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Abstract 

 

The main goal of this research is to develop a comprehensive workflow for using remote sensing data to study the aftermath of a dam 

collapse. As a case study, the research looks at changes in the Kakhovka reservoir area caused by the dam collapse on June 6, 2023. 

To evaluate the impact of this disaster, it is essential to analyze key morphometric parameters before and after the failure, the total loss 

of water surface, changes in soil moisture, and to qualitatively assess the area that has become exposed after water withdrawal; 

additionally, monitoring land cover changes over the two years following the collapse is vital. The quickest way to do this is by using 

remote sensing data. The study used Sentinel-2 images from 2020 to 2025. These datasets made it possible to assess changes before 

and after the dam failure. Image classification before and after the event served as the primary change detection method. Several 

classification techniques—including random forest, support vector machine, and naïve Bayes—were tested for this purpose. The results 

showed that support vector machines provided the most effective classification approach for this area. Remote sensing data enabled 

the identification of geometric and physical changes in the study region. The findings revealed significant changes in the coverage of 

the Kakhovka reservoir since 2023. The total size of the reservoir was estimated to have decreased substantially. NDVI analysis showed 

the distribution patterns, and similarities between NDVI profiles were calculated. The areas cleared of water have become vegetated 

by various tree species and shrubs, indicating a significant shift in the surrounding ecosystem. 

 

 

1. Introduction 

The hydro energy industry plays a vital role in the economy of 

industrial countries. The energy produced by hydropower plants 

is relatively inexpensive and environmentally friendly compared 

to heat-based power stations. However, constructing hydropower 

stations poses significant environmental risks due to the need to 

flood large areas of land. Once the reservoir is filled, the 

surrounding ecosystem adapts to the new environment. 

Nevertheless, if a dam of a hydropower station collapses, the 

environmental damage exceeds the impact of the initial 

construction. The ecosystem suffers from a sudden drop in water 

levels. Since the reservoir covers a large area, remote sensing 

data is the most effective tool for monitoring. 

Remote sensing data have been used for monitoring large water 

bodies for many years (Büchele et al., 2006). The open data from 

Landsat or Sentinel missions have supported numerous studies. 

The spatial resolution of these data is suitable for most 

applications since water body monitoring rarely requires 

accuracy higher than 10 m. Additionally, the spectral bands of 

these satellites enable in-depth investigations of qualitative 

imagery parameters (Huang et al., 2018; Rahman et al., 2025). 

Therefore, the use of remote sensing data is highly prioritized for 

seacoast and flood monitoring (de Ruiter et al., 2017; Shults et 

al., 2025), water reservoir changes, and related applications. 

Recently, many studies have been conducted on similar topics. 

Notable examples include the use of Sentinel and Landsat data 

for flood and water resource monitoring (Hussein et al., 2019), 

supporting water disaster response and recovery (Shah et al., 

2023), water monitoring and sanitation interventions (Andres et 

al., 2018), and volumetric analysis of water reservoirs (Bhagwat 

et al., 2019). 

The paper examines the changes in the Kahovka reservoir area 

caused by the Kahovka dam collapse on June 6, 2023. To assess 

the damage from this catastrophic event, it is important to know 

the main morphometric parameters, specifically the total water 

loss, and to evaluate the conditions of the area that has been 

drained. The most efficient way to do this is through the use of 

remote sensing data. 

The paper consists of five sections. Section 2 provides a brief 

historical overview of the object and data used in the study. The 

next section describes the classification results for the study area 

before and after the disaster, along with the total decrease in 

water surface. Section 4 focuses on the qualitative analysis of 

changes from 2020 to 2025. This analysis includes a temporal 

and spatial NDVI study, as well as an investigation of NDVI 

profiles to assess their similarity and correlation over the years. 

Visual comparisons showing changes in the Dnipro River 

coastline after the dam collapse are presented. The final section 

deals with conclusions. 

 

2. Study object: Kahovka Reservoir, History, and Current 

State 

The idea of constructing a dam downstream of the Dnipro River 

was proposed many years ago. The primary reason was the 

presence of a nearly 100 km stretch of rapids near the modern 

city of Zaporizhzhia, which hindered shipping from the northern 

part of the country to the Black Sea. The name Zaporizhzhia in 

Ukrainian means “city that is placed after rapid.” Consequently, 

the first dam and hydropower station, “Dniproges,” was built in 

1932. Its construction enabled navigation along the entire length 

of the Dnipro River to the Black Sea. After World War II, the 

Soviet government adopted an ambitious “nature transformation” 

plan. According to this plan, it was decided to build a system of 

dams and reservoirs on the Dnipro River (Fig. 1). 
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Figure 1. Longitudinal profile of the Dnipro River upstream and 

the dams that were built. 

