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Abstract

The main goal of this research is to develop a comprehensive workflow for using remote sensing data to study the aftermath of a dam
collapse. As a case study, the research looks at changes in the Kakhovka reservoir area caused by the dam collapse on June 6, 2023.
To evaluate the impact of this disaster, it is essential to analyze key morphometric parameters before and after the failure, the total loss
of water surface, changes in soil moisture, and to qualitatively assess the area that has become exposed after water withdrawal;
additionally, monitoring land cover changes over the two years following the collapse is vital. The quickest way to do this is by using
remote sensing data. The study used Sentinel-2 images from 2020 to 2025. These datasets made it possible to assess changes before
and after the dam failure. Image classification before and after the event served as the primary change detection method. Several
classification techniques—including random forest, support vector machine, and naive Bayes—were tested for this purpose. The results
showed that support vector machines provided the most effective classification approach for this area. Remote sensing data enabled
the identification of geometric and physical changes in the study region. The findings revealed significant changes in the coverage of
the Kakhovka reservoir since 2023. The total size of the reservoir was estimated to have decreased substantially. NDVI analysis showed
the distribution patterns, and similarities between NDVI profiles were calculated. The areas cleared of water have become vegetated

by various tree species and shrubs, indicating a significant shift in the surrounding ecosystem.

1. Introduction

The hydro energy industry plays a vital role in the economy of
industrial countries. The energy produced by hydropower plants
is relatively inexpensive and environmentally friendly compared
to heat-based power stations. However, constructing hydropower
stations poses significant environmental risks due to the need to
flood large areas of land. Once the reservoir is filled, the
surrounding ecosystem adapts to the new environment.
Nevertheless, if a dam of a hydropower station collapses, the
environmental damage exceeds the impact of the initial
construction. The ecosystem suffers from a sudden drop in water
levels. Since the reservoir covers a large area, remote sensing
data is the most effective tool for monitoring.

Remote sensing data have been used for monitoring large water
bodies for many years (Biichele et al., 2006). The open data from
Landsat or Sentinel missions have supported numerous studies.
The spatial resolution of these data is suitable for most
applications since water body monitoring rarely requires
accuracy higher than 10 m. Additionally, the spectral bands of
these satellites enable in-depth investigations of qualitative
imagery parameters (Huang et al., 2018; Rahman et al., 2025).
Therefore, the use of remote sensing data is highly prioritized for
seacoast and flood monitoring (de Ruiter et al., 2017; Shults et
al., 2025), water reservoir changes, and related applications.
Recently, many studies have been conducted on similar topics.
Notable examples include the use of Sentinel and Landsat data
for flood and water resource monitoring (Hussein et al., 2019),
supporting water disaster response and recovery (Shah et al.,
2023), water monitoring and sanitation interventions (Andres et
al., 2018), and volumetric analysis of water reservoirs (Bhagwat
etal., 2019).

The paper examines the changes in the Kahovka reservoir area
caused by the Kahovka dam collapse on June 6, 2023. To assess
the damage from this catastrophic event, it is important to know
the main morphometric parameters, specifically the total water
loss, and to evaluate the conditions of the area that has been

drained. The most efficient way to do this is through the use of
remote sensing data.

The paper consists of five sections. Section 2 provides a brief
historical overview of the object and data used in the study. The
next section describes the classification results for the study area
before and after the disaster, along with the total decrease in
water surface. Section 4 focuses on the qualitative analysis of
changes from 2020 to 2025. This analysis includes a temporal
and spatial NDVI study, as well as an investigation of NDVI
profiles to assess their similarity and correlation over the years.
Visual comparisons showing changes in the Dnipro River
coastline after the dam collapse are presented. The final section
deals with conclusions.

2. Study object: Kahovka Reservoir, History, and Current
State

The idea of constructing a dam downstream of the Dnipro River
was proposed many years ago. The primary reason was the
presence of a nearly 100 km stretch of rapids near the modern
city of Zaporizhzhia, which hindered shipping from the northern
part of the country to the Black Sea. The name Zaporizhzhia in
Ukrainian means “city that is placed after rapid.” Consequently,
the first dam and hydropower station, “Dniproges,” was built in
1932. Its construction enabled navigation along the entire length
of the Dnipro River to the Black Sea. After World War II, the
Soviet government adopted an ambitious “nature transformation”
plan. According to this plan, it was decided to build a system of
dams and reservoirs on the Dnipro River (Fig. 1).
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Figure 1. Longitudinal profile of the Dnipro River upstream and
the dams that were built.

