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Abstract

Hydrothermal alteration zones are among the key indicators in the exploration of porphyry copper deposits. In this study, a remote
sensing-based approach was implemented to map hydrothermal alteration zones using ASTER satellite data and built-in classification
algorithms available in the ENVI software environment. The study area is the Koldar massif, located in southeastern Kazakhstan within
the Balkhash—Ili metallogenic belt, known for its intense hydrothermal alteration processes.

Four classification methods were applied: Spectral Angle Mapper (SAM), Support Vector Machine (SVM), Maxi-mum Likelihood
(ML), and Minimum Distance (MD). The training samples were generated based on geological maps, lithogeochemical data, and expert
visual interpretation. The focus was placed on mapping four types of alteration: argillic, phyllic, propylitic, and potassic zones.
Among the tested algorithms, the SVM method demonstrated the highest performance, achieving an overall classification accuracy of
84.12% and a kappa coefficient of 0.79. Propylitic and phyllic zones were effectively identified, while argillic and potassic zones
showed partial spectral confusion due to similar spectral characteristics. The resulting maps show good agreement with geological
structures and known mineralized zones of the Koldar intrusion, confirming the applicability of the chosen approach at early stages of
exploration in arid environments. This approach provides a reproducible framework for mapping hydrothermal alteration zones and

can be adapted for other porphyry systems using medium-resolution multispectral satellite data.

1. Introduction

Porphyry copper deposits are among the most significant sources
of copper and molybdenum worldwide and are characterized by
the development of extensive zones of hydrothermal alteration,
which serve as key indicators in prospecting and exploration
activities (Lowell, 1970; Zvezdov 1993). The for-mation of such
deposits is associated with granitoid intru-sions within magmatic
arcs, where concentric zonation of potassic, phyllic, argillic, and
propylitic alterations is typically observed, reflecting the
conditions of ore for-mation and hydrothermal activity (Sillitoe,
2010). The identification and analysis of these alteration zones
are critical for enhancing the efficiency of mineral exploration,
reducing the cost of detailed fieldwork, and increasing the
likelihood of discovering promising targets.

Traditional methods for studying hydrothermal alteration zones
involve extensive field surveys, geochemical sampling, and
petrographic analysis, which require considerable time and
financial resources, particularly in remote and mountainous
regions (Mars, 2006). In this context, remote sensing (RS) offers
unique opportunities to obtain spatially continuous data on the
distribution and morphology of alteration zones over large areas
with high temporal efficiency and repeatability. These
capabilities make remote sensing approaches increasingly
valuable in modern geological exploration systems (Kruse, 2012;
Van der Meer, 2012).

The use of multispectral and hyperspectral data (ASTER,
Sentinel-2, Landsat-8, Hyperion, PRISMA) sig-nificantly
enhances the ability to identify minerals characteristic of various
types of hydrothermal alterations by analyzing their spectral
features in the VNIR and SWIR regions (Hu, 2018; Beiranvand,
2014; Rockwell, 2008). ASTER data have proven effective in
detecting Al-OH, Fe-OH, and Mg-OH bearing minerals
associated with phyllic, argillic, and propylitic alteration zones
(Mars, 2006; Beiranvand, 2014; Testa, 2018). Sentinel-2 data,

with their high spatial resolution and frequent revisit times, are
promising for mapping zones of oxidized ores and iron-bearing
minerals (Bahrami, 2024; Khaleghi, 2020), while the integration
of Landsat-8 and ASTER imagery improves the level of detail
and accuracy in delineating alteration zones (Safari, 2018;
Tompolidi, 2020). Hyperspectral data, such as those from EO-1
Hyperion, allow for more precise identification of the
mineralogical composition of alteration zones, even in areas with
vegetation cover and complex topography (Rejith, 2022).