Since 1955, six hydropower stations and their maintenance 

reservoirs have been constructed: Kyiv station (1966), Kaniv 

station (1972), Kremenchuk station (1959), Middle Dnieper 

power plant (1965), Dnipro station (1932, rebuilt in 1947), and 

Kakhovka station (1956). The Kahovka Reservoir was created to 

support the Kahovka station and was filled in 1958. It covered a 

total area of 2155 km², stretched 240 km in length, with an 

average width of 23 km. The average depth was 8.4 meters, and 

its total water volume was about 18.2 km³. The reservoir also 

supported agriculture in southern Ukraine and supplied water to 

major cities such as Kherson, Kryvyi Rih, Nova Kahovka, and 

the Crimean Republic. During the Russian-Ukrainian conflict, 

the station and dam were seized by the Russian army and were 

not adequately controlled by either side. After numerous 

shellings, on the morning of June 6th, 2023, the dam's central part 

collapsed, causing water to leak. By midday, the dam completely 

failed, flooding large areas downstream along the Dnipro River 

(Fig. 2). 

 

 

Figure 2. UAV imagery of a flooded Kherson after a couple of 

days of the dam destruction (approx. 10th of June 2023) (CNN, 

2023). 

In some areas, water reached up to 15 meters. Since the dam 

failed gradually, the water increased slowly, which helped limit 

significant damage and loss of life. The estimated number of 

casualties is around 70 people. However, the full environmental 

impact is difficult to assess. Large agricultural regions have been 

flooded, while others have lost their water supply. Hundreds of 

cities and villages have been affected. The water flowed from the 

Kahovka reservoir and downstream areas in July 2023, so a final 

assessment of this disastrous event is still pending. 

 

3. Study of Water Surface Change 

3.1 Area Classification Before and After the Dam Collapse 

To assess the loss of the reservoir water surface, a change 

detection algorithm must be applied. Based on the analysis 

conducted in (Shults et al., 2025), the classification approach for 

change detection has been chosen. The classification was 

performed using two Sentinel-2 mosaics: before the dam collapse 

(01/05/2023-01/06/2023) and after the dam collapse 

(01/07/2023-01/08/2023). Figures 3 and 4 clearly illustrate the 

changes in the study area resulting from the dam's collapse.  

 

 

Figure 3. Color mosaic of Sentinel-2 images of the study area 

(May 2023). 

 

Figure 4. Color mosaic of Sentinel-2 images of the study area 

(August 2023). 

Google Earth Engine (GEE) was used as the primary tool for 

classification and NDVI calculation. Different classification 

algorithms were tested. The classification was performed using 

machine learning algorithms with a sample split into training and 

testing subsets. The holdout percentage for train/test subsets was 

set to 70%. The comparison analysis showed the highest 

efficiency for the support vector machine (SVM) algorithm, 

compared to random forest and naïve Bayes. Below, the 

classification results with accuracy estimates are provided. 

The area was classified into five classes: water, vegetation, grass, 

urban, and barren or plowed lands. The last class was selected 

since the area around the reservoir is mainly used for farming. As 

a result, a large portion of the land is plowed or harvested during 

late summer. Figure 5 shows the area classification before the 

dam collapse. 
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Figure 5. Area classification before the dam collapse (blue - 

water, green - vegetation, light green - grass, red - urban, light 

purple - barren) 

The accuracy of the classification is shown in Table 1. 

Class Producer 

accuracy 

User 

accuracy 

F1 

Water 0.993 1.000 0.996 

Vegetation 0.975 0.912 0.942 

Grass 0.963 1.000 0.981 

Urban 0.811 0.845 0.828 

Barren/Plowed 0.924 0.912 0.918 

Table 1. Accuracy of classification before collapse. 

The overall accuracy is relatively high at 0.934, and the kappa 

value is close to one, at 0.917. The estimated reservoir area was 

2228.8 km². The classification results for the area after the dam 

collapse are shown in Fig. 6. 

