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Abstract

This study provides a vertical displacement analysis of Jizan Province, Saudi Arabia, using InSAR-derived time-series data processed
with the Short Baseline Subset (SBAS) technique. Vertical displacements were examined through a simple trajectory model and a
spatiotemporal model based on distributed scatterer observations. The research focused solely on remote sensing displacement
measurements from 2019 to 2024. Displacement time series were analyzed for 80 spatially distributed points across areas with varying
landslide susceptibility. Since the area was not affected by earthquakes during the study period, the simple trajectory model only
indicates a general trend. Additionally, the time series was very noisy, making the standard extended trajectory model highly sensitive
to local variations. Unlike the spatial-temporal analysis, forecasting with the extended trajectory model was unstable and unreliable.
The spatial-temporal model successfully captured patterns of settlement and uplift. Estimated vertical velocities ranged from -13 + 2
mm/year for sediments to +9 + 2 mm/year for uplift, observed in regions with medium and high landslide activity. The remaining areas
are stable. Temporal trends, obtained without external variables, show that displacements are mostly consistent with slow deformation
typical of distributed scatterers in arid terrain. This displacement-only assessment provides fundamental insight into the kinematic

behavior and serves as a baseline for future data-fusion models that incorporate environmental or human factors.

1. Introduction

The analysis of vertical movements of Earth's surface remains
one of the challenging tasks in geospatial analysis. Jizan in Saudi
Arabia is a developing province within the Kingdom (Shults et
al., 2024). Therefore, geospatial monitoring of Earth's
movements is a high priority for various infrastructure and
industrial projects. The province has several continuously
operating GNSS stations managed by the General Authority for
Survey and Geospatial Information, but these are not sufficient
for detailed research. Such detailed monitoring is only possible
using remotely sensed data, which can be provided by space-
based InSAR (Moreira et al., 2013; Hooper, 2006; Hooper,
2016). Since the study area lacks artificial comer reflectors
(Ferretti et al., 2001), the only feasible InSAR data processing
method is the Short Baseline Subset (SBAS). A drawback of this
method is a significantly higher level of measurement noise. For
data processing, Sentinel-2 mission data from 2019 to 2024 was
used. A total of 80 points, evenly scattered across the study area,
were analyzed, and a time series was generated for these points.
Although InSAR data processing strategies are well-studied,
further analysis remains a significant challenge.

Over the past decades, many different methods for analyzing time
series have been developed. Just to mention the most popular
ones, including extended trajectory models (Bevis and Brown,
2014), Kalman filtering with smoothing (Shults et al., 2017),
autoregressive integrated moving average (Time Series Analysis,
2015), seasonal autoregressive integrated moving average (Time
Series Analysis, 2015), exponential smoothing state-space
(Hyndman et al., 2008), long short-term memory (Kong et al.,
2025), gradient-boosted trees (Boldini et al., 2023), and XGBoost
(Chen and Guestrin, 2016). These methods offer stable solutions
and include various hyperparameters for adjustments. Most are
based on machine learning approaches. However, a significant
limitation of these methods is that they simulate displacements
separately for each point. To address this problem, it is
recommended to use a spatial-temporal approach that combines

spatial information from neighboring stations with temporal data.
This method allows the integration of additional information,
resulting in more accurate and reliable predictions, especially
when handling noisy data.

This paper analyzes land subsidence time series in Jizan province
using a spatial-temporal approach. It is divided into four sections.
The second section explains the mathematical background of
spatial-temporal analysis. The third section presents the
simulation results and discusses several specific cases; afterward,
the simulation outcomes are used to generate prediction maps.
The final section offers conclusions.

2. Spatial-temporal Model

To understand the structure of the time series to be analyzed, the
scheme that presents the observation point distribution is
presented in Figure 1. The points are scattered unevenly, which
highlights the need for applying a spatial-temporal approach.

To create a spatial-temporal model, we used the algorithms
considered in (Wackernagel, 2003; Chilés and Delfiner, 2012).
These procedures are general and not standardized. Different
authors use their own calculation algorithms, so below we outline
our simulation strategy. The proposed spatial-temporal
simulation strategy suggests building the prediction for the
selected point (reference point) using surrounding points located
within a predefined radius R around the reference point. Based
on preliminary studies, the radius was set to 30 km. Therefore,
each point's displacement will be simulated using 4-10
surrounding points. The simulation starts with data structuring.
From the time series, the observation matrix was created.
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where yi(tj) = displacements
i =1,..,N = stations

ty, ..., ty = observation epochs
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Figure 1. The scheme of observation point distribution.

