 

used for expert interpretation–conducted jointly by specialists in 

remote sensing and geology. 

Based on the resulting interpretations, training points were 

delineated and digitized. Each point represented a homogeneous 

area in terms of spectral and geological-structural characteristics, 

corresponding to one of four alteration classes: 

Argillic – zones of clay alteration, containing kaolinite, 

montmorillonite, and other aluminosilicate minerals, indicative 

of low-temperature ore-forming conditions. 

Phyllic – sericitic-quartz zones, characterized by high 

concentrations of sericite and quartz, typical for intermediate 

fluid-alteration zones. 

Propylitic – outer alteration zones, represented by epidote, 

chlorite, and carbonates, resulting from weak metasomatic 

overprinting of host rocks. 

Potassic – potassium alteration zones, including biotite, 

potassium feldspar, and sericite, typically localized near the 

central parts of intrusions. 

Digitization was performed manually using all available data 

sources, followed by verification of spectral signature 

homogeneity and spatial consistency. As a result, a representative 

training dataset was constructed and used uniformly across all 

classification methods (SAM, SVM, ML, MD), ensuring 

comparability of the obtained results. 

This approach enabled high-quality sample preparation, ensuring 

reliable identification of hydrothermal alteration zones during 

subsequent automated interpretation of satellite imagery. 

To delineate hydrothermal alteration zones within the Koldar 

Massif, four classification methods were applied, reflecting both 

traditional approaches and modern machine learning algorithms. 

The use of multiple classifiers allowed for a comparative analysis 

of their effectiveness under conditions of complex spectral noise 

and overlapping mineralogical associations. 

The SAM (Spectral Angle Mapper) method is based on 

comparing the spectrum of each image pixel with reference 

spectra defined from training polygons. The algorithm calculates 

the cosine of the angle θ between reflectance vectors. 

 

𝜃 = 𝐶𝑂𝑆−1 (
𝑡 ∗ 𝑟

‖𝑡‖‖𝑟‖
) 

 

where: 

𝑡⃗  - spectral vector of the pixel 

𝑟 – reference spectrum (mean value for the class)  

‖𝑡⃗‖ and ‖𝑟‖ – euclidean norms of the vectors. 

If the angle θ is less than a given threshold, the pixel is classified 

as belonging to the corresponding class. This method is robust to 

illumination variations but is sensitive to spectral similarity 

between classes. The comparison is performed by measuring the 

angle between spectral reflectance vectors in a multidimensional 

space. The smaller the angle, the closer the pixel spectrum is to 

the reference. This method is particularly resistant to illumination 

variations, which is especially important when processing images 

over heterogeneous terrain (Liu, 2013). The SAM classification 

was performed using the tools provided in the ENVI 

Classification module. 

The Support Vector Machine (SVM) method is one of the most 

powerful machine learning algorithms used in remote sensing 

applications. In this study, an SVM implementation with a Radial 

Basis Function (RBF) kernel was used, enabling nonlinear 

separation of classes in the feature space: 

 

𝐾(𝑥𝑖 , 𝑥𝑗) = exp (−𝛾‖𝑥𝑖 − 𝑥𝑗‖
2
 

 

where: 

x_i, x_j – feature vectors of pixels 

γ – is the kernel parameter (a hyperparameter) that controls the 

degree of nonlinearity of the model (Zhang, 2012). 

The SVM algorithm is implemented in ENVI, followed by 

validation through visual comparison and statistical metrics. 

The Maximum Likelihood (ML) method is based on a Bayesian 

probabilistic model that assumes a normal distribution of spectral 

values for each class. ML is a probabilistic classifier that assumes 

the spectral features of each class follow a multivariate normal 

distribution (Sisodia, 2014). ENVI implements maximum 

likelihood classification by calculating the following 
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discriminant functions for each pixel in the image (Richards, 

1999): 

 

 
 

where: 

i = class 

x = n-dimensional data (where n is the number of bands) 

p(ωi) = probability that class ωi occurs in the image and is 

assumed the same for all classes 

|Σi| = determinant of the covariance matrix of the data in class ωi 

Σi
-1 = its inverse matrix 

mi = mean vector 

Classification is performed by calculating the probability of each 

pixel belonging to a particular class based on the estimated means 

and covariance matrices. This method is sensitive to the quality 

of the training data statistics and requires enough training data to 

produce stable results. It was implemented in the ENVI 

environment with automatic calculation of the necessary 

statistical parameters. 

