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Abstract 

 

Unmanned Aerial Vehicles (UAVs) are being increasingly utilized across different fields because of their ability to deliver quick, cost-

effective, and precise spatial information. Innovations in photogrammetry and computer vision techniques, especially Structure from 

Motion (SfM) and Multi-View Stereo (MVS), have improved the generation of orthoimages, digital surface models, and dense point 

clouds, rendering UAVs highly efficient for documentation and three-dimensional reconstruction. In studies focused on cultural 

heritage, UAV-based photogrammetry has emerged as a crucial resource for accurately preserving and representing historical sites 

with great detail and resolution. In this context, the current study analyzes UAV-acquired point cloud data from the Temple of Hera in 

Italy and performs a comparative assessment of three machine learning algorithms, Support Vector Machines (SVM), Random Forest 

(RF), and Extreme Gradient Boosting (XGBoost), for the purpose of semantic segmentation tasks. According to our results, the 

XGBoost and Random Forests (RF) methods has reached to more than 90% F1 score for all classes, and the SVM method has reached 

90% F1 score only for three classes.  

 

1. Introduction 

An unmanned aerial vehicles is an aircraft that operates without 

a pilot. It is known in the geomatics community as a Remotely 

Piloted Vehicle (RPV) or Unmanned Vehicle System (UVS), 

among other terms (Remondino et al., 2012). UAVs are currently 

employed across a diverse range of disciplines, including 

archaeology (Fiz et al., 2022), civil engineering (Guan et al., 

2022), computer vision (Biyik et al., 2023), and geomatics 

engineering (Atik and Arkali, 2025). The adoption of UAVs for 

photogrammetric mapping and surveying has experienced 

significant growth, thanks to advancements in technology and 

algorithms. These enhancements have improved the quality of 

deliverables such as orthoimages and digital surface models 

(DSM), which are now widely utilized across various fields for 

accurate and efficient results. UAV applications can be 

categorized into several areas, including forestry and agriculture, 

archaeology and 3D reconstruction, environmental surveying, 

traffic monitoring, and cultural heritage (CH) (Uysal et al., 2015). 

CH constitutes a vital means of connecting historical contexts 

with future generations. The imperative to document and 

preserve cultural heritage is increasingly recognized as essential. 

Photogrammetry collects 3D information and textures of cultural 

heritage objects using overlapping images, determined by known 

camera positions and orientations (Yastikli, 2007). UAV-based 

photogrammetry offers a more efficient and effective approach 

to mapping and modeling cultural heritage sites than traditional 

terrestrial methods. UAV-based photogrammetry generates high-

resolution models of large areas, utilizing low-cost sensors and 

providing high temporal resolution (Atik et al., 2025). UAV 

photogrammetry has advanced significantly due to the 

development of Structure from Motion (SfM) and Multi-View 

Stereo (MVS) algorithms. These technologies facilitate the 

generation of dense point clouds, which accurately and 

comprehensively represent three-dimensional objects and 

structures in a detailed manner. There is an increasing trend in 

UAV photogrammetry, which is progressively utilized for 

documenting, representing, and performing 3D reconstructions 

of locations and structures related to CH (Azzola et al., 2019; 

Frodella et al., 2020). 

 

Point cloud classification for complex data requires complex 

discriminative rules. Machine learning is a powerful statistical 

tool that can be used to classify complex point clouds (Atik et al., 

2021). Machine learning methods have recently been frequently 

used for the semantic annotation of cultural heritage models and 

the automated integration of HBIM environments (Croce et al., 

2021). Attractive tools are offered for classifying cultural 

heritage point clouds and organizing semantic information. By 

exploiting the geometric features of the point cloud, machine 

learning methods can effectively interpret cultural heritage point 

cloud data and integrate it into HBIM processes. 

 

This research study utilizes point cloud data obtained from 

previous investigations conducted by Pepe et al. (2022). A 

dataset has been gathered utilizing UAV for the 3D 

reconstruction of the Temple of Hera in Italy, employing a 

photogrammetric methodology. This study employs the Support 

Vector Machine (SVM), Random Forest (RF), and Extreme 

Gradient Boosting (XGBoost) algorithms for the classification of 

cultural heritage point clouds.  