 

Figure 6. Area classification following the dam collapse. 

Visual analysis reveals a significant change across the entire area. 

While some changes resulted from agricultural activity, the main 

difference is the dramatic reduction in the reservoir's surface area. 

These changes complicate classification. However, water 

classification still maintains very high accuracy, which is crucial 

for the study. The overall accuracy analysis is provided in Table 

2. 

Class Producer 

accuracy 

User 

accuracy 

F1 

Water 1.000 1.000 1.000 

Vegetation 0.940 0.843 0.889 

Grass 0.813 0.888 0.849 

Urban 0.664 0.780 0.717 

Barren/Plowed 0.952 0.874 0.911 

Table 2. Accuracy of classification after the collapse. 

The overall accuracy remains relatively high at 0.879, and the 

kappa value is 0.848. The lowest accuracy is found in the grass 

and urban classes. However, these classes occupy a tiny part of 

the study area, so they have no impact on the final estimate. The 

water surface area is 435.1 km2. 

 

3.2 Water Surface Change and Area Accuracy 

Based on classification results, the total water surface change is -

1793.7 km². Therefore, when comparing this value with the 

designed water surface area, the initial water surface area before 

filling the reservoir was 361.3 km². The resulting difference of 

+73.8 km² is caused by reservoir coastline erosion. These 

changes contributed to the gradual increase in area over sixty 

years. 

To estimate the reliability of determining an area, it is necessary 

to calculate the expected area accuracy. The area calculation 

equation based on point coordinates was used. This equation 

applies to the area of a closed polygon (1). 

  

 𝐴 =
1

2
∑ (𝑋𝑖𝑌𝑖+1 − 𝑌𝑖𝑋𝑖+1)
𝑛
𝑖=1  ,   (1) 

 

where  X, Y, = coordinates of polygon vertexes 

Accepting that coordinates are determined independently with 

the same accuracy, the expression for the area accuracy will be 

(2): 

 

𝑚𝐴 =
𝑚2

4
∑ [(𝑌𝑖+1 − 𝑌𝑖−1)

2 + (𝑋𝑖+1 − 𝑋𝑖−1)
2]𝑛

𝑖=1  ,   (2) 

 

where m = accuracy of coordinates determination. 

 

Coordinate 

accuracy, m 

Area accuracy, 

km2 

Relative area 

accuracy 

5 0.48 1:4640 

10 0.96 1:2320 

15 1.44 1:1550 

20 1.93 1:1150 

Table 3. Simulation of area accuracy. 

The table indicates that Sentinel-2 data allow for determining the 

area with an accuracy of about 1.5-2 km², which is higher than 

1:1000 of the total area. Therefore, these data are suitable for 

similar future studies.  

The classification provided geometrical information about the 

reservoir water surface. However, the primary interest is in 

qualitative changes that the studied area underwent. Such 

changes can be estimated by NDVI analysis. 

 

4. NDVI Analysis of the Study Area 

4.1 NDVI Distribution Analysis 

GEE offers quick and practical tools for NDVI analysis. To 

examine the changes in the study area, the first step is to create 

NDVI maps for the investigation period. A series of NDVI maps 

since the dam collapse provides the best visual understanding. 

These maps are shown in Figs. 7-9. 
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Figure 7. NDVI map of the study area (June 2023). 

 

Figure 8. NDVI map of the study area (June 2024). 

 

Figure 9. NDVI map of the study area (June 2025). 

It is well-known that the NDVI value ranges from -1 to +1. 

Values from -1.0 to 0.0 correspond to non-vegetated areas such 

as water, snow, and clouds. Bare soil, sand, or urban surfaces 

have NDVI values between 0.0 and 0.2, while values from 0.2 to 

0.5 represent grasslands, croplands, or shrubs. Dense, healthy 

vegetation falls within the range of 0.5 to 0.8. Based on these 

values, the following color palette was used for the NDVI maps: 

dark brown/red for very low or negative NDVI (water, urban, 

barren lands), yellow/light green for sparse or stressed 

vegetation, and green/dark green for healthy, dense vegetation. 

Using these color designators allows for the analysis of NDVI 

distribution. The NDVI map for June 2023 (Fig. 7) clearly shows 

the water reservoir area in brown. Over the course of a year, 

significant changes occurred (Fig. 8). Part of the former water 

reservoir became vegetated, particularly in the northeastern part. 

