
Spatial-temporal Analysis of Land Subsidence in Jizan Province for 2019-2024 
 

 

Roman Shults1, Esubalew Adem2 

 
1 Interdisciplinary Research Center for Aviation and Space Exploration, King Fahd University of Petroleum and Minerals, 34463 

Dhahran, Saudi Arabia – roman.shults@kfupm.edu.sa 
2 Space Science and Geospatial Institute, Addis Ababa, Ethiopia – yibrie@gmail.com  

 

 

Keywords: Land Subsidence, Spatial-temporal Model, Prediction, SBAS, InSAR, Displacement. 

 

 

Abstract 

 

This study provides a vertical displacement analysis of Jizan Province, Saudi Arabia, using InSAR-derived time-series data processed 

with the Short Baseline Subset (SBAS) technique. Vertical displacements were examined through a simple trajectory model and a 

spatiotemporal model based on distributed scatterer observations. The research focused solely on remote sensing displacement 

measurements from 2019 to 2024. Displacement time series were analyzed for 80 spatially distributed points across areas with varying 

landslide susceptibility. Since the area was not affected by earthquakes during the study period, the simple trajectory model only 

indicates a general trend. Additionally, the time series was very noisy, making the standard extended trajectory model highly sensitive 

to local variations. Unlike the spatial-temporal analysis, forecasting with the extended trajectory model was unstable and unreliable. 

The spatial-temporal model successfully captured patterns of settlement and uplift. Estimated vertical velocities ranged from -13 ± 2 

mm/year for sediments to +9 ± 2 mm/year for uplift, observed in regions with medium and high landslide activity. The remaining areas 

are stable. Temporal trends, obtained without external variables, show that displacements are mostly consistent with slow deformation 

typical of distributed scatterers in arid terrain. This displacement-only assessment provides fundamental insight into the kinematic 

behavior and serves as a baseline for future data-fusion models that incorporate environmental or human factors. 

 

 

1. Introduction 

The analysis of vertical movements of Earth's surface remains 

one of the challenging tasks in geospatial analysis. Jizan in Saudi 

Arabia is a developing province within the Kingdom (Shults et 

al., 2024). Therefore, geospatial monitoring of Earth's 

movements is a high priority for various infrastructure and 

industrial projects. The province has several continuously 

operating GNSS stations managed by the General Authority for 

Survey and Geospatial Information, but these are not sufficient 

for detailed research. Such detailed monitoring is only possible 

using remotely sensed data, which can be provided by space-

based InSAR (Moreira et al., 2013; Hooper, 2006; Hooper, 

2016). Since the study area lacks artificial corner reflectors 

(Ferretti et al., 2001), the only feasible InSAR data processing 

method is the Short Baseline Subset (SBAS). A drawback of this 

method is a significantly higher level of measurement noise. For 

data processing, Sentinel-2 mission data from 2019 to 2024 was 

used. A total of 80 points, evenly scattered across the study area, 

were analyzed, and a time series was generated for these points. 

Although InSAR data processing strategies are well-studied, 

further analysis remains a significant challenge. 

 

Over the past decades, many different methods for analyzing time 

series have been developed. Just to mention the most popular 

ones, including extended trajectory models (Bevis and Brown, 

2014), Kalman filtering with smoothing (Shults et al., 2017), 

autoregressive integrated moving average (Time Series Analysis, 

2015), seasonal autoregressive integrated moving average (Time 

Series Analysis, 2015), exponential smoothing state-space 

(Hyndman et al., 2008), long short-term memory (Kong et al., 

2025), gradient-boosted trees (Boldini et al., 2023), and XGBoost 

(Chen and Guestrin, 2016). These methods offer stable solutions 

and include various hyperparameters for adjustments. Most are 

based on machine learning approaches. However, a significant 

limitation of these methods is that they simulate displacements 

separately for each point. To address this problem, it is 

recommended to use a spatial-temporal approach that combines 

spatial information from neighboring stations with temporal data. 

This method allows the integration of additional information, 

resulting in more accurate and reliable predictions, especially 

when handling noisy data. 

 

This paper analyzes land subsidence time series in Jizan province 

using a spatial-temporal approach. It is divided into four sections. 

The second section explains the mathematical background of 

spatial-temporal analysis. The third section presents the 

simulation results and discusses several specific cases; afterward, 

the simulation outcomes are used to generate prediction maps. 

The final section offers conclusions. 

 

2. Spatial-temporal Model 

To understand the structure of the time series to be analyzed, the 

scheme that presents the observation point distribution is 

presented in Figure 1. The points are scattered unevenly, which 

highlights the need for applying a spatial-temporal approach. 

