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Abstract 

 

The increasing frequency of hydrometeorological extremes, such as torrential rainfall, strong winds, and hailstorms, often causes 

widespread mechanical damage to crops. This study evaluates the potential of cost-effective unmanned aerial vehicle (UAV) 

photogrammetry with a standard RGB camera for quantifying crop damage. A maize field with mechanical damage caused by wild 

boar activity was used as an analogue for storm-induced damage. Two approaches were applied: (i) a 3D structural method based on 

Canopy Surface Models (CSMs) derived from Structure-from-Motion (SfM) photogrammetry, and (ii) automated image classification 

using a Support Vector Machine (SVM) combined with Object-Based Image Analysis (OBIA). The accuracy of the damage assessment 

was compared using two terrain inputs: a UAV-derived DEM (UAV DEM) and the official Czech national LiDAR-based DEM 

(DEM 5G). The results showed high consistency between both methods and datasets. The relative crop damage rate was 29.25% with 

the UAV DEM and 26.76% with the DEM 5G, with a spatial agreement exceeding 95%. Jaccard similarity coefficients confirmed 

strong concordance (0.8953 and 0.9207). The findings highlight the applicability of UAV-based 3D structural analysis for late-stage 

crop monitoring, when spectral indices lose reliability. They also emphasise that the official DEM 5G can serve as a suitable substitute 

for a UAV-derived DEM in damage assessment. The methodology thus represents a rapid, cost-effective, and operationally feasible 

solution for agricultural monitoring, insurance claims, and environmental management. 

 

 

1. Introduction 

Ongoing climate change is increasing the occurrence of 

hydrometeorological extremes (Trnka et al., 2009), such as 

torrential rainfall, drought, or rising average annual temperatures 

(ČHMÚ, 2025). These changes, combined with shifts in crop 

rotation and the intensification of agriculture, increase the 

vulnerability of crops and soil to both mechanical and ecological 

damage (Dobosz et al., 2023). Agricultural land is an 

irreplaceable natural resource, and its protection is crucial for 

food production and the sustainable functioning of landscape 

ecosystems. Accurate and up-to-date information about the 

condition of the soil and crops is essential for farmers to optimize 

protective measures, reduce yield losses, and, if necessary, apply 

for damage compensation from insurance companies or other 

institutions (Dobosz et al., 2023; Drimaj et al., 2023). 

 

Modern technologies – especially unmanned aerial vehicles 

(UAVs) and digital photogrammetry – offer a fast, objective, and 

highly accurate alternative to classical methods of damage 

mapping. Their usage allows for recording the current state of an 

area at a very high resolution, creating detailed 3D surface 

models, and subsequently delineating damaged areas of the crop. 

This is a versatile tool with a wide range of applications in 

agriculture and environmental monitoring, including the 

assessment of vegetation status, biomass, and crop phenotyping, 

as seen in studies such as (Aszkowski et al., 2024; Belton et al., 

2019; Bendig et al., 2013; Montzka et al., 2023; Yue et al., 2019). 

Mechanical crop damage can be quantified from UAV data by 

analysing changes in crop and surface structure. In current 

literature, the analysis of these changes has been performed in 

three main directions: (i) 3D structural methods, (ii) machine and 

deep learning, and (iii) texture analysis with object-based image 

analysis (OBIA). For instance, Rutten et al. (2018) uses OBIA 

analysis in their work to assess damaged maize. 

 

The most widely used method for 3D structural reconstruction is 

the photogrammetric technique Structure from Motion (SfM). 

This technique is used to create a Digital Surface Model (DSM) 

or a Canopy Surface Model/Canopy Height Model (CSM/CHM) 

by subtracting the terrain model (DTM/DEM). This method, with 

its notable high reliability, has been successfully applied in 

numerous studies to quantify crop damage (Bendig et al., 2013, 

2014; Kuželka & Surový, 2018; Ziliani et al., 2018). A key 

advantage of this method is its emphasis on structural 

information rather than spectral data, which often provides 

significant benefits over, for example, machine learning (Dobosz 

et al., 2023; Han et al., 2019). Although computationally 

demanding (Ziliani et al., 2018; Glendell et al., 2017), structural 

methods based on 3D data (such as SfM or LiDAR) are also 

highly versatile and suitable for assessing vegetation status in 

later growth stages (Dobosz et al., 2025; Drimaj et al., 2023). 