At the same time, other areas were covered with moderate 

vegetation and bogs. After another year, the changes were 

dramatic (Fig. 9). The brown color, indicating bare soil or 

vegetation-free areas, nearly disappeared everywhere except for 

the Dnipro riverbed. However, there is a clear trend toward 

transforming the former reservoir bottom into barren land in the 

northeastern part. Dark green areas with dense, 

photosynthetically active vegetation—such as forests or irrigated 

crops—mostly remained. Nevertheless, the dominant cover was 

composed of moderate vegetation or grasslands, reflected in light 

green to yellow colors. 

 

4.2 NDVI Trend Analysis 

A single NDVI map shows the current state of vegetation. 

Despite its clear visual presentation, maps can make NDVI trend 

analysis somewhat complicated. To address this, trend maps were 

created. A trend map illustrates the direction of NDVI change 

over the study period. Usually, NDVI change is shown as 

greening versus browning. For each pixel with an NDVI value at 

the observation time, GEE fits a linear regression that relates 

NDVI values to time (in years). The slope of this regression line 

indicates the NDVI change (ΔNDVI) per year. A positive slope 

signifies vegetation “greening” (NDVI increasing over time), 

while a negative slope indicates vegetation “browning” (NDVI 

decreasing). Values close to zero suggest a stable NDVI trend. 

In the study, two NDVI trend maps were created. The first map 

shows the NDVI trend for 2020-2023 before the dam collapse. 

The second map covers the period from 2023 to 2025, after the 

dam collapse. 

Figure 10 demonstrates the NDVI slope map before the dam 

collapse for 2020-2023. 

 

 

Figure 10. NDVI slope map for 2020-2023. 

The map in Fig. 10 displays ΔNDVI as a continuous variable. 

This shows how quickly NDVI is changing, including both minor 

and major fluctuations. A drawback is that a slight positive slope 

might not be significant due to noise. A strong negative slope 

clearly indicates browning. For better visualization, the slope 

map was classified into three classes. The classification used a 

simple rule, assigning a threshold (T) around zero slope based on 

the scheme: slope ≤ –T indicates browning; –T ≤ slope ≤ +T 

indicates stability; slope > +T indicates greening. The T value 

was set at 0.005 NDVI per year. This facilitated the creation of a 

clearer and visually appealing map (Fig. 11). 
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Figure 11. Classified NDVI slope trend map for 2020-2023. 

The browning areas indicate where the NDVI trend slope is 

negative, meaning vegetation cover is decreasing over time 

(plants dying, deforestation, urban expansion, soil exposure, 

drought stress, etc.). The stable class (grey) has an NDVI trend 

slope close to zero, showing no significant change in vegetation. 

The greening class indicates a positive NDVI trend slope, 

signifying increasing vegetation cover (reforestation, water 

greening, crop expansion, improved land use, seasonal recovery, 

etc.). Therefore, there is no severe stress during the observation 

period from 2020 to 2023. Using the classified map, the areas of 

the different NDVI trends were calculated (Table 3). 

 

Class Browning Stable Greening 

Area, km² 5516 5673 8262 

Table 3. NDVI trend areas by class (2020-2023). 

Approximately 5500 km² of land has experienced a consistent 

decline in NDVI over the time period. Nearly the same area 

shows no significant NDVI change and remains within natural 

variability. A larger portion of the land, 8262 km², exhibits a 

positive NDVI trend, indicating healthier or denser vegetation. 

Additionally, the mean NDVI values for each observation epoch 

were calculated (Fig. 12). 

 

 

Figure 12. Mean NDVI values per observation epochs 2020-

2023. 

The average NDVI values stay stable with minor fluctuations 

caused by weather variability. 

To compare the changes that occurred after the dam collapse, the 

same calculations were performed for the observation period 

2023-2025 (June – July). The continuous NDVI slope map is 

shown in Fig. 13. This figure demonstrates how significantly the 

water reservoir area and the surrounding land have changed. The 

reservoir area has become vegetated, while the surrounding land 

is experiencing water scarcity. Similar to the previous case, the 

NDVI slope map was classified using a threshold value T (Fig. 

14). 

 

Figure 13. NDVI slope map for 2023-2025. 

 

Figure 14. Classified NDVI slope trend map for 2023-2025. 

The areas calculated for browning, stable, and greening classes 

are shown in Table 4. 