Since 1955, six hydropower stations and their maintenance
reservoirs have been constructed: Kyiv station (1966), Kaniv
station (1972), Kremenchuk station (1959), Middle Dnieper
power plant (1965), Dnipro station (1932, rebuilt in 1947), and
Kakhovka station (1956). The Kahovka Reservoir was created to
support the Kahovka station and was filled in 1958. It covered a
total area of 2155 km?, stretched 240 km in length, with an
average width of 23 km. The average depth was 8.4 meters, and
its total water volume was about 18.2 km?®. The reservoir also
supported agriculture in southern Ukraine and supplied water to
major cities such as Kherson, Kryvyi Rih, Nova Kahovka, and
the Crimean Republic. During the Russian-Ukrainian conflict,
the station and dam were seized by the Russian army and were
not adequately controlled by either side. After numerous
shellings, on the morning of June 6th, 2023, the dam's central part
collapsed, causing water to leak. By midday, the dam completely
failed, flooding large areas downstream along the Dnipro River

(Fig. 2).

Figure 2. UAV imagery of a flooded Kherson after a couple of
days of the dam destruction (approx. 10th of June 2023) (CNN,
2023).

In some areas, water reached up to 15 meters. Since the dam
failed gradually, the water increased slowly, which helped limit
significant damage and loss of life. The estimated number of
casualties is around 70 people. However, the full environmental
impact is difficult to assess. Large agricultural regions have been
flooded, while others have lost their water supply. Hundreds of
cities and villages have been affected. The water flowed from the
Kahovka reservoir and downstream areas in July 2023, so a final
assessment of this disastrous event is still pending.

3. Study of Water Surface Change

3.1 Area Classification Before and After the Dam Collapse

To assess the loss of the reservoir water surface, a change
detection algorithm must be applied. Based on the analysis
conducted in (Shults et al., 2025), the classification approach for
change detection has been chosen. The classification was
performed using two Sentinel-2 mosaics: before the dam collapse
(01/05/2023-01/06/2023) and after the dam collapse
(01/07/2023-01/08/2023). Figures 3 and 4 clearly illustrate the
changes in the study area resulting from the dam's collapse.

Figure 3. Color mosaic of Sentinel-2 images of the study area
(May 2023).

(August 2023).

Google Earth Engine (GEE) was used as the primary tool for
classification and NDVI calculation. Different classification
algorithms were tested. The classification was performed using
machine learning algorithms with a sample split into training and
testing subsets. The holdout percentage for train/test subsets was
set to 70%. The comparison analysis showed the highest
efficiency for the support vector machine (SVM) algorithm,
compared to random forest and naive Bayes. Below, the
classification results with accuracy estimates are provided.

The area was classified into five classes: water, vegetation, grass,
urban, and barren or plowed lands. The last class was selected
since the area around the reservoir is mainly used for farming. As
aresult, a large portion of the land is plowed or harvested during
late summer. Figure 5 shows the area classification before the
dam collapse.
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Figure 5. Area classification before the dam collapse (blue -
water, green - vegetation, light green - grass, red - urban, light
purple - barren)

The accuracy of the classification is shown in Table 1.

Class Producer User F1
accuracy accuracy

Water 0.993 1.000 0.996

Vegetation 0.975 0.912 0.942

Grass 0.963 1.000 0.981

Urban 0.811 0.845 0.828

Barren/Plowed 0.924 0.912 0.918

Table 1. Accuracy of classification before collapse.

The overall accuracy is relatively high at 0.934, and the kappa
value is close to one, at 0.917. The estimated reservoir area was

£

Figure 6. Area classification following the dam collapse.

Visual analysis reveals a significant change across the entire area.
While some changes resulted from agricultural activity, the main
difference is the dramatic reduction in the reservoir's surface area.
These changes complicate classification. However, water
classification still maintains very high accuracy, which is crucial
for the study. The overall accuracy analysis is provided in Table
2.