 

2. Material and Methods 

2.1 Dataset 

The dataset consists of 57 UAV images of archaeological 

remains located at Metaponto, Italy, captured on 01 February 

2020. These images were processed using Structure from Motion 

and Multi-View Stereo (MVS) algorithms to create a 

georeferenced and scaled 3D point cloud. To ensure spatial 

accuracy, eight ground control points measured through GNSS 

survey were utilized. For classification, the point cloud was 

divided into training, validation, and test subsets. The training 

and validation subsets were manually labeled, while the test 

subset was reserved for algorithmic classification. Five semantic 

classes were established: architrave (0), capital (1), column (2), 

stylobate (3), and stereobate (4). This dataset facilitates the 

analysis and classification of cultural heritage structures in 3D, 

serving as a valuable resource for testing reconstruction 

algorithms, point cloud processing, and applications in virtual or 

augmented reality. 
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Figure 1. Study area and RGB view of heritages (Pepe et al., 

2022) 

 

2.2 Support Vector Machines (SVM) 

Support Vector Machine (SVM) is a supervised machine learning 

algorithm that is effective for both classification and regression 

tasks (Cortes and Vapnik, 1995). The optimal hyperplane is 

identified through the application of equation (3) for a specified 

set of samples represented as 𝑥𝑖(𝑖 = 1,2, … , 𝑁) 

 

𝑓(𝑥) = 𝑤𝑇𝑥 + 𝑏 = ∑ 𝑤𝑗𝑥𝑗

𝑁

𝑗=1
+ 𝑏 = 0 (1) 

 

In this context, 𝑤 represents an N-dimensional vector and 𝑏 

signifies a scalar value. Together, these elements are employed 

to define the hyperplane.  

 

2.3 Random Forest (RF) 

Random Forest (RF) is an advanced bagging technique that 

generates a substantial number of independent trees and averages 

their outputs (Breiman, 2001). Each tree provides a class 

prediction, and the model selects the class that receives the most 

votes. For every tree, a training dataset is created using multiple 

bootstrap samples drawn from the original dataset. The RF 

classifier requires two key parameters: the number of variables to 

consider per node and the total number of trees for optimal 

splitting. Boot samples are taken from two-thirds of the training 

data, while the remaining one-third, known as out-of-bag (OOB) 

data, is used to assess errors, resulting in what is termed the 

generalized error. The error that arises is designated as the 

generalized error (Eq.2). 

 
𝑃𝐸∗ = 𝑃𝑋,𝑌(𝑚𝑔(𝑋, 𝑌) < 0) (2) 

 

where 𝑚𝑔() denotes the margin function. The margin quantifies 

the extent to which the average number of votes in (X, Y) for the 

correct class surpasses the average vote for any alternative class. 

A larger margin indicates a higher reliability in performing the 

classification. 

 

2.4 Extreme Gradient Boosting (XGBoost) 

An efficient and scalable algorithm, based on gradient boosting 

trees and known as XGBoost, has been developed as an effective 

approach for addressing both classification and regression 

problems (Chen and Guestrin, 2016). Given 𝑛 samples and 𝑚 

features, the dataset 𝐷 = {(𝑥𝑖 , 𝑦𝑖)} is modeled using an ensemble 

of trees that utilizes 𝐾 additive functions. 

 

ŷ𝑖 = Ø(𝑥𝑖) = ∑ 𝑓𝑘(𝑥𝑖),

𝐾

𝑘=1

   𝑓𝑘 ∈ 𝜑, (3) 

 

𝜑 = {𝑓(𝑥) = 𝜔𝑞(𝑥)}(𝑞: 𝑅𝑚 → 𝑇, 𝜔 ∈ 𝑅𝑇 , (4) 

 

In this context, 𝑦
^

𝑖  is the model's prediction from [Eq. (1)], 𝑥𝑖 is 

an observation, and 𝑓𝑘(𝑥𝑖) is its predicted score. 𝜑 refers to the 

set of regression trees in [Eq. (2)] with an independent structure 

𝑞. 𝑇is the number of leaves in the tree, and 𝜔𝑞  represents their 

weights. 

 

2.5 Evaluation Metrics 

The values of metrics derived from machine learning are 

computed using a confusion matrix. The formulas for these 

metrics are presented in Equations (5)–(7). 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(5) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(6) 

 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 . 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙
(7) 

 

True positive (TP) refers to the count of points that share the same 

label in both the predicted results and the ground truth. False 

positive (FP) indicates the number of points that are predicted as 

positive, yet have a negative actual label. Conversely, false 

negative (FN) denotes the number of points that are predicted as 

negative while their true label is positive (Alpaydin, 2020). 