 

In this study, a simple and sufficiently accurate 3D structural 

method based on SfM image processing was used to evaluate 

mechanical damage to an agricultural crop (maize lodging caused 

by wild boars). The analysis was conducted using a conventional 

cost-effective UAV equipped with a RGB camera. The 

mechanical damage to the crop caused by wild boar activity 

exhibits signs analogous to the effects of torrential rainfall 

accompanied by hail. The specific objective is to determine the 

extent of mechanical damage to the degraded crop in the late 

growth stage using both a 3D structural method and a machine 

learning-supported image analysis method utilising OBIA. This 

is done by using both an official state-provided DEM and a self-

generated photogrammetrically constructed DEM, with a 

comparison of the accuracy of the results.  
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2. Study site 

The application of 3D structural methods and OBIA-supported 

image analysis for non-contact quantification of damaged crops 

was carried out in an intensively farmed area in the cadastral 

territory of Lovčice u Kyjova (hereinafter referred to as Lovčice) 

in the Chřiby Hills (South Moravian Region) (Figure 1). The 

affected area spans 24.8 ha with a predominant soil type of 

pararendzina. It is situated on a gentle slope ranging from 3% to 

7%, at an altitude between 318 and 372 m above sea level. 

According to the Land-Parcel Identification System (LPIS) 

register, maize was cultivated on the plot in both 2023 and 2025. 

 

Figure 1. Location of the studied area where the extent of 

mechanical damage to crops was determined. 

 

The site is situated in an area traditionally known for sugar beet 

production, but due to climate change, it is now better suited for 

maize cultivation. According to the Czech Hydrometeorological 

Institute (ČHMÚ, 2025), environmental changes have led to a 

2 °C increase in the average annual temperature and shifts in 

rainfall distribution and intensity between 1961 and 2021. 

Monitoring by the Research Institute for Soil and Water 

Conservation (RISWC) (VÚMOP, 2025) indicates that 

approximately one-third of the plot is designated as an erosion-

prone or highly erosion-prone slope. Several erosional events 

have been recorded in the vicinity of the plot, and at the time of 

the measurements, no anti-erosion measures were applied to the 

affected slope. 

3. Methodology 

3.1 Field campaigns and UAV settings 

A multirotor UAV platform was utilized for data collection, 

followed by the creation of an orthophoto map and a Digital 

Surface Model (DSM). The cost-effective DJI Phantom 4 Pro+ 

was employed, featuring a 1-inch CMOS sensor, which also 

serves as a built-in 20 MP RGB camera. It is capable of UltraHD 

(4K) quality at a frame rate of 60 frames per second, has a focal 

length of 24 mm, and a tilt range from -90° to +30°. The camera 

is mounted on a three-axis gimbal that eliminates unwanted 

movements and rolling shutter effects during flight. (DJI, 2025) 

 

The collection of primary geodata, in the form of vertical aerial 

images, was carried out in two separate field campaigns. The first 

took place on 19 October 2023, just before the crop was 

harvested, and recorded the damaged surface of the maize crop. 

The second campaign was conducted on 15 December 2023 with 

the aim of capturing the current state of the terrain surface after 

the crop had been harvested. Both monitoring campaigns were 

performed under overcast conditions with a light, variable wind. 

 

Geolocation of the UAV during flight is determined by GPS and 

GLONASS satellite systems. However, their maximum 

achievable accuracy, at the level of tens of centimetres, is 

insufficient. For the purpose of georeferencing the orthophoto 

map and correcting possible structural errors – and thus for more 

effective joining of the captured photographs – Ground Control 

Points (GCPs) were placed and surveyed on the monitored plot. 

The correct placement, sufficient number, and precise surveying 

of GCPs significantly affect the final accuracy of the digital 

models (Nesbit and Hugenholtz, 2019). The accuracy of the 

measurement can be influenced by factors such as terrain 

ruggedness, the number of visible satellites, or signal shielding 

by obstacles in the terrain. The corrected horizontal and vertical 

accuracy of RTK using VRS (Virtual Reference Station) reaches 

0.01 m and 0.02 m, respectively (Trimble Inc., 2024). 

 

The GCPs used at the Lovčice site were circular with a diameter 

of 0.3 m, and a small depression was located at the geometric 

centre of each one. The pole of a professional dual-frequency 

GNSS receiver, a Trimble R2, was placed in this depression. In 

RTK (Real-Time Kinematic) mode, this enabled the surveying of 

planimetric and altimetric data with high precision. For both 

campaigns, seven GCPs were surveyed on the agricultural plot, 

which was situated in a moderately undulating terrain with 

minimal shading from surrounding vegetation. The number of 

visible satellites was 15 or more at every moment of the 

measurement. These conditions allowed for the GCPs to be 

surveyed with a high degree of accuracy. 