Class Producer User F1
accuracy accuracy

Water 1.000 1.000 1.000

Vegetation 0.940 0.843 0.889

Grass 0.813 0.888 0.849

Urban 0.664 0.780 0.717

Barren/Plowed 0.952 0.874 0911

Table 2. Accuracy of classification after the collapse.

The overall accuracy remains relatively high at 0.879, and the
kappa value is 0.848. The lowest accuracy is found in the grass
and urban classes. However, these classes occupy a tiny part of
the study area, so they have no impact on the final estimate. The
water surface area is 435.1 km?.

3.2 Water Surface Change and Area Accuracy

Based on classification results, the total water surface change is -
1793.7 km?. Therefore, when comparing this value with the
designed water surface area, the initial water surface area before
filling the reservoir was 361.3 km?. The resulting difference of
+73.8 km? is caused by reservoir coastline erosion. These
changes contributed to the gradual increase in area over sixty
years.

To estimate the reliability of determining an area, it is necessary
to calculate the expected area accuracy. The area calculation
equation based on point coordinates was used. This equation
applies to the area of a closed polygon (1).

1
A= 2 ln=1(Xl'Yi+1 —YiXit1), (1)

where X, Y, = coordinates of polygon vertexes
Accepting that coordinates are determined independently with
the same accuracy, the expression for the area accuracy will be

(2):
ma =" (Vg = Yie)? + Keer — Xi)?] @)

4

where m = accuracy of coordinates determination.

Coordinate Area accuracy, | Relative area
accuracy, m | km? accuracy

5 0.48 1:4640

10 0.96 1:2320

15 1.44 1:1550

20 1.93 1:1150

Table 3. Simulation of area accuracy.

The table indicates that Sentinel-2 data allow for determining the
area with an accuracy of about 1.5-2 km?, which is higher than
1:1000 of the total area. Therefore, these data are suitable for
similar future studies.

The classification provided geometrical information about the
reservoir water surface. However, the primary interest is in
qualitative changes that the studied area underwent. Such
changes can be estimated by NDVI analysis.

4. NDVI Analysis of the Study Area
4.1 NDVI Distribution Analysis

GEE offers quick and practical tools for NDVI analysis. To
examine the changes in the study area, the first step is to create
NDVI maps for the investigation period. A series of NDVI maps
since the dam collapse provides the best visual understanding.
These maps are shown in Figs. 7-9.
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F1gure 9. NDVI map of the study area (June 2025).

It is well-known that the NDVI value ranges from -1 to +1.
Values from -1.0 to 0.0 correspond to non-vegetated areas such
as water, snow, and clouds. Bare soil, sand, or urban surfaces
have NDVI values between 0.0 and 0.2, while values from 0.2 to
0.5 represent grasslands, croplands, or shrubs. Dense, healthy
vegetation falls within the range of 0.5 to 0.8. Based on these
values, the following color palette was used for the NDVI maps:
dark brown/red for very low or negative NDVI (water, urban,
barren lands), yellow/light green for sparse or stressed
vegetation, and green/dark green for healthy, dense vegetation.
Using these color designators allows for the analysis of NDVI
distribution. The NDVI map for June 2023 (Fig. 7) clearly shows
the water reservoir area in brown. Over the course of a year,
significant changes occurred (Fig. 8). Part of the former water
reservoir became vegetated, particularly in the northeastern part.

23-25 September 2025, Tashkent, Uzbekistan

At the same time, other areas were covered with moderate
vegetation and bogs. After another year, the changes were
dramatic (Fig. 9). The brown color, indicating bare soil or
vegetation-free areas, nearly disappeared everywhere except for
the Dnipro riverbed. However, there is a clear trend toward
transforming the former reservoir bottom into barren land in the
northeastern  part. Dark green areas with dense,
photosynthetically active vegetation—such as forests or irrigated
crops—mostly remained. Nevertheless, the dominant cover was
composed of moderate vegetation or grasslands, reflected in light
green to yellow colors.