As the conceptual framework for the analysis and interpretation
of the spatial structure of hydrothermal alter-ation zones in
porphyry copper systems, this study adopts the classical porphyry
copper deposit model proposed by Lowell and Guilbert (Lowell,
1970) (Figure 1). This model illustrates the typical concentric
zonation that develops around a magmatic center and includes
potassic, phyllic, argillic, and propylitic alteration zones. These
zones are associated with specific minerals (e.g., feldspar,
sericite, chlorite, kaolinite, epidote, etc.) and ore deposition
environments.

The potassic zone, located in the central part of the system, is
characterized by the presence of potassium feldspar, quartz,
biotite, and anhydrite. It gradually transitions outward into the
phyllic zone, dominated by sericite and quartz, and further into
the argillic and propylitic zones, where chlorite, epidote,
kaolinite, and carbonates are prevalent. These altered rock zones
are spatially associated with ore deposition zones, represented by
a core of low-grade ores, shells of high- and low-pyrite content
mineralization, and peripheral halos of porphyry-style
mineralization involving copper, pyrite, molybdenite, and
precious metals (Lowell, 1970).
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Figure 1. Schematic model of a porphyry copper deposit (after
Lowell and Guilbert, 1970), illustrating the spatial zonation of
hydrothermal alterations (propylitic, phyllic, argillic, and
potassic) and the distribution of ore bodies associated with each
alteration zone.

The application of this model in the present study enables the
correlation of alteration zones interpreted from remote sensing
(RS) data with the geological structure of porphyry copper
systems and the localization of ore bodies, forming a basis for
predicting ore potential. This approach provides a scientific
rationale for delineating target zones for further mineral
exploration and contributes to the overall efficiency of integrated
porphyry copper exploration strategies in Kazakhstan.

Despite the high informational value of RS data, practical
applications are complicated by factors such as spectral similarity
among minerals, vegetation cover, atmospheric interference, and
pixel mixing effects (Bedini, 2009; Van der Meer, 2012;
Beiranvand, 2014). To improve the accuracy of alteration zone
mapping and geological interpretation, machine learning (ML)
methods have been increasingly adopted in recent years. These
methods allow for the processing of large volumes of
multidimensional data and enable the detection of subtle spectral
features associated with mineralization (Belgiu, 2016; Fu, 2023).
Support Vector Machine (SVM) and Random Forest (RF)
algorithms have proven to be effective tools for classifying both
multispectral and hyperspectral data due to their robustness to
noise and ability to handle im-balanced datasets (Pal, 2005;
Rodriguez-Galiano, 2012), while the Spectral Angle Map-per
(SAM) method continues to be widely used for hyperspectral
data analysis (Kruse, 1993; Shahriari, 2015).

The integration of remote sensing data with machine learning
techniques enhances the precision and efficiency of hydrothermal
alteration zone detection, facilitating more targeted planning of
ground-based geological exploration activities and reducing their
cost (Beiranvand, 2014; Testa, 2018). Nevertheless, the
application of such approaches in Kazakhstan remains limited,
despite the region's high ore-forming potential and favorable
conditions for remote sensing, including an arid climate, sparse
vegetation, and extensive rock exposures.

Despite the high efficiency of remote sensing (RS) and machine
learning (ML) methods in prospecting and exploration, their
application in Kazakhstan remains limited. However, the arid
climate, widespread rock outcrops, and high mineral potential
provide favorable conditions for the implementation of such
approaches. A promising area is the Koldar Massif in Central
Kazakhstan, where the presence of porphyry copper and
polymetallic deposits is assumed, yet no systematic studies using

RS data and classification algorithms have been conducted to
date.

The aim of this study is to adapt and test an integrated
methodology for the detection and mapping of hydrothermal
alteration zones associated with porphyry copper systems, using
ASTER satellite data in combination with automated
classification algorithms.

To achieve this aim, the following objectives were pursued:

1. Identification of phyllic, argillic, and propylitic alteration
zones using the Minimum Distance (MD), Maximum Likelihood
(ML), Spectral Angle Mapper (SAM), and Support Vector
Machine (SVM) classification methods.