  

The site was imaged using an autonomous flight, with parameters 

(flight altitude, photo overlap, image frequency, target DSM 

resolution, etc.) set by the UAV operator based on the size, shape, 

and ruggedness of the area of interest, as well as the prevailing 

weather conditions. Data collection then took place automatically 

along a pre-defined flight path. For the Lovčice site, the average 

flight altitude was set at 70 metres above the area, with a photo 

overlap of 60% for side overlap and 80% for forward overlap. 

This high overlap ensures that each point is captured in multiple 

images, which is crucial for reconstruction using the SfM method 

(Westoby et al., 2012). A total of 1052 aerial images were 

captured for the first campaign and 987 for the second. The 

autonomous UAV flight time for both campaigns, given the 

settings and meteorological conditions, was approximately 51 

minutes. 
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3.2 Image processing by SfM method 

The datasets acquired in the field were processed using digital 

photogrammetry methods in Agisoft PhotoScan Professional 

software, which utilises the SfM method (Agisoft, 2018). This 

approach allows for the generation of a 3D surface model from 

overlapping images without the need for prior knowledge of their 

spatial position. 

In the first stage of processing, Image Alignment occurs, where 

distinctive image features, known as key points, are 

automatically detected and identified on the individual aerial 

photographs. The software utilises algorithms such as SIFT 

(Scale-Invariant Feature Transform) to find recurring points 

between images captured from different distances and angles. 

Subsequently, the geometric relationships between the 

photographs are determined, their relative orientation is 

established, and the spatial arrangement of the images, along with 

their internal parameters (focal length, lens distortion) are 

calculated. The output is a sparse point cloud, which represents a 

preliminary 3D model of the scene. In the next step, the GCPs are 

manually identified on the photographs, and the altimetric and 

planimetric information obtained from the field survey is 

assigned to them. The software then uses this data to 

georeference the model, thus obtaining absolute orientation for 

the final outputs. Concurrently, the position and scale are refined 

within the real-world coordinate system. 

Based on the known geometry and image overlap, 

stereophotogrammetric triangulation is performed. For each 

pixel, a corresponding point is found in different images, and its 

spatial position is calculated. The result is a dense point cloud, 

often containing hundreds of millions of points, which represents 

the detailed geometry of the surface. This point cloud can then be 

filtered by quality (e.g., to remove noise or erroneous points). 

From the dense point cloud, a polygonal mesh can be generated, 

where individual points are connected by triangular facets (TIN) 

to form a DSM that includes all above-ground objects, including 

vegetation, or a DEM, which represents only the terrain itself. 

This step can be performed manually or semi-automatically 

through point classification. Another output is the orthophoto 

map. In this case, the software combines information about the 

camera's position and the 3D model to create a seamless mosaic 

image with an accurate scale (Agisoft, 2018). The basic data from 

the processing of both campaigns in Agisoft PhotoScan 

Professional software is shown in Table 1. 

 

Output parameter Field campaign 

Study site Lovčice before harvest after harvest 

Taken photos N 1052 987 

Ground resolution (cm/pix) 1,96 1,56 

Point density (pts/m2) 684,464 1031,11 

GSD (m) 0,05 0,05 

RMS (pix) 0,045 0,047 

RMSE-xy (m) 0,0019 0,0049 

RMSE-z (m) 0,0003 0,0013 

 

Table 1. Quality and accuracy parameters of the 

photogrammetric models for both campaigns at the Lovčice site. 
 

3.3 Datasets and crop damage GIS processing 

This chapter describes the methodological framework for spatial 

and image analysis within a GIS environment, focused on 

assessing the extent of mechanically-induced crop damage. For 

this purpose, a 3D structural method, which works with changes 

in crop height, was applied alongside a machine learning-based 

image analysis method supported by object-based image analysis 

(OBIA). The latter analyses the spectral reflectance of the images 

in combination with the average crop heights obtained through 

the 3D structural method. Both methods were applied to two 

different terrain models – an official state model and a self-

generated photogrammetrically constructed model – with the aim 

of comparing their accuracy. The resulting damage extent values 

were then compared using a raster analysis tool to quantify the 

differences. 

For these purposes, three datasets were used: 

(1) orthophoto map and DSM before crop harvest, with a 

resolution of 0.05 m and a vertical and horizontal accuracy of 

0.014 m and 0.019 m, 

(2) orthophoto map and DSM after crop harvest, which served as 

a more accurate RGB-based UAV DEM (UAV DEM), with a 

vertical and horizontal accuracy of 0.008 m and 0.016 m, 

(3) the 5th generation LiDAR-based digital relief model of the 

Czech Republic (DEM 5G), managed by the State 

Administration of Land Surveying and Cadastre, is based on a 

point cloud with X, Y, Z coordinates and has a vertical accuracy 

of up to 0.18 m in open terrain and up to 0.3 m in forested terrain 

(ČÚZK, 2025). 

