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Abstract

Unmanned Aerial Vehicles (UAVs) are being increasingly utilized across different fields because of their ability to deliver quick, cost-
effective, and precise spatial information. Innovations in photogrammetry and computer vision techniques, especially Structure from
Motion (SfM) and Multi-View Stereo (MVS), have improved the generation of orthoimages, digital surface models, and dense point
clouds, rendering UAVs highly efficient for documentation and three-dimensional reconstruction. In studies focused on cultural
heritage, UAV-based photogrammetry has emerged as a crucial resource for accurately preserving and representing historical sites
with great detail and resolution. In this context, the current study analyzes UAV-acquired point cloud data from the Temple of Hera in
Italy and performs a comparative assessment of three machine learning algorithms, Support Vector Machines (SVM), Random Forest
(RF), and Extreme Gradient Boosting (XGBoost), for the purpose of semantic segmentation tasks. According to our results, the
XGBoost and Random Forests (RF) methods has reached to more than 90% F1 score for all classes, and the SVM method has reached

90% F1 score only for three classes.
1. Introduction

An unmanned aerial vehicles is an aircraft that operates without
a pilot. It is known in the geomatics community as a Remotely
Piloted Vehicle (RPV) or Unmanned Vehicle System (UVS),
among other terms (Remondino et al., 2012). UAVs are currently
employed across a diverse range of disciplines, including
archaeology (Fiz et al., 2022), civil engineering (Guan et al.,
2022), computer vision (Biyik et al., 2023), and geomatics
engineering (Atik and Arkali, 2025). The adoption of UAVs for
photogrammetric mapping and surveying has experienced
significant growth, thanks to advancements in technology and
algorithms. These enhancements have improved the quality of
deliverables such as orthoimages and digital surface models
(DSM), which are now widely utilized across various fields for
accurate and efficient results. UAV applications can be
categorized into several areas, including forestry and agriculture,
archaeology and 3D reconstruction, environmental surveying,
traffic monitoring, and cultural heritage (CH) (Uysal et al., 2015).
CH constitutes a vital means of connecting historical contexts
with future generations. The imperative to document and
preserve cultural heritage is increasingly recognized as essential.
Photogrammetry collects 3D information and textures of cultural
heritage objects using overlapping images, determined by known
camera positions and orientations (Yastikli, 2007). UAV-based
photogrammetry offers a more efficient and effective approach
to mapping and modeling cultural heritage sites than traditional
terrestrial methods. UAV-based photogrammetry generates high-
resolution models of large areas, utilizing low-cost sensors and
providing high temporal resolution (Atik et al., 2025). UAV
photogrammetry has advanced significantly due to the
development of Structure from Motion (SfM) and Multi-View
Stereo (MVS) algorithms. These technologies facilitate the
generation of dense point clouds, which accurately and
comprehensively represent three-dimensional objects and
structures in a detailed manner. There is an increasing trend in
UAV photogrammetry, which is progressively utilized for
documenting, representing, and performing 3D reconstructions
of locations and structures related to CH (Azzola et al., 2019;
Frodella et al., 2020).

Point cloud classification for complex data requires complex
discriminative rules. Machine learning is a powerful statistical
tool that can be used to classify complex point clouds (Atik et al.,
2021). Machine learning methods have recently been frequently
used for the semantic annotation of cultural heritage models and
the automated integration of HBIM environments (Croce et al.,
2021). Attractive tools are offered for classifying cultural
heritage point clouds and organizing semantic information. By
exploiting the geometric features of the point cloud, machine
learning methods can effectively interpret cultural heritage point
cloud data and integrate it into HBIM processes.

This research study utilizes point cloud data obtained from
previous investigations conducted by Pepe et al. (2022). A
dataset has been gathered utilizing UAV for the 3D
reconstruction of the Temple of Hera in Italy, employing a
photogrammetric methodology. This study employs the Support
Vector Machine (SVM), Random Forest (RF), and Extreme
Gradient Boosting (XGBoost) algorithms for the classification of
cultural heritage point clouds.