2. Analysis of the spatial relationship between the identified
alteration zones and tectonic structures to delineate prospective
areas.

3. Validation of results based on geological data.

The findings of this research will help assess the effectiveness of
integrating remote sensing data with machine learning algorithms
for mineral prospecting in Central Asia. The proposed approach
can be applied to enhance accuracy, reduce exploration costs, and
optimize targeting strategies in Kazakhstan and other regions
with similar geological settings.

1.1 Study Area

The study area is the Koldar intrusive massif, located within the
Aktogay ore field in the East Kazakhstan region. The massif'is a
multiphase intrusive body of laccolithic form, elongated in a
sublatitudinal direction for 17-18 km and covering an area of
approximately 75 km?. It is composed of rocks ranging from
gabbro-diorites to granites, including diorites, granodiorites,
plagiogranite-porphyries, and porphyritic granites, which were
formed in several magmatic phases.

Figure 2. Geology, hydrothermal alterations, and mineralization
in the Koldar massif

The Koldar massif intrudes into the volcanogenic-sedimentary
deposits of the Keregetas and Koldar suites and is structurally
associated with the Koldar horst-anticline. Geophysical data
indicate the presence of a feeding magmatic conduit extending to
a depth of up to 4.5 km, confirming the massif’s active magmatic
evolution. The massif is controlled by a system of regional faults
(Aktogay, Koldar, Ikbas), which play a significant role in the
localization of ore bodies and the development of hydrothermal
alterations.
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The intrusive rocks of the massif are significantly altered due to
processes such as quartzification, K-feldspar alteration,
biotitization, and other types of metasomatism. The Koldar
massif is a source of magmatic and hydrothermal activity that led
to the formation of stockwork-type porphyry copper
mineralization, represented by zones of propylitization, quartz-
sericite, K-feldspar—biotite, and other hydrothermal alterations. It
is spatially and genetically associated with the Aktogay, Aidarli,
and Kyzylkiya deposits, which together form a single porphyry
copper cluster in the region.

2. Materials and methods

The primary data source used in this study was an ASTER Level
1A image acquired on August 14, 2004. This satellite product
includes: VNIR (3 bands, 15 m spatial resolution), SWIR (6
bands, 30 m), and TIR (5 bands, 90 m) (Rouskov, 2005).

The main emphasis was placed on the SWIR bands, which are
most sensitive to spectral features of hydrothermal alteration
minerals (Al-OH, Fe-OH, Mg-OH).

Data processing was performed using ENVI 5.6 software, and
included the following steps:

1. Radiometric and geometric correction,

2. Atmospheric correction using the FLAASH module,

3. Creation of a VNIR + SWIR image stack for further analysis.

To eliminate the influence of vegetation cover, masking was
applied based on the NDVI values calculated using the standard
formula:

NDVI = (NIR — RED) / (NIR + RED)

where RED corresponds to ASTER Band 2 and NIR to Band 3N
(Huang, 2021). Pixels with NDVI > 0.3 were excluded from
analysis to focus the classification on exposed surface areas.
The formation of training data is a critical step in the task of
automated classification of hydrothermal alteration zones. In this
study, training samples were derived from a combination of
geological and remote sensing data obtained from published
sources (Orynbassarova, 2025), including maps of hydrothermal
alteration zones. Expert knowledge was additionally employed to
refine the spatial boundaries of classes and to adapt the data to
the geological context of the Koldar massif.

Initially, regional geological maps at a scale of 1:200,000 were
used, containing information on lithology, structural features,
and previously identified alteration zones. These maps enabled
delineation of preliminary contours of ore-bearing areas and
provided orientation within structural-tectonic blocks subjected
to hydrothermal activity.