The general simulation model can be described as a
trend/residual Gaussian process/noise. A Gaussian process (GP)
is applied to the residuals. Thus, the GP posterior mean at a future
time is, by definition, the residual predictive mean.

y(@) =m(t, B) +r(t) + n(o), @)

m(t, B) = deterministic trend
r(t) = latent residual process
n(t) = measurement noise

where

The initial step of analysis is trend estimation. For the
displacements of the chosen reference point, a linear trend model
was used:

m(t) = Bo + B1(t — t1), 3)

where  fy. 1 = trend coefficients

The possible seasonality in displacements was estimated in the
covariance below. The trend is removed from all columns. As a
result of the detrending, we obtain column-centered residuals
(each station’s mean removed) Y,.s which are used by the
stochastic model on the next simulation step. At this step, the
spatial-temporal model of a Gaussian process with a Kronecker
structure was constructed. A residual field r;(t) was simulated as
a zero-mean Gaussian with separable covariance:

cov[ri(t),rj(s)] = K, (t,5)K;(i,j) + o21{t = s,i = j}, 4)

2
where K (i,j) = oZexp (— @) = spatial kernel
(t=s)?
K.(t,s) = ofexp (— 2153 ) +

P
agexp (_ 2sin (7§|2t s|/P)
P
P =365.25 days
0, = measurement noise
o, = spatial standard deviation (amplitude)
o, = smooth (aperiodic) temporal standard deviation

) = temporal kernel

0, = periodic (seasonal) temporal standard deviation
ls, 1,1, = length scales, that show how quickly
correlation decays in space/time

Stacking times and points as T X N, the full covariance of
vec(Yyes) will be

K=K ® K; +02lpy, (5)
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Figure 2. Spatial-temporal simulation flowchart.

The primary goal is to estimate hyperparameters 6 =
{as, ls, 04,11, 0, lp,on} by minimizing the Gaussian process
negative log marginal likelihood (NLL) in log-space. Using
Kronecker eigendecompositions, K, = U.diag(d,)UF, K, =
Usdiag(dg)UT with their eigenvalues for time and space kernel,
the NLL and its quadratic term decompose into element-wise
operations over eigenpairs, yielding fast and numerically stable
optimization. Once we have the estimated hyperparameters, it is
possible to predict future displacements using a spatial-temporal
Gaussian process model (STGP). Let us suppose we want to
predict the displacements of the point x, for epochs tf, ..., th,
then the STGP gives the residual predictive mean 7, (t) and
variance. The final displacement forecasting model will be

P =m(!h) + 7@,  (6)
where  h = prediction horizon

m(th) = trend prediction

7,(t}) = Gaussian process prediction

The forecasting process can be shown as a flowchart (Figure 2),
which helps make it easier to understand. The described
procedure is computationally stable and can be integrated into
modern machine learning algorithms.
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3. Spatial-temporal Analysis
3.1 Displacement Simulation

The spatial-temporal analysis can be split into two parts. The first
is the model training, and the second is the prediction. To
facilitate the model training process, the graphical user interface
(GUI) in the MATLAB environment was developed. In this GUI,
the user is enabled to upload observation time series and point
coordinates. There are two options to tweak the model
hyperparameters. The user can assign hyperparameters I, l;, o,
based on experience or choose between two hyperparameter
optimization procedures: k-folds or spatial-LOO. Another option
is to apply a periodic time kernel with the following
hyperparameters: period (days), l,,, and a,, coefficient (0..1). The
@, value by default was assigned to 0.5. Once the user defines
the point of interest and radius, the GUI delivers the list of points
that will be used for future spatial-temporal analysis of the point
of interest (Figure 3).
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Figure 3. Point selection for spatial-temporal simulation (left —
p9, right — p19).

A case study of displacements for points p9 and p19, illustrating
settlements and uplift in centimeters, is shown in Figure 4.

6.
| Observed
4+ J t | — — — Predicted (fullST)
il | | f
2t 3‘ A | |
ol |
NN Y
g Of i i P A T
g | ‘M‘,‘ I V-‘l [0 I /! Gw‘f‘ Il )
2+ L \ 1 | | I
3 /\“i‘ | \“'\;\ |\I w“iu i I‘ﬂ iy Y
2 4 f FAE VAL A A A
3 ol YIar YR AV A
& T R . TR R TR TR A
6+ \ \‘; N“ \ bW it ‘,'\\"“.‘ Al
\ ! MY n
8 ! \‘\' | \“‘ L'\“‘: “V.‘I‘
| il |
-10f w I

12
Jul 2019Jan 2020Jul 2020Jan 202Uul 2024an 2022)ul 2022Jan 2023)ul 2023Jan 2024
_.Date .. . __.___

8-

6

4

Displacement
o

-6 [ Observed
| — — — Predicted (fullST)
i n T

8 | . . L |
Jul 2019Jan 202QJul 2020Jan 2021Jul 2021Jan 2022Jul 2022Jan 2023Jul 2023Jan 2024
Date

Figure 4. Observed and predicted displacements (top — p9,
bottom — p19).

After analyzing the point, the GUI provides simulation
diagnostics: root mean square error, mean absolute error, R%, and
residual autocovariance function (Figure 5). If the trend removal
plus space—time GP (including the temporal kernel) is sufficient,
the residuals should resemble white noise; that is, the systematic
pattern in ACF indicates the model has left some time-
dependence in the errors.
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Figure 5. Residual autocovariance functions (top — p9, bottom —
p19).