The Minimum Distance (MD) method determines the class 

membership of a pixel based on the minimum Euclidean distance 

D between the pixel's spectrum 𝑥⃗ and the mean spectrum of a 

class 𝜇⃗
𝑘
: 

 

𝐷(𝑥⃗, 𝜇𝑘) = √∑(𝑥𝑖 − 𝜇𝑘,𝑖)2

𝑛

𝑖=1

 

 

where: 

𝑥𝑖 - the pixel’s spectral value in the i-th band, 

𝜇
𝑘,𝑖

 - the mean value for class k in the i-th band. 

The method is simple to implement but performs poorly in the 

presence of strong inter-band correlation or overlapping classes 

(Wacker, 1972). 

To quantitatively assess the reliability of hydrothermal alteration 

maps obtained using different classification methods (SAM, 

SVM, ML, MD), statistical validation was conducted using a 

confusion matrix. 

This approach allows not only for the evaluation of overall 

accuracy but also for identifying classification errors specific to 

each class. 

A confusion matrix is an 𝑁×𝑁 table, where N is the number of 

classified classes. Each row represents the actual class, and each 

column corresponds to the predicted class. The diagonal shows 

the number of correctly classified pixels. 

Accuracy metrics. Overall Accuracy (OA): indicates the 

proportion of correctly classified pixels relative to the total 

number of reference (ground truth) pixels (Fitzgerald, 1994): 

 

𝑂𝐴 =
∑ 𝑥𝑖𝑖

𝑛
𝑖=1

𝑁
∗ 100% 

 

where 𝑥𝑖𝑖 – number of correctly classified pixels of class i, 𝑁 – 

total number of validated (reference) pixels. 

Kappa Coefficient (κ) – a metric that takes into account the 

possibility of agreement occurring by chance (Kerr, 2015): 

 

𝑘 =
𝑂𝐴 − 𝑃𝑒

1 − 𝑃𝑒
 

 

where Pe – the expected probability of random classification. 

Producer’s Accuracy (PA) indicates how well a class on the map 

represents the real-world objects (Stehman, 2013): 

 

𝑃𝐴𝑖 =
𝑥𝑖𝑖

∑ 𝑥𝑖𝑗
𝑛
𝑗=1

∗ 100% 

 

where ∑ 𝑥𝑖𝑗
𝑛
𝑗=1  – the total number of pixels that belong to class i 

according to the reference data. 

User’s Accuracy (UA) indicates the probability that a pixel 

classified into a given class actually belongs to that class (Barsi, 

2018): 

 

𝑈𝐴𝑖 =
𝑥𝑖𝑖

∑ 𝑥𝑗𝑖
𝑛
𝑗=1

∗ 100% 

 

where ∑ 𝑥𝑗𝑖
𝑛
𝑗=1  – the total number of pixels classified as class i. 

Omission Error is the percentage of pixels that belong to a class 

but were not recognized as such (Congalton, 2019): 

 

𝑂𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑖 = 100% − 𝑃𝐴𝑖 

 

Commission Error is the percentage of pixels that were 

incorrectly assigned to a class (Congalton, 1991): 

 

𝐶𝑜𝑚𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑖 = 100% − 𝑈𝐴𝑖 

 

For each method (SAM, SVM, ML, MD), the same training and 

testing datasets were used, based on interpretation and geological 

data. This ensured a standardized and objective comparative 

assessment of the classification algorithms' effectiveness. The 

test dataset consisted of independent points that were not 

involved in the training process but were evenly distributed 

across the study area and among the classes. 

The classification results were visualized as maps and presented 

in the form of accuracy metric tables, error diagrams, and 

comparative performance indicators. 

 

3. Results and discussion 

The classification of hydrothermal alteration zones employing 

four distinct methods – Spectral Angle Mapper (SAM), Support 

Vector Machine (SVM), Maximum Likelihood (ML), and 

Minimum Distance (MD) – resulted in the generation of thematic 

maps delineating the spatial distribution of argillic, phyllic, 

propylitic, and potassic alteration zones across the Koldar Massif. 

The study area encompasses approximately 386 km², with a total 

perimeter of 78.7 km. All classification procedures were confined 

to this delineated polygon (Figure 3). 