2. Material and Methods
2.1 Dataset

The dataset consists of 57 UAV images of archaeological
remains located at Metaponto, Italy, captured on 01 February
2020. These images were processed using Structure from Motion
and Multi-View Stereo (MVS) algorithms to create a
georeferenced and scaled 3D point cloud. To ensure spatial
accuracy, eight ground control points measured through GNSS
survey were utilized. For classification, the point cloud was
divided into training, validation, and test subsets. The training
and validation subsets were manually labeled, while the test
subset was reserved for algorithmic classification. Five semantic
classes were established: architrave (0), capital (1), column (2),
stylobate (3), and stereobate (4). This dataset facilitates the
analysis and classification of cultural heritage structures in 3D,
serving as a valuable resource for testing reconstruction
algorithms, point cloud processing, and applications in virtual or
augmented reality.
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Figure 1. Study area and RGB view of heritages (Pepe et al.,
2022)

2.2 Support Vector Machines (SVM)

Support Vector Machine (SVM) is a supervised machine learning
algorithm that is effective for both classification and regression
tasks (Cortes and Vapnik, 1995). The optimal hyperplane is
identified through the application of equation (3) for a specified
set of samples represented as x; (i = 1,2, ..., N)

f(x)=WTx+b=zN wixj +b =0 (€Y

j=1

In this context, w represents an N-dimensional vector and b
signifies a scalar value. Together, these elements are employed
to define the hyperplane.

2.3 Random Forest (RF)

Random Forest (RF) is an advanced bagging technique that
generates a substantial number of independent trees and averages
their outputs (Breiman, 2001). Each tree provides a class
prediction, and the model selects the class that receives the most
votes. For every tree, a training dataset is created using multiple
bootstrap samples drawn from the original dataset. The RF
classifier requires two key parameters: the number of variables to
consider per node and the total number of trees for optimal
splitting. Boot samples are taken from two-thirds of the training
data, while the remaining one-third, known as out-of-bag (OOB)
data, is used to assess errors, resulting in what is termed the
generalized error. The error that arises is designated as the
generalized error (Eq.2).

PE* = Pyy(mg(X,Y) < 0) 2

where mg() denotes the margin function. The margin quantifies
the extent to which the average number of votes in (X, Y) for the
correct class surpasses the average vote for any alternative class.
A larger margin indicates a higher reliability in performing the
classification.

2.4 Extreme Gradient Boosting (XGBoost)

An efficient and scalable algorithm, based on gradient boosting
trees and known as XGBoost, has been developed as an effective
approach for addressing both classification and regression
problems (Chen and Guestrin, 2016). Given n samples and m
features, the dataset D = {(x;, y;)} is modeled using an ensemble
of trees that utilizes K additive functions.

K

§i=0(x) = ka(xi)' fx €9, 3)
k=1

¢ ={f(x) = wg}q:R™ > T,w €RT, (€))

In this context, y; is the model's prediction from [Eq. (1)], x; is
an observation, and f (x;) is its predicted score. ¢ refers to the
set of regression trees in [Eq. (2)] with an independent structure
q. Tis the number of leaves in the tree, and w, represents their
weights.

2.5 Evaluation Metrics

The values of metrics derived from machine learning are
computed using a confusion matrix. The formulas for these
metrics are presented in Equations (5)—(7).

Precision = TP )
recision = TP + FP

Recall = — & 6)
CCAt = TP Y FN

F1 =2 Precision . Recall )
score = Precision + Recall

True positive (TP) refers to the count of points that share the same
label in both the predicted results and the ground truth. False
positive (FP) indicates the number of points that are predicted as
positive, yet have a negative actual label. Conversely, false
negative (FN) denotes the number of points that are predicted as
negative while their true label is positive (Alpaydin, 2020).

3. Results and Discussion

The test area is at the Metaponto archaeological site in Italy and
features the ruins of a 6th-century BC Doric temple dedicated to
the Greek goddess Hera. Using three different ML techniques,
the point cloud was classified into five distinct classes: lintel,
capita, column, stylobate, and stereobate. Classification was
applied according to ten parameters that describe the point cloud,
and the point cloud was processed on the Cloud Compare
software. The results of the point cloud classification, obtained
using the XGBoost, RF, and SVM methods, are presented in
Figures 2 — 4.