 

3. Results and Discussion 

The test area is at the Metaponto archaeological site in Italy and 

features the ruins of a 6th-century BC Doric temple dedicated to 

the Greek goddess Hera. Using three different ML techniques, 

the point cloud was classified into five distinct classes: lintel, 

capita, column, stylobate, and stereobate. Classification was 

applied according to ten parameters that describe the point cloud, 

and the point cloud was processed on the Cloud Compare 

software. The results of the point cloud classification, obtained 

using the XGBoost, RF, and SVM methods, are presented in 

Figures 2 – 4. 

 

The classification process was implemented in Python using the 

Scikit-learn library. To compare these methods, all results were 

cross-checked using statistical parameters, including precision, 

recall and F1-score. According to the results obtained with the 

XGBoost method, classification can be achieved with high 

accuracy. Almost all of the architrave and column classes were 

correctly predicted. The stylobate class, however, performed less 

well than the other classes, with an F1-score of 0.93. The 

classification results and confusion matrix are presented in Table 

1 and Table 2, respectively. 
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Class Precision Recall F1-score Support 

0 0.99 1 0.99 17453 

1 1 0.91 0.95 3015 

2 0.98 1 0.99 16464 

3 1 0.86 0.92 7581 

4 0.95 1 0.98 17001 

Table 1. XGBoost Methods results. 

 

Class 0 1 2 3 4 

0 17448 5 0 0 0 

1 224 2751 40 0 0 

2 0 0 16464 0 0 

3 0 0 272 6498 811 

4 0 0 0 0 17001 

Table 2. Confusion Matrix of XGBoost Method. 

 

The RF algorithm also has a similar performance to XGBoost. 

The stylobate class has the lowest prediction metrics, while the 

architrave and column classes have the highest. Some points 

belonging to the stylobate class are labeled as columns. The 

classification results and confusion matrix are presented in Table 

3 and Table 4, respectively.  

 

Class Precision Recall F1-score Support 

0 0.99 1 0.99 17453 

1 1 0.93 0.96 3015 

2 0.98 1 0.99 16464 

3 1 0.85 0.92 7581 

4 0.95 1 0.98 17001 

Table 3. Random Forest Method results. 

 

Class 0 1 2 3 4 

0 17443 10 0 0 0 

1 182 2799 34 0 0 

2 0 0 16464 0 0 

3 0 0 289 6468 824 

4 0 0 0 0 17001 

Table 4. Confusion Matrix of Random Forest Method 

 

The SVM algorithm lags behind the RF and XBoost algorithms 

in performance. While the column class achieved high prediction 

metrics, the capital and stylobate classes achieved lower metrics 

with F1-scores of 0.69 and 0.74, respectively. While the capital 

class was mixed with the architrave and column classes, some 

points from the stylobate class were assigned to the stereobate 

class. The classification results and confusion matrix are 

presented in Table 5 and Table 6, respectively. 

 

 

 

 

Class Precision Recall F1-score Support 

0 0.99 0.89 0.94 17453 

1 0.59 0.84 0.69 3015 

2 0.96 0.96 0.96 16464 

3 0.68 0.82 0.74 7581 

4 0.93 0.87 0.9 17001 

Table 5. SVM Method results. 

 

Class 0 1 2 3 4 

0 15620 1758 75 0 0 

1 201 2540 274 0 0 

2 0 16 15762 685 1 

3 0 0 248 6203 1130 

4 0 0 13 2198 14790 

Table 6. Confusion Matrix of SVM Method. 

 

According to the results, RF and XGBoost have better 

performance than SVM thanks to their structure containing 

decision trees. RF and XGBoost better handle complex, noisy 

and large data in point clouds due to the flexible structure of 

decision trees. SVM has difficulties with imbalanced and noisy 

datasets. The confusion between geometrically similar structures 

is an expected result. This is because each point is defined by 

local geometric features, making it difficult to distinguish similar 

geometric structures. In this study, confusion occurred in the 

SVM algorithm, particularly between column, stylobate, and 

stereobate. 

4. Conclusions 

This study investigated the classification of cultural point 

findings using three different ML methods (RF, SVM, and 

XGBoost). The dataset used was generated photogrammetrically 

from UAV images. The results indicate that bagging and boosting 

algorithms are successful in classification. 

Classified point clouds automatically identify the geometries of 

cultural heritage, providing advantages in the use of these 

geometries in H-BIM type information systems. Furthermore, 

given that machine learning may be inadequate for large and 

complex datasets, future studies are planned to focus on deep 

learning methods. Furthermore, the use of explainable AI 

methods will be beneficial in understanding the black-box nature 

of ML algorithms. 
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Figure 2. Classification of point cloud with XGBoost. 

 

 

 

Figure 3.  Classification of point cloud with RF. 
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Figure 4. Classification of point cloud with SVM. 
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