 

To create a spatial-temporal model, we used the algorithms 

considered in (Wackernagel, 2003; Chilès and Delfiner, 2012). 

These procedures are general and not standardized. Different 

authors use their own calculation algorithms, so below we outline 

our simulation strategy. The proposed spatial-temporal 

simulation strategy suggests building the prediction for the 

selected point (reference point) using surrounding points located 

within a predefined radius R around the reference point. Based 

on preliminary studies, the radius was set to 30 km. Therefore, 

each point's displacement will be simulated using 4-10 

surrounding points. The simulation starts with data structuring. 

From the time series, the observation matrix was created. 

 

𝑌 = [
𝑦1(𝑡1) ⋯ 𝑦𝑁(𝑡1)

⋮ ⋱ ⋮
𝑦1(𝑡𝑇) ⋯ 𝑦𝑁(𝑡𝑇)

],   (1) 
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where  𝑦𝑖(𝑡𝑗) = displacements 

 𝑖 = 1, … , 𝑁 = stations 

 𝑡1, … , 𝑡𝑇 = observation epochs 

 

 

Figure 1. The scheme of observation point distribution. 

The general simulation model can be described as a 

trend/residual Gaussian process/noise. A Gaussian process (GP) 

is applied to the residuals. Thus, the GP posterior mean at a future 

time is, by definition, the residual predictive mean. 

 

𝑦(𝑡) = 𝑚(𝑡, 𝛽) + 𝑟(𝑡) + 𝑛(𝑡),   (2) 

 

where  𝑚(𝑡, 𝛽) = deterministic trend 

 𝑟(𝑡) = latent residual process 
 𝑛(𝑡) = measurement noise 

 

The initial step of analysis is trend estimation. For the 

displacements of the chosen reference point, a linear trend model 

was used: 

 

𝑚(𝑡) = 𝛽0 + 𝛽1(𝑡 − 𝑡1),   (3) 

 

where  𝛽0. 𝛽1 = trend coefficients 

 
The possible seasonality in displacements was estimated in the 

covariance below. The trend is removed from all columns. As a 

result of the detrending, we obtain column-centered residuals 

(each station’s mean removed) 𝑌𝑟𝑒𝑠 which are used by the 

stochastic model on the next simulation step. At this step, the 

spatial-temporal model of a Gaussian process with a Kronecker 

structure was constructed. A residual field 𝑟𝑖(𝑡) was simulated as 

a zero-mean Gaussian with separable covariance: 

 

𝑐𝑜𝑣[𝑟𝑖(𝑡), 𝑟𝑗(𝑠)] = 𝐾𝑡(𝑡, 𝑠)𝐾𝑠(𝑖, 𝑗) + 𝜎𝑛
2𝐼{𝑡 = 𝑠, 𝑖 = 𝑗},   (4) 

 

where  𝐾𝑠(𝑖, 𝑗) = 𝜎𝑠
2𝑒𝑥𝑝 (−

‖𝑥𝑖−𝑥𝑗‖
2

2𝑙𝑠
2 ) = spatial kernel 

 𝐾𝑡(𝑡, 𝑠) = 𝜎𝑡
2𝑒𝑥𝑝 (−

(𝑡−𝑠)2

2𝑙𝑡
2 ) +

𝜎𝑝
2𝑒𝑥𝑝 (−

2𝑠𝑖𝑛2(𝜋|𝑡−𝑠|/𝑃)

𝑙𝑝
2 ) = temporal kernel 

 P = 365.25 days 

 𝜎𝑛 = measurement noise 

 𝜎𝑠 = spatial standard deviation (amplitude) 

 𝜎𝑡 = smooth (aperiodic) temporal standard deviation 

 𝜎𝑝 = periodic (seasonal) temporal standard deviation 

 𝑙𝑠, 𝑙𝑡, 𝑙𝑝 = length scales, that show how quickly 

 correlation decays in space/time 

 

Stacking times and points as 𝑇 × 𝑁, the full covariance of 

𝑣𝑒𝑐(𝑌𝑟𝑒𝑠) will be  

 

𝐾 = 𝐾𝑡⏟
𝑇×𝑇

⊗ 𝐾𝑠⏟
𝑁×𝑁

+ 𝜎𝑛
2𝐼𝑇𝑁,   (5) 

 

 

Figure 2. Spatial-temporal simulation flowchart. 