The classification process was implemented in Python using the
Scikit-learn library. To compare these methods, all results were
cross-checked using statistical parameters, including precision,
recall and F1-score. According to the results obtained with the
XGBoost method, classification can be achieved with high
accuracy. Almost all of the architrave and column classes were
correctly predicted. The stylobate class, however, performed less
well than the other classes, with an Fl-score of 0.93. The
classification results and confusion matrix are presented in Table
1 and Table 2, respectively.
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Class | Precision | Recall | Fl-score | Support
0 0.99 1 0.99 17453
1 1 0.91 0.95 3015
2 0.98 1 0.99 16464
3 1 0.86 0.92 7581
4 0.95 1 0.98 17001

Table 1. XGBoost Methods results.

Class 0 1 2 3 4
0 17448 5 0 0 0
1 224 | 2751 40 0 0
2 0 0 16464 0 0
3 0 0 272 | 6498 | 8l1
4 0 0 0 0 17001

Table 2. Confusion Matrix of XGBoost Method.

The RF algorithm also has a similar performance to XGBoost.
The stylobate class has the lowest prediction metrics, while the
architrave and column classes have the highest. Some points
belonging to the stylobate class are labeled as columns. The
classification results and confusion matrix are presented in Table
3 and Table 4, respectively.

Class | Precision | Recall | Fl-score | gupport
0 0.99 1 0.99 17453
1 1 0.93 0.96 3015
2 0.98 1 0.99 16464
3 1 0.85 0.92 7581
4 0.95 1 0.98 17001

Table 3. Random Forest Method results.

Class 0 1 2 3 4
0 17443 10 0 0 0
1 182 | 2799 34 0 0
2 0 0 16464 0 0
3 0 0 289 | 6468 | 824
4 0 0 0 0 17001

Table 4. Confusion Matrix of Random Forest Method

The SVM algorithm lags behind the RF and XBoost algorithms
in performance. While the column class achieved high prediction
metrics, the capital and stylobate classes achieved lower metrics
with Fl-scores of 0.69 and 0.74, respectively. While the capital
class was mixed with the architrave and column classes, some
points from the stylobate class were assigned to the stereobate
class. The classification results and confusion matrix are
presented in Table 5 and Table 6, respectively.

Class | Precision | Recall | Fl-score | Support
0 0.99 0.89 0.94 17453
1 0.59 0.84 0.69 3015
2 0.96 0.96 0.96 16464
3 0.68 0.82 0.74 7581
4 0.93 0.87 0.9 17001

Table 5. SVM Method results.

Class 0 1 2 3 4
0 15620 | 1758 75 0 0
1 201 | 2540 | 274 0 0
2 0 16 | 15762 | 685 1
3 0 0 248 | 6203 | 1130
4 0 0 13 2198 | 14790

Table 6. Confusion Matrix of SVM Method.

According to the results, RF and XGBoost have better
performance than SVM thanks to their structure containing
decision trees. RF and XGBoost better handle complex, noisy
and large data in point clouds due to the flexible structure of
decision trees. SVM has difficulties with imbalanced and noisy
datasets. The confusion between geometrically similar structures
is an expected result. This is because each point is defined by
local geometric features, making it difficult to distinguish similar
geometric structures. In this study, confusion occurred in the
SVM algorithm, particularly between column, stylobate, and
stereobate.
4. Conclusions

This study investigated the classification of cultural point
findings using three different ML methods (RF, SVM, and
XGBoost). The dataset used was generated photogrammetrically
from UAV images. The results indicate that bagging and boosting
algorithms are successful in classification.

Classified point clouds automatically identify the geometries of
cultural heritage, providing advantages in the use of these
geometries in H-BIM type information systems. Furthermore,
given that machine learning may be inadequate for large and
complex datasets, future studies are planned to focus on deep
learning methods. Furthermore, the use of explainable Al
methods will be beneficial in understanding the black-box nature
of ML algorithms.
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Figure 2. Classification of point cloud with XGBoost.
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Figure 3. Classification of point cloud with RF.
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Figure 4. Classification of point cloud with SVM.
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