A key role in the interpretation of alteration zones was played by
visual analysis of color-synthesized ASTER composites,
particularly those derived from SWIR bands, where
hydrothermally altered rocks exhibit distinctive spectral
signatures. Complex band combinations (e.g., SWIR6/SWIRS,
SWIRS5/SWIR6) were effective in highlighting zones with high
concentrations of clay and sericitic minerals. These images were
used for expert interpretation—conducted jointly by specialists in
remote sensing and geology.

Based on the resulting interpretations, training points were
delineated and digitized. Each point represented a homogeneous
area in terms of spectral and geological-structural characteristics,
corresponding to one of four alteration classes:

Argillic — zones of clay alteration, containing kaolinite,
montmorillonite, and other aluminosilicate minerals, indicative
of low-temperature ore-forming conditions.

Phyllic — sericitic-quartz zones, characterized by high
concentrations of sericite and quartz, typical for intermediate
fluid-alteration zones.

Propylitic — outer alteration zones, represented by epidote,
chlorite, and carbonates, resulting from weak metasomatic
overprinting of host rocks.

Potassic — potassium alteration zones, including biotite,
potassium feldspar, and sericite, typically localized near the
central parts of intrusions.

Digitization was performed manually using all available data
sources, followed by verification of spectral signature
homogeneity and spatial consistency. As a result, a representative
training dataset was constructed and used uniformly across all
classification methods (SAM, SVM, ML, MD), ensuring
comparability of the obtained results.

This approach enabled high-quality sample preparation, ensuring
reliable identification of hydrothermal alteration zones during
subsequent automated interpretation of satellite imagery.

To delineate hydrothermal alteration zones within the Koldar
Massif, four classification methods were applied, reflecting both
traditional approaches and modern machine learning algorithms.
The use of multiple classifiers allowed for a comparative analysis
of their effectiveness under conditions of complex spectral noise
and overlapping mineralogical associations.

The SAM (Spectral Angle Mapper) method is based on
comparing the spectrum of each image pixel with reference
spectra defined from training polygons. The algorithm calculates
the cosine of the angle 0 between reflectance vectors.

9 = cos (i)
[l

where:

>

t - spectral vector of the pixel

>

r — reference spectrum (mean value for the class)

”?” and ||;|| — euclidean norms of the vectors.

If the angle 0 is less than a given threshold, the pixel is classified
as belonging to the corresponding class. This method is robust to
illumination variations but is sensitive to spectral similarity
between classes. The comparison is performed by measuring the
angle between spectral reflectance vectors in a multidimensional
space. The smaller the angle, the closer the pixel spectrum is to
the reference. This method is particularly resistant to illumination
variations, which is especially important when processing images
over heterogeneous terrain (Liu, 2013). The SAM classification
was performed using the tools provided in the ENVI
Classification module.

The Support Vector Machine (SVM) method is one of the most
powerful machine learning algorithms used in remote sensing
applications. In this study, an SVM implementation with a Radial
Basis Function (RBF) kernel was used, enabling nonlinear
separation of classes in the feature space:

K (xi, %) = exp (—y/lx; - x,-||2

where:

x_i, x_j — feature vectors of pixels

v — is the kernel parameter (a hyperparameter) that controls the
degree of nonlinearity of the model (Zhang, 2012).

The SVM algorithm is implemented in ENVI, followed by
validation through visual comparison and statistical metrics.
The Maximum Likelihood (ML) method is based on a Bayesian
probabilistic model that assumes a normal distribution of spectral
values for each class. ML is a probabilistic classifier that assumes
the spectral features of each class follow a multivariate normal
distribution (Sisodia, 2014). ENVI implements maximum
likelihood classification by calculating the following
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discriminant functions for each pixel in the image (Richards,
1999):

g9:() =1nplw) -1, n |[T)-1,x -m)TE (x —m,)

where:

i =class

x = n-dimensional data (where 7 is the number of bands)

p(®i) = probability that class ; occurs in the image and is
assumed the same for all classes

|Zi| = determinant of the covariance matrix of the data in class c;
31 = its inverse matrix

mi = mean vector

Classification is performed by calculating the probability of each
pixel belonging to a particular class based on the estimated means
and covariance matrices. This method is sensitive to the quality
of the training data statistics and requires enough training data to
produce stable results. It was implemented in the ENVI
environment with automatic calculation of the necessary
statistical parameters.