4.2 NDVI Trend Analysis

A single NDVI map shows the current state of vegetation.
Despite its clear visual presentation, maps can make NDVI trend
analysis somewhat complicated. To address this, trend maps were
created. A trend map illustrates the direction of NDVI change
over the study period. Usually, NDVI change is shown as
greening versus browning. For each pixel with an NDVI value at
the observation time, GEE fits a linear regression that relates
NDVI values to time (in years). The slope of this regression line
indicates the NDVI change (ANDVI) per year. A positive slope
signifies vegetation “greening” (NDVI increasing over time),
while a negative slope indicates vegetation “browning” (NDVI
decreasing). Values close to zero suggest a stable NDVI trend.
In the study, two NDVI trend maps were created. The first map
shows the NDVI trend for 2020-2023 before the dam collapse.
The second map covers the period from 2023 to 2025, after the
dam collapse.

Figure 10 demonstrates the NDVI slope map before the dam
collapse for 2020-2023.

Figure 10. NDVI slope map for 2020-2023.

The map in Fig. 10 displays ANDVI as a continuous variable.
This shows how quickly NDVI is changing, including both minor
and major fluctuations. A drawback is that a slight positive slope
might not be significant due to noise. A strong negative slope
clearly indicates browning. For better visualization, the slope
map was classified into three classes. The classification used a
simple rule, assigning a threshold (T) around zero slope based on
the scheme: slope < —T indicates browning; —T < slope < +T
indicates stability; slope > +T indicates greening. The T value
was set at 0.005 NDVI per year. This facilitated the creation of a
clearer and visually appealing map (Fig. 11).
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Figure 11. Classified NDVI slope trend map for 2020-2023.

The browning areas indicate where the NDVI trend slope is
negative, meaning vegetation cover is decreasing over time
(plants dying, deforestation, urban expansion, soil exposure,
drought stress, etc.). The stable class (grey) has an NDVI trend
slope close to zero, showing no significant change in vegetation.
The greening class indicates a positive NDVI trend slope,
signifying increasing vegetation cover (reforestation, water
greening, crop expansion, improved land use, seasonal recovery,
etc.). Therefore, there is no severe stress during the observation
period from 2020 to 2023. Using the classified map, the areas of
the different NDVI trends were calculated (Table 3).

Class Browning Stable Greening
Area, km? 5516 5673 8262

Table 3. NDVI trend areas by class (2020-2023).

Approximately 5500 km? of land has experienced a consistent
decline in NDVI over the time period. Nearly the same area
shows no significant NDVI change and remains within natural
variability. A larger portion of the land, 8262 km?, exhibits a
positive NDVI trend, indicating healthier or denser vegetation.
Additionally, the mean NDVI values for each observation epoch
were calculated (Fig. 12).

2020 2021 2022

2023

Figure 12. Mean NDVI values per observation epochs 2020-
2023.

The average NDVI values stay stable with minor fluctuations
caused by weather variability.

To compare the changes that occurred after the dam collapse, the
same calculations were performed for the observation period
2023-2025 (June — July). The continuous NDVI slope map is
shown in Fig. 13. This figure demonstrates how significantly the
water reservoir area and the surrounding land have changed. The
reservoir area has become vegetated, while the surrounding land
is experiencing water scarcity. Similar to the previous case, the
NDVI slope map was classified using a threshold value T (Fig.
14).
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Figure 13. NDVI slope map for 2023-2025.
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Figure 14. Classified NDVI slope trend map for 2023-2025.

The areas calculated for browning, stable, and greening classes
are shown in Table 4.

Class

Browning

Stable

Greening

Area, km?

14233

2052

3166

Table 4. NDVI trend area by class (2023-2025).

Browning is the largest class (= 14,200 km?). Greening (= 3,200
km?) is nearly equal to stable (=~ 2,100 km?) and has decreased by
approximately 64% and 62%, respectively. The balance between
vegetation and barren lands has been significantly disrupted.
Mean NDVI values per observation epochs were also calculated
(Fig. 12).

Figure 15. Mean NDVI values per observation epochs 2023-
2025.