 

The primary goal is to estimate hyperparameters 𝜃 =

{𝜎𝑠, 𝑙𝑠, 𝜎𝑡, 𝑙𝑡, 𝜎𝑝, 𝑙𝑝, 𝜎𝑛} by minimizing the Gaussian process 

negative log marginal likelihood (NLL) in log-space. Using 

Kronecker eigendecompositions, 𝐾𝑡 = 𝑈𝑡𝑑𝑖𝑎𝑔(𝑑𝑡)𝑈𝑡
𝑇 , 𝐾𝑠 =

𝑈𝑠𝑑𝑖𝑎𝑔(𝑑𝑠)𝑈𝑠
𝑇 with their eigenvalues for time and space kernel, 

the NLL and its quadratic term decompose into element-wise 

operations over eigenpairs, yielding fast and numerically stable 

optimization. Once we have the estimated hyperparameters, it is 

possible to predict future displacements using a spatial-temporal 

Gaussian process model (STGP). Let us suppose we want to 

predict the displacements of the point 𝑥∗ for epochs 𝑡1
ℎ, … , 𝑡∗

ℎ, 

then the STGP gives the residual predictive mean 𝑟̂∗(𝑡∗
ℎ) and 

variance. The final displacement forecasting model will be 

 

𝑦̂∗(𝑡∗
ℎ) = 𝑚(𝑡∗

ℎ) + 𝑟̂∗(𝑡∗
ℎ),   (6) 

 

where  ℎ = prediction horizon 

 𝑚(𝑡∗
ℎ) = trend prediction 

 𝑟̂∗(𝑡∗
ℎ) = Gaussian process prediction 

 

The forecasting process can be shown as a flowchart (Figure 2), 

which helps make it easier to understand. The described 

procedure is computationally stable and can be integrated into 

modern machine learning algorithms. 

Load data (station coordinates and time series) 

Select reference station and radius R 

Align time grid across selected stations 

Fit linear trend on reference station 

Form residuals 𝑌𝑟𝑒𝑠 

Build kernels: spatial (𝑙𝑠, 𝜎𝑠) and temporal (𝑙𝑡, 𝜎𝑡, 𝑙𝑝, 𝜎𝑝) 

Eigendecompose 𝐾𝑡, 𝐾𝑠 

Predict residuals at the reference station 

Combine 𝑦̂ = 𝑡𝑟𝑒𝑛𝑑 + 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 

Diagnostics (RMSE, MAE, R2, residual ACF, Weights) & plots  

Compute 𝛼 = 𝐾−1𝑌𝑟𝑒𝑠 via spectral shrinkage 
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3. Spatial-temporal Analysis 

3.1 Displacement Simulation 

The spatial-temporal analysis can be split into two parts. The first 

is the model training, and the second is the prediction. To 

facilitate the model training process, the graphical user interface 

(GUI) in the MATLAB environment was developed. In this GUI, 

the user is enabled to upload observation time series and point 

coordinates. There are two options to tweak the model 

hyperparameters. The user can assign hyperparameters 𝑙𝑠, 𝑙𝑡, 𝜎𝑛  
based on experience or choose between two hyperparameter 

optimization procedures: k-folds or spatial-LOO. Another option 

is to apply a periodic time kernel with the following 

hyperparameters: period (days), 𝑙𝑝, and 𝛼𝑝 coefficient (0..1). The 

𝛼𝑝 value by default was assigned to 0.5. Once the user defines 

the point of interest and radius, the GUI delivers the list of points 

that will be used for future spatial-temporal analysis of the point 

of interest (Figure 3).  

 

 

Figure 3. Point selection for spatial-temporal simulation (left – 

p9, right – p19). 

A case study of displacements for points p9 and p19, illustrating 

settlements and uplift in centimeters, is shown in Figure 4. 

 

 

 

Figure 4. Observed and predicted displacements (top – p9, 

bottom – p19). 

After analyzing the point, the GUI provides simulation 

diagnostics: root mean square error, mean absolute error, R2, and 

residual autocovariance function (Figure 5). If the trend removal 

plus space–time GP (including the temporal kernel) is sufficient, 

the residuals should resemble white noise; that is, the systematic 

pattern in ACF indicates the model has left some time-

dependence in the errors. 

 

 

 

Figure 5. Residual autocovariance functions (top – p9, bottom – 

p19). 

Since the data are very noisy, the residual autocovariance 

function appears different at various points (Figure 5). In this 

example, we observe two cases: ACF of p9 – indicating 

underdamped seasonal mismatch, but all residuals look like white 

noise, meaning the temporal component is well captured; ACF of 

p19 shows a slowly decaying tail, indicating long memory is not 

captured. At other points, different scenarios are also possible, 

such as a significant positive ACF at small lags or an oscillatory 

ACF with a clear period. This confirms that the data are too noisy 

to reliably retrieve the exact signal. Several examples of residual 

charts after simulation are shown in Figure 6. 

 

 

 

Figure 6. Residual autocovariance functions (top – p72, bottom 

– p83). 