The Minimum Distance (MD) method determines the class
membership of a pixel based on the minimum Euclidean distance

D between the pixel's spectrum x and the mean spectrum of a

>
class p, :

where:
x; - the pixel’s spectral value in the i-th band,
By - the mean value for class k in the i-th band.

The method is simple to implement but performs poorly in the
presence of strong inter-band correlation or overlapping classes
(Wacker, 1972).

To quantitatively assess the reliability of hydrothermal alteration
maps obtained using different classification methods (SAM,
SVM, ML, MD), statistical validation was conducted using a
confusion matrix.

This approach allows not only for the evaluation of overall
accuracy but also for identifying classification errors specific to
each class.

A confusion matrix is an NxN table, where N is the number of
classified classes. Each row represents the actual class, and each
column corresponds to the predicted class. The diagonal shows
the number of correctly classified pixels.

Accuracy metrics. Overall Accuracy (OA): indicates the
proportion of correctly classified pixels relative to the total
number of reference (ground truth) pixels (Fitzgerald, 1994):

0A = * 100%

where x; — number of correctly classified pixels of class i, N —
total number of validated (reference) pixels.

Kappa Coefficient (k) — a metric that takes into account the
possibility of agreement occurring by chance (Kerr, 2015):

_0A—Pe
T 1-Pe

where Pe — the expected probability of random classification.

Producer’s Accuracy (PA) indicates how well a class on the map
represents the real-world objects (Stehman, 2013):

n

PAl' =
j=1%ij

where Z;‘L=1 x;; — the total number of pixels that belong to class i
according to the reference data.
User’s Accuracy (UA) indicates the probability that a pixel

classified into a given class actually belongs to that class (Barsi,
2018):

Xii
n
j=1%ji

UA; = * 100%

where Z?zl x;; — the total number of pixels classified as class i.

Omission Error is the percentage of pixels that belong to a class
but were not recognized as such (Congalton, 2019):

Omission; = 100% — PA;

Commission Error is the percentage of pixels that were
incorrectly assigned to a class (Congalton, 1991):

Commission; = 100% — UA;

For each method (SAM, SVM, ML, MD), the same training and
testing datasets were used, based on interpretation and geological
data. This ensured a standardized and objective comparative
assessment of the classification algorithms' effectiveness. The
test dataset consisted of independent points that were not
involved in the training process but were evenly distributed
across the study area and among the classes.

The classification results were visualized as maps and presented
in the form of accuracy metric tables, error diagrams, and
comparative performance indicators.

3. Results and discussion

The classification of hydrothermal alteration zones employing
four distinct methods — Spectral Angle Mapper (SAM), Support
Vector Machine (SVM), Maximum Likelihood (ML), and
Minimum Distance (MD) — resulted in the generation of thematic
maps delineating the spatial distribution of argillic, phyllic,
propylitic, and potassic alteration zones across the Koldar Massif.
The study area encompasses approximately 386 km?, with a total
perimeter of 78.7 km. All classification procedures were confined
to this delineated polygon (Figure 3).

o 375750 1500 Km
Bl tid

Figure 3. Study area
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The accuracy assessment of the classification was performed
using confusion matrices and includes the following metrics:
Overall Accuracy, Kappa Coefficient, and Producer’s Accuracy
for each class. For clarity and comparison, the accuracy
indicators are presented in Table 1 below.