The calculated mean NDVI values also declined significantly. If
the average NDVI value for 2020-2023 is 0.444, then for 2023-
2025 it dropped to 0.285, or 35%, which is an unusually low
value.
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4.3 NDVI Similarity Estimation

The final step is to conduct a direct study of the empty water
reservoir. This study will help understand the changes that
occurred on the reservoir bottom. A total of seven cross-sections
were drawn (Fig. 16).
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Figure 16. Cross-section dlstnbutlon over the former reservoir.

For each cross-section, NDVI profiles were generated with a 100
m step. Therefore, each chart contains six profiles corresponding
to yearly June-July observation periods. Examples of these charts
are shown in Figs. 17 and 18. For improved interpretability,
NDVI profiles were smoothed using a 200 m smoothing window.

i Profiles (raw + smoothed, window=200 m)

Year2020
Year2020 (sm)
Year2021
Year2021 (sm)
Year2022
Year2022 (sm)
Year2023
Year2023 (sm)
Year2024
Year2024 (sm)
Year2025
Year2025 (sm)

Value

) 1000 2000 3000 4000 5000 6000

Distance (m)

Figure 17. Cross-section 1.

Profiles (raw + smoothed, window=200 m)

Year2020
Year2020 (sm)
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Year2025 (sm)
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25
Distance (m) x10%

Figure 18. Cross-section 7.

For each chart containing NDVI profiles, the similarity analysis
was conducted. The following parameters were calculated:
Pearson correlation, cosine similarity, Euclidean distance, root
mean square errors (RMSE), lag versus similarity charts, and
correlation versus cosine similarity graphs. The most informative
are heatmaps that demonstrate the correlation between charts in

— PHEDCS 2025, Tashkent®, 23—-25 September 2025, Tashkent, Uzbekistan

the NDVI profile and temporal correlation graphs. Examples of
the correlation heatmaps are provided in Figs. 19 and 20.

Year2020 -
Year2021 |
Year2022 -
Year2023 -
Year2024

Year2025 -

Figure 19. Pearson correlation for cross-section 1.
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Figure 20. Pearson correlation for cross-section 7.
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Figure 21. Temporal correlation for cross-section 1.
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Figure 22. Temporal correlation for cross-section 7.

The analysis reveals distinct profiles divided into two datasets:
2020-2023 and 2024-2025. The correlation analysis shows an
extremely high correlation (0.9-0.7) between 2020-2023 and a
nearly negligible correlation (0.2-0.1) between 2020-2023 and
2024-2025 (see Figs. 19-20), with a strong correlation between
2024 and 2025. The same conclusions apply to cosine similarity,
with values 0.9-1.0 for 2020-2023 and -0.4 to -0.8 for 2024-2025.
The distribution of Euclidean distances and RMSEs confirms the
differences between these two datasets. The charts showing
changes in mean Pearson correlation over time indicate a rapid
decline after the third year, which is 2023. Consequently, the
analysis demonstrates significant changes in land surface
coverage for the former reservoir bottom.

5. Conclusions

The study presents the results of exploring changes in the
Kahovka reservoir following the dam collapse and their
environmental impact. The proposed change detection strategy
enables the determination of change distribution after the dam
failure and allows for both qualitative and quantitative estimates
of the changes. The geometric assessment of water surface
reduction was performed using Sentinel-2 imagery classification
for different observations before and after the dam collapse. At
this stage, SVM classification combined with comparison using
GEE was completed. Thanks to detailed classification validation
through the confusion matrix, the accuracy of the classification
and water surface area measurements was evaluated. A
qualitative assessment was also obtained through various NDVI
comparisons. Calculations of NDVI values, their differences,
trends, and cross-sections were carried out using GEE. Since the
main consequences involved vegetation cover loss and irrigation
changes, NDVI proved to be the best indicator, highlighting
regions where vegetation changes occurred. The NDVI cross-
section analysis showed distinct profiles split into two datasets—
before and after the dam collapse. Pearson correlation, cosine
similarity, Euclidean distance distributions, and the relationship
between Pearson correlation and time lag confirmed this
difference.

Future research will need to examine the use of other indices to
investigate changes in the area of the former Kahovka reservoir.
Additionally, more comprehensive monitoring results will be
gathered for the study of the seasonal dynamics of the reservoir.
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