The analysis of simulation diagnostics shows that there is no 

difference between simulations using a spatial-temporal kernel 

and a time-periodic kernel. The variation in accuracy metrics was 

about 0.1-0.3 cm, which is ten times less than the measurement 

accuracy. 

 

3.2 Prediction 

Using the obtained spatial-temporal models for each point, 

predictions of displacements for all eighty points were generated. 

The forecasts were made for two periods: 2024-2025 and 2024-

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-5/W3-2025 
International Conference Applied Photogrammetry and Remote Sensing for Environmental and Industry 

„APRSEI – PHEDCS 2025, Tashkent“, 23–25 September 2025, Tashkent, Uzbekistan

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-5-W3-2025-125-2025 | © Author(s) 2025. CC BY 4.0 License.

 
127



 

2026. The observed displacements and predictions for 2024-2026 

are shown for sampled points in Figure 7. 

 

 

 

 

 

Figure 7. Displacement predictions for points p9, p19, p50, and 

p72. 

Having predictions for all points, the displacement fields were 

generated for two epochs. Figure 8 shows displacement fields for 

a spatial-temporal kernel. 

 

 
 

 

 

Figure 8. Displacement fields for a spatial-temporal kernel (top 

– 2024-2025, bottom – 2024-2026). 

Figure 9 presents displacement fields for a time-periodic kernel. 

 

 

 

Figure 9. Displacement fields for a time-periodic kernel (top – 

2024-2025, bottom – 2024-2026). 

A clear understanding of the displacement distribution is 

reflected in the peaks and depressions chart (Figure 10). This map 

helps identify regions of surface sediments and uplifts. By 

comparing this map with a map showing landslide susceptibility 

regions (Figure 11), one can infer the relationship between the 

expected displacement values and the level of landslide activity. 
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Figure 10. Peaks and depressions map. 

 

 

Figure 11. Landslide activity map in Jizan province (geographic 

coordinates). 

The comparison shows mostly zero displacements in areas with 

low and moderate landslide activity. The significant 

displacements are mainly found in the southeastern part of the 

province. This area corresponds to the mountainous region (see 

Figure 1) and is characterized by medium and high activity. The 

average displacement velocity for the entire province is – 0.6 

mm/year. The average sediment velocity is -3.5 mm/year, and the 

uplift velocity is 3.1 mm/year. 

 

Conclusions 

This study shows that a displacement-only, spatial–temporal 

Gaussian-process framework based on SBAS InSAR time series 

can reliably measure slow vertical movements across Jizan 

Province from 2019 to 2024, even with high measurement noise. 

Using 80 distributed points, the spatial–temporal model provided 

stable forecasts where pointwise trajectory models struggled, and 

it captured consistent regional patterns of settlement and uplift. 

Quantitative results include vertical velocities from 

approximately −13 ± 2 mm/yr (subsidence) to +9 ± 2 mm/yr 

(uplift), with the province-wide average near −0.6 mm/yr. 

Spatially, the largest non-zero movements are found in the 

mountainous southeast—an area that also has medium–high 

landslide susceptibility—while zones with low to moderate 

susceptibility remain mostly stable. 

 

Model diagnostics show that detrending combined with a space–

time GP captures most of the temporal structure; residual ACFs 

are mostly near-white at many locations, although some sites still 

show low-frequency memory. A periodic time kernel and a fully 

spatial–temporal kernel provided nearly identical accuracy 

(differences of about 0.1–0.3 cm), which is much less than the 

measurement error, emphasizing that spatial coupling—rather 

than kernel type—drives robustness for this noisy dataset. In 

contrast, forecasts from the simple trajectory model were 

unstable and less reliable. 

 

Practically, the results provide: (i) a baseline kinematic map of 

settlement and uplift magnitudes and how they are spatially 

arranged; (ii) short- to medium-term forecasts (e.g., 2024–2026) 

that match the observed dynamics; and (iii) a peaks-and-

depressions view that helps identify areas for closer inspection or 

mitigation. These deliverables are immediately useful for 

infrastructure monitoring and risk screening in a developing 

region with limited in-situ instrumentation. 

 

Limitations mainly include reliance on noisy SBAS observations 

without external drivers, uneven point distribution, and limited 

independent ground truth. The separable space–time kernel and 

fixed 30 km neighborhood are practical but may under-model 

long-memory behavior at some sites. 

 

Future work should therefore focus on (1) integrating data from 

GNSS, hydrometeorology, groundwater extraction, 

lithology/land cover, and construction activity; (2) testing non-

separable kernels and adaptive neighborhoods; and (3) targeted 

field validation in the southeastern high-susceptibility belt. 

Together, these steps would transform the current kinematic 

baseline into a causal, decision-ready monitoring system for 

Jizan. 
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