Method | Overall Kappa | PA PA
Accuracy (Propylitic) | (Potassic)
SAM 51.13% 0.3754 | 77.27% 26.17%
SVM 84.12% 0.7914 | 92.00% 82.55%
MD 62.89% 0.4984 | 87.30% 69.13%
ML 82.80% 0.7759 | 95.24% 79.87%
Method | PA PA
(Argillic) | (Phyllic)
SAM 29.06% 82.80%
SVM 76.07% 86.02%
MD 19.66% 74.19%
ML 80.30% 74.19%

Table 1. Comparison of Classification Accuracy Metrics

The best results were demonstrated by the SVM method (Figure
4), which achieved an overall accuracy of 84.12% and a Kappa
coefficient of 0.7914. The highest classification accuracy was
observed for propylitic (PA =92.0%) and phyllic alteration zones
(PA = 86.02%), while argillic zones were classified somewhat
less accurately (PA = 76.07%). The SVM method provided
balanced accuracy across all classes, with relatively low omission
and commission errors.

Area of Interest

-
4

Koldar massive
Propylitic
Phyllic

Argillic

Figure 4. SVM Classification Result

The MD method (Figure 5) also demonstrated high performance
(OA = 82.8%, Kappa = 0.7759), achieving the highest
classification accuracy for propylitic zones (PA = 95.24%).
However, the accuracy for argillic zones was lower (PA =
80.30%) compared to SVM.

The MD method (Figure 5) also demonstrated high performance
(OA = 82.8%, Kappa = 0.7759), achieving the highest
classification accuracy for propylitic zones (PA = 95.24%).
However, the accuracy for argillic zones was lower (PA =
80.30%) compared to SVM.

Area of Interest
Koldar massive
Propylitic
Phyllic

Figure 5. Minimum Distance Classification Result

The Maximum Likelihood algorithm demonstrated (Figure 6)
moderate performance (OA = 62.89%, Kappa = 0.4984), with the
highest classification accuracy observed for propylitic (PA =
87.3%) and phyllic zones (PA = 74.2%). However, the argillic
alteration zone showed low values for both producer’s accuracy
(19.7%) and user’s accuracy (69.7%).

0f
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Figure 6. Maximum Likelihood Classification Result

The least accurate results were obtained using the Spectral Angle
Mapper (SAM) method (Figure 7) (OA = 51.13%, Kappa =
0.3754), which can be attributed to its limited robustness to noise
and the spectral similarity between classes. Nevertheless, the
phyllic alteration zone (PA = 82.8%) was recognized as
significantly better than the argillic (PA =29.1%) and potassium
alteration zones (PA = 26.2%).

The least accurate results were obtained using the Spectral
Angle Mapper (SAM) method (Figure 7) (OA = 51.13%, Kappa
= 0.3754), which can be attributed to its limited robustness to
noise and the spectral similarity between classes. Nevertheless,
the phyllic alteration zone (PA = 82.8%) was recognized as
significantly better than the argillic (PA =29.1%) and potassium
alteration zones (PA = 26.2%).
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Figure 7. SAM (Spectral Angle Mapper) Classification Result

To assess the reliability of the classification results, a comparison
was made with the geological map (Figure 2) and cross-sections
of mineralization and hydrothermal alteration, which illustrate a
characteristic spatial zonation: from peripheral propylitic zones
to argillic and phyllic alterations, with possible potassium
alteration zones in the central part.

Propylitic zones (marked in green on the classification maps)
show the highest spatial consistency with the outer parts of the
intrusive body and the contact zones with surrounding rocks,
which aligns well with the geological data (see Figures 9 and 10).
These zones were consistently identified across all methods, most
clearly using SVM and SAM (Figures 3 and 5), with high
classification accuracy (User Accuracy = 83-95%, Producer
Accuracy = 87-95%).

Phyllic zones (pink color) are most distinctly delineated by the
ML and SVM methods. Their spatial distribution is concentrated
along fault zones and in the central parts of the massif, which is
supported by geological cross-sections indicating that phyllic
alterations are closely associated with ore bodies and zones of
intense hydrothermal activity. In contrast, the MD method shows
significant fragmentation and a high rate of false positives for this
class (Commission Error > 48%).