 

 
 

Figure 3. Study area 
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The accuracy assessment of the classification was performed 

using confusion matrices and includes the following metrics: 

Overall Accuracy, Kappa Coefficient, and Producer’s Accuracy 

for each class. For clarity and comparison, the accuracy 

indicators are presented in Table 1 below. 

 

Method Overall 

Accuracy 

Kappa PA 

(Propylitic) 

PA 

(Potassic) 

SAM 51.13% 0.3754 77.27% 26.17% 

SVM 84.12% 0.7914 92.00% 82.55% 

MD 62.89% 0.4984 87.30% 69.13% 

ML 82.80% 0.7759 95.24% 79.87% 

 

Method PA 

(Argillic) 

PA 

(Phyllic) 

SAM 29.06% 82.80% 

SVM 76.07% 86.02% 

MD 19.66% 74.19% 

ML 80.30% 74.19% 

 

Table 1. Comparison of Classification Accuracy Metrics 

 

The best results were demonstrated by the SVM method (Figure 

4), which achieved an overall accuracy of 84.12% and a Kappa 

coefficient of 0.7914. The highest classification accuracy was 

observed for propylitic (PA = 92.0%) and phyllic alteration zones 

(PA = 86.02%), while argillic zones were classified somewhat 

less accurately (PA = 76.07%). The SVM method provided 

balanced accuracy across all classes, with relatively low omission 

and commission errors. 

 

 
Figure 4. SVM Classification Result 

 

The MD method (Figure 5) also demonstrated high performance 

(OA = 82.8%, Kappa = 0.7759), achieving the highest 

classification accuracy for propylitic zones (PA = 95.24%). 

However, the accuracy for argillic zones was lower (PA = 

80.30%) compared to SVM. 

The MD method (Figure 5) also demonstrated high performance 

(OA = 82.8%, Kappa = 0.7759), achieving the highest 

classification accuracy for propylitic zones (PA = 95.24%). 

However, the accuracy for argillic zones was lower (PA = 

80.30%) compared to SVM. 

 
Figure 5. Minimum Distance Classification Result 

 

The Maximum Likelihood algorithm demonstrated (Figure 6) 

moderate performance (OA = 62.89%, Kappa = 0.4984), with the 

highest classification accuracy observed for propylitic (PA = 

87.3%) and phyllic zones (PA = 74.2%). However, the argillic 

alteration zone showed low values for both producer’s accuracy 

(19.7%) and user’s accuracy (69.7%). 

 

 
Figure 6. Maximum Likelihood Classification Result 

 

The least accurate results were obtained using the Spectral Angle 

Mapper (SAM) method (Figure 7) (OA = 51.13%, Kappa = 

0.3754), which can be attributed to its limited robustness to noise 

and the spectral similarity between classes. Nevertheless, the 

phyllic alteration zone (PA = 82.8%) was recognized as 

significantly better than the argillic (PA = 29.1%) and potassium 

alteration zones (PA = 26.2%). 

  The least accurate results were obtained using the Spectral 

Angle Mapper (SAM) method (Figure 7) (OA = 51.13%, Kappa 

= 0.3754), which can be attributed to its limited robustness to 

noise and the spectral similarity between classes. Nevertheless, 

the phyllic alteration zone (PA = 82.8%) was recognized as 

significantly better than the argillic (PA = 29.1%) and potassium 

alteration zones (PA = 26.2%). 
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Figure 7. SAM (Spectral Angle Mapper) Classification Result 

 

To assess the reliability of the classification results, a comparison 

was made with the geological map (Figure 2) and cross-sections 

of mineralization and hydrothermal alteration, which illustrate a 

characteristic spatial zonation: from peripheral propylitic zones 

to argillic and phyllic alterations, with possible potassium 

alteration zones in the central part. 

Propylitic zones (marked in green on the classification maps) 

show the highest spatial consistency with the outer parts of the 

intrusive body and the contact zones with surrounding rocks, 

which aligns well with the geological data (see Figures 9 and 10). 

These zones were consistently identified across all methods, most 

clearly using SVM and SAM (Figures 3 and 5), with high 

classification accuracy (User Accuracy = 83–95%, Producer 

Accuracy = 87–95%). 