 

Class Browning Stable Greening 

Area, km² 14233 2052 3166 

Table 4. NDVI trend area by class (2023-2025). 

Browning is the largest class (≈ 14,200 km²). Greening (≈ 3,200 

km²) is nearly equal to stable (≈ 2,100 km²) and has decreased by 

approximately 64% and 62%, respectively. The balance between 

vegetation and barren lands has been significantly disrupted. 

Mean NDVI values per observation epochs were also calculated 

(Fig. 12). 

 

 

Figure 15. Mean NDVI values per observation epochs 2023-

2025. 

The calculated mean NDVI values also declined significantly. If 

the average NDVI value for 2020-2023 is 0.444, then for 2023-

2025 it dropped to 0.285, or 35%, which is an unusually low 

value. 
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4.3 NDVI Similarity Estimation  

The final step is to conduct a direct study of the empty water 

reservoir. This study will help understand the changes that 

occurred on the reservoir bottom. A total of seven cross-sections 

were drawn (Fig. 16). 

 

 

Figure 16. Cross-section distribution over the former reservoir. 

For each cross-section, NDVI profiles were generated with a 100 

m step. Therefore, each chart contains six profiles corresponding 

to yearly June-July observation periods. Examples of these charts 

are shown in Figs. 17 and 18. For improved interpretability, 

NDVI profiles were smoothed using a 200 m smoothing window. 

 

 

Figure 17. Cross-section 1. 

 

Figure 18. Cross-section 7. 

For each chart containing NDVI profiles, the similarity analysis 

was conducted. The following parameters were calculated: 

Pearson correlation, cosine similarity, Euclidean distance, root 

mean square errors (RMSE), lag versus similarity charts, and 

correlation versus cosine similarity graphs. The most informative 

are heatmaps that demonstrate the correlation between charts in 

the NDVI profile and temporal correlation graphs. Examples of 

the correlation heatmaps are provided in Figs. 19 and 20. 

 

 

Figure 19. Pearson correlation for cross-section 1. 

 

Figure 20. Pearson correlation for cross-section 7. 

 

Figure 21. Temporal correlation for cross-section 1. 
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Figure 22. Temporal correlation for cross-section 7. 

The analysis reveals distinct profiles divided into two datasets: 

2020-2023 and 2024-2025. The correlation analysis shows an 

extremely high correlation (0.9-0.7) between 2020-2023 and a 

nearly negligible correlation (0.2-0.1) between 2020-2023 and 

2024-2025 (see Figs. 19-20), with a strong correlation between 

2024 and 2025. The same conclusions apply to cosine similarity, 

with values 0.9-1.0 for 2020-2023 and -0.4 to -0.8 for 2024-2025. 

The distribution of Euclidean distances and RMSEs confirms the 

differences between these two datasets. The charts showing 

changes in mean Pearson correlation over time indicate a rapid 

decline after the third year, which is 2023. Consequently, the 

analysis demonstrates significant changes in land surface 

coverage for the former reservoir bottom. 

 

5. Conclusions 

The study presents the results of exploring changes in the 

Kahovka reservoir following the dam collapse and their 

environmental impact. The proposed change detection strategy 

enables the determination of change distribution after the dam 

failure and allows for both qualitative and quantitative estimates 

of the changes. The geometric assessment of water surface 

reduction was performed using Sentinel-2 imagery classification 

for different observations before and after the dam collapse. At 

this stage, SVM classification combined with comparison using 

GEE was completed. Thanks to detailed classification validation 

through the confusion matrix, the accuracy of the classification 

and water surface area measurements was evaluated. A 

qualitative assessment was also obtained through various NDVI 

comparisons. Calculations of NDVI values, their differences, 

trends, and cross-sections were carried out using GEE. Since the 

main consequences involved vegetation cover loss and irrigation 

changes, NDVI proved to be the best indicator, highlighting 

regions where vegetation changes occurred. The NDVI cross-

section analysis showed distinct profiles split into two datasets—

before and after the dam collapse. Pearson correlation, cosine 

similarity, Euclidean distance distributions, and the relationship 

between Pearson correlation and time lag confirmed this 

difference. 

Future research will need to examine the use of other indices to 

investigate changes in the area of the former Kahovka reservoir. 

Additionally, more comprehensive monitoring results will be 

gathered for the study of the seasonal dynamics of the reservoir. 
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