Argillic alterations (orange color) are reliably detected only by
the SAM and ML methods. These zones are mainly located on
the periphery of phyllic alterations and partially overlap with
areas associated with clay minerals according to geological
sections. The SVM method tends to overestimate the extent of
this class, as indicated by the inflated User Accuracy (>98%) and
low Producer Accuracy (19.66%) observed in the MD method.
Potassic zones are poorly distinguishable across all methods,
likely due to the limited spectral signature in the ASTER data and
their minimal representation in the training polygons.
Nevertheless, some weak localization of these zones in the
central part of the massif — near the presumed apical part of the
intrusion — was achieved using the SVM and ML classifications.
A comparative analysis of the spatial distribution of
hydrothermal zones produced by different classification
algorithms allows for several general conclusions regarding each
method’s sensitivity to specific alteration types. The SVM
algorithm demonstrated the best correspondence with the known
geological zonation, consistent identification of all major
alteration types, and the fewest artifacts. This method was
particularly effective in delineating phyllic and propylitic
alteration zones, as confirmed by geological maps and
lithochemical data.

Probabilistic and statistical methods (ML and MD) demonstrated
moderate effectiveness: although they identified the main
alteration zones, their results were accompanied either by
excessive fragmentation (MD) or inflated accuracy metrics due
to underrepresentation of certain classes (ML). The SAM
method, despite its traditional applicability to hyperspectral data,
proved to be the least robust when applied to ASTER
multispectral imagery, likely due to the limited spectral
information and fewer available bands.

Thus, machine learning — particularly using the Support Vector
Machine (SVM) approach — shows strong potential for mapping
hydrothermal alteration zones based on multispectral data. To
further improve classification accuracy, the use of ensemble
methods, integration of additional geological indicators, and
inclusion of textural and topographic parameters is
recommended.

In summary, the SVM and ML methods demonstrated the highest
efficiency in detecting complex hydrothermal alteration zones,
owing to their ability to capture both linear and non-linear
relationships in the spectral features of ASTER data. The
obtained results show a high degree of consistency with
geological maps and lithogeochemical data, confirming the
applicability of these methods for preliminary geological
mapping. These findings can serve as a foundation for planning
follow-up fieldwork, geochemical surveys, and refining the
boundaries of potentially prospective ore-bearing zones.

4. Conclusion

In this study, a methodology for interpreting hydrothermal
alteration zones associated with porphyry copper systems was
tested using ASTER remote sensing data and machine learning
algorithms. The Koldar Intrusive Complex in Central Kazakhstan
was selected as the study area due to its geological prospectivity,
pronounced hydrothermal activity, and mineralization potential.
The application of classification methods including SVM, SAM,
ML, and MD made it possible to produce thematic maps showing
the spatial distribution of the main types of metasomatic
alterations: argillic, phyllic, propylitic, and potassic.
Comparative analysis of the results showed that the Support
Vector Machine (SVM) algorithm achieved the highest accuracy,
with an overall accuracy of 84.12% and a kappa coefficient of
0.79. The MD and ML methods also demonstrated satisfactory
results, whereas SAM proved less accurate when a limited
training dataset was used.
The resulting alteration maps correlate well with the tectonic and
lithological structure of the region and allow for the identification
of areas most promising for further geological exploration. The
use of NDVI and vegetation masking improved classification
accuracy by excluding vegetation-covered areas.
The proposed methodology is recommended for use in the early
stages of mineral exploration in arid and semi-arid environments,
where surface exposures and lighting conditions are favorable for
remote sensing applications. Moreover, it can be adapted for
analyzing other types of ore systems and underexplored areas
with limited geological mapping.
In future work, we plan to integrate hyperspectral data (e.g.,
PRISMA) and expand the training dataset using geochemical
data to improve the predictive value and reliability of the results.
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