Phyllic zones (pink color) are most distinctly delineated by the 

ML and SVM methods. Their spatial distribution is concentrated 

along fault zones and in the central parts of the massif, which is 

supported by geological cross-sections indicating that phyllic 

alterations are closely associated with ore bodies and zones of 

intense hydrothermal activity. In contrast, the MD method shows 

significant fragmentation and a high rate of false positives for this 

class (Commission Error > 48%). 

Argillic alterations (orange color) are reliably detected only by 

the SAM and ML methods. These zones are mainly located on 

the periphery of phyllic alterations and partially overlap with 

areas associated with clay minerals according to geological 

sections. The SVM method tends to overestimate the extent of 

this class, as indicated by the inflated User Accuracy (>98%) and 

low Producer Accuracy (19.66%) observed in the MD method. 

Potassic zones are poorly distinguishable across all methods, 

likely due to the limited spectral signature in the ASTER data and 

their minimal representation in the training polygons. 

Nevertheless, some weak localization of these zones in the 

central part of the massif – near the presumed apical part of the 

intrusion – was achieved using the SVM and ML classifications. 

A comparative analysis of the spatial distribution of 

hydrothermal zones produced by different classification 

algorithms allows for several general conclusions regarding each 

method’s sensitivity to specific alteration types. The SVM 

algorithm demonstrated the best correspondence with the known 

geological zonation, consistent identification of all major 

alteration types, and the fewest artifacts. This method was 

particularly effective in delineating phyllic and propylitic 

alteration zones, as confirmed by geological maps and 

lithochemical data. 

Probabilistic and statistical methods (ML and MD) demonstrated 

moderate effectiveness: although they identified the main 

alteration zones, their results were accompanied either by 

excessive fragmentation (MD) or inflated accuracy metrics due 

to underrepresentation of certain classes (ML). The SAM 

method, despite its traditional applicability to hyperspectral data, 

proved to be the least robust when applied to ASTER 

multispectral imagery, likely due to the limited spectral 

information and fewer available bands. 

Thus, machine learning – particularly using the Support Vector 

Machine (SVM) approach – shows strong potential for mapping 

hydrothermal alteration zones based on multispectral data. To 

further improve classification accuracy, the use of ensemble 

methods, integration of additional geological indicators, and 

inclusion of textural and topographic parameters is 

recommended. 

In summary, the SVM and ML methods demonstrated the highest 

efficiency in detecting complex hydrothermal alteration zones, 

owing to their ability to capture both linear and non-linear 

relationships in the spectral features of ASTER data. The 

obtained results show a high degree of consistency with 

geological maps and lithogeochemical data, confirming the 

applicability of these methods for preliminary geological 

mapping. These findings can serve as a foundation for planning 

follow-up fieldwork, geochemical surveys, and refining the 

boundaries of potentially prospective ore-bearing zones. 

 

4. Conclusion 

In this study, a methodology for interpreting hydrothermal 

alteration zones associated with porphyry copper systems was 

tested using ASTER remote sensing data and machine learning 

algorithms. The Koldar Intrusive Complex in Central Kazakhstan 

was selected as the study area due to its geological prospectivity, 

pronounced hydrothermal activity, and mineralization potential. 

The application of classification methods including SVM, SAM, 

ML, and MD made it possible to produce thematic maps showing 

the spatial distribution of the main types of metasomatic 

alterations: argillic, phyllic, propylitic, and potassic. 

Comparative analysis of the results showed that the Support 

Vector Machine (SVM) algorithm achieved the highest accuracy, 

with an overall accuracy of 84.12% and a kappa coefficient of 

0.79. The MD and ML methods also demonstrated satisfactory 

results, whereas SAM proved less accurate when a limited 

training dataset was used. 

The resulting alteration maps correlate well with the tectonic and 

lithological structure of the region and allow for the identification 

of areas most promising for further geological exploration. The 

use of NDVI and vegetation masking improved classification 

accuracy by excluding vegetation-covered areas. 

The proposed methodology is recommended for use in the early 

stages of mineral exploration in arid and semi-arid environments, 

where surface exposures and lighting conditions are favorable for 

remote sensing applications. Moreover, it can be adapted for 

analyzing other types of ore systems and underexplored areas 

with limited geological mapping. 

In future work, we plan to integrate hyperspectral data (e.g., 

PRISMA) and expand the training dataset using geochemical 

data to improve the predictive value and reliability of the results. 
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