Since the data are very noisy, the residual autocovariance
function appears different at various points (Figure 5). In this
example, we observe two cases: ACF of p9 — indicating
underdamped seasonal mismatch, but all residuals look like white
noise, meaning the temporal component is well captured; ACF of
p19 shows a slowly decaying tail, indicating long memory is not
captured. At other points, different scenarios are also possible,
such as a significant positive ACF at small lags or an oscillatory
ACF with a clear period. This confirms that the data are too noisy
to reliably retrieve the exact signal. Several examples of residual
charts after simulation are shown in Figure 6.
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Figure 6. Residual autocovariance functions (top — p72, bottom
—p83).

The analysis of simulation diagnostics shows that there is no
difference between simulations using a spatial-temporal kernel
and a time-periodic kernel. The variation in accuracy metrics was
about 0.1-0.3 cm, which is ten times less than the measurement
accuracy.

3.2 Prediction
Using the obtained spatial-temporal models for each point,

predictions of displacements for all eighty points were generated.
The forecasts were made for two periods: 2024-2025 and 2024-
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2026. The observed displacements and predictions for 2024-2026
are shown for sampled points in Figure 7.
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Figure 7. Displacement predictions for points p9, p19, p50, and
p72.
Having predictions for all points, the displacement fields were

generated for two epochs. Figure 8 shows displacement fields for
a spatial-temporal kernel.
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Figure 8. Displacement fields for a spatial-temporal kernel (top
—2024-2025, bottom — 2024-2026).

Figure 9 presents displacement fields for a time-periodic kernel.
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Figure 9. Displacement fields for a time-periodic kernel (top —
2024-2025, bottom — 2024-2026).

A clear understanding of the displacement distribution is
reflected in the peaks and depressions chart (Figure 10). This map
helps identify regions of surface sediments and uplifts. By
comparing this map with a map showing landslide susceptibility
regions (Figure 11), one can infer the relationship between the
expected displacement values and the level of landslide activity.
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Figure 10. Peaks and depressions map.
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Figure 11. Landslide activity map in Jizan province (geographic
coordinates).

The comparison shows mostly zero displacements in areas with
low and moderate landslide activity. The significant
displacements are mainly found in the southeastern part of the
province. This area corresponds to the mountainous region (see
Figure 1) and is characterized by medium and high activity. The
average displacement velocity for the entire province is — 0.6
mm/year. The average sediment velocity is -3.5 mm/year, and the
uplift velocity is 3.1 mm/year.

Conclusions

This study shows that a displacement-only, spatial-temporal
Gaussian-process framework based on SBAS InSAR time series
can reliably measure slow vertical movements across Jizan
Province from 2019 to 2024, even with high measurement noise.
Using 80 distributed points, the spatial-temporal model provided
stable forecasts where pointwise trajectory models struggled, and
it captured consistent regional patterns of settlement and uplift.
Quantitative  results include vertical velocities from
approximately —13 £ 2 mm/yr (subsidence) to +9 £ 2 mm/yr
(uplift), with the province-wide average near —0.6 mm/yr.
Spatially, the largest non-zero movements are found in the
mountainous southeast—an area that also has medium-high
landslide susceptibility—while zones with low to moderate
susceptibility remain mostly stable.

Model diagnostics show that detrending combined with a space—
time GP captures most of the temporal structure; residual ACFs
are mostly near-white at many locations, although some sites still
show low-frequency memory. A periodic time kernel and a fully
spatial-temporal kernel provided nearly identical accuracy
(differences of about 0.1-0.3 cm), which is much less than the
measurement error, emphasizing that spatial coupling—rather
than kernel type—drives robustness for this noisy dataset. In
contrast, forecasts from the simple trajectory model were
unstable and less reliable.

Practically, the results provide: (i) a baseline kinematic map of
settlement and uplift magnitudes and how they are spatially
arranged; (ii) short- to medium-term forecasts (e.g., 2024-2026)
that match the observed dynamics; and (iii)) a peaks-and-
depressions view that helps identify areas for closer inspection or
mitigation. These deliverables are immediately useful for
infrastructure monitoring and risk screening in a developing
region with limited in-situ instrumentation.

Limitations mainly include reliance on noisy SBAS observations
without external drivers, uneven point distribution, and limited
independent ground truth. The separable space—time kernel and
fixed 30 km neighborhood are practical but may under-model
long-memory behavior at some sites.

Future work should therefore focus on (1) integrating data from
GNSS, hydrometeorology, groundwater extraction,
lithology/land cover, and construction activity; (2) testing non-
separable kernels and adaptive neighborhoods; and (3) targeted
field validation in the southeastern high-susceptibility belt.
Together, these steps would transform the current kinematic
baseline into a causal, decision-ready monitoring system for
Jizan.
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