The raw DEM 5G was first transformed from its original point-

based form into a spatial representation as a Triangulated 

Irregular Network (TIN). This vector model was then rasterised 

into a regular grid with a cell size of 0.05 m, which ensured 

compatibility with all subsequent calculations and datasets. 

3.3.1 Assessment by 3D structural method: Crop height is 

determined by Canopy Surface Models (CSMs), which were 

constructed using a map algebra operation. Specifically, this was 

done by calculating the difference between the crop surface 

model (DSM before harvest) and a selected terrain model (UAV 

DEM and DEM 5G). 

 

The raw CSM contained extreme and erroneous values that could 

be incorrectly interpreted as crop height. Positive outliers, such 

as a hunting stand, reached a height of up to 7.23 m. Negative 

values reached a minimum of -5.48 m. Erroneous values, which 

also constitute outliers, are a result of the photogrammetric image 

processing method, and include, for instance, image alignment 

errors caused by insufficient overlap or low/high contrast (James 

& Robson, 2012), or a reduction in the quality of paired points 

and the model in areas with low texture due to reflections (Nesbit 

& Hugenholtz, 2019). Consequently, before the analysis, these 

extremes and errors were removed based on a defined interval, 

resulting in a clean CSM (hereinafter referred to as CSM). The 

total area of data outside the defined interval covers 3.5% of the 

total area, of which values below -0.15 m constitute 1.76% and 

values above 2.0 m constitute 1.74%. The lower boundary of the 

interval, -0.15 m, expresses the deviation that resulted from the 

difference between the DSM and the terrain models (UAV DEM 

or DEM 5G). Values in the range of 0 to -0.15 m account for the 

difference between the DSM and the terrain models used, while 
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also preserving depressions created by agricultural activities, 

wild animals, or erosion, which are not processing artefacts. The 

upper boundary of the interval, 2 m, sets the maximum observed 

maize height and, in addition to positive extreme values, also 

eliminates isolated taller individual plants. The CSM height 

threshold for detecting the presence or absence of damage was 

set at 0.2 m. According to field observations, this value accounts 

for the height of the crop's base, above which ears are formed and 

where most of the biomass is located. CSM height values above 

this threshold indicated an undamaged crop, while values below 

it indicated crop damage. Crop damage was expressed relatively 

as the proportion of the damaged area to the CSM area in one of 

60 equal area polygons (each with an area of 4119 m²), which 

were distributed throughout the entire area of interest. 

 

The final normalised relative damage takes into account the 

effect of inter-row spaces, which could have been incorrectly 

interpreted as damaged crop. This distortion was eliminated by 

subjectively establishing the location of four reference squares, 

each with an area of 10 m². These squares were chosen because 

they contained no damaged crop but had varying crop densities. 

Consequently, the average relative area of inter-row spaces 

within the healthy crop was calculated to be 13% of the CSM area 

within the polygon, and this value was then subtracted from the 

damage determined relatively in each polygon. 

3.3.2 Assessment by image classification using OBIA-

assisted machine learning: The aim of the automated image 

classification, using machine learning supported by Object-

Based Image Analysis (OBIA) in ArcGIS Pro software (ESRI, 

California, Redlands), was to create the simplest and most 

accurate classification model possible. This model was designed 

to distinguish between damaged and undamaged parts of the crop 

based on plant height and image characteristics captured in the 

images. The analysis was performed twice: the first analysis used 

an orthophoto map from before the crop harvest with a CSM 

constructed from the UAV DEM, while the second was based on 

the DEM 5G. 

 

Subsequently, the image was segmented – divided into smaller, 

visually coherent units called objects (or segments) – through 

automatic segmentation. In this context, an object represents a 

group of neighbouring pixels with similar properties (colour, 

texture, height) that together form a compact unit with greater 

analytical significance than individual pixels. This OBIA 

approach was used, for instance, by Hunt et al. (2017) to detect 

crop damage caused by the Colorado potato beetle. 

 

The segments were then further analysed using a machine 

learning technique, specifically the Support Vector Machine 

(SVM) classification algorithm. This algorithm is one of the most 

widely used methods for analysing image and spatial data, as it 

can find the boundary between two or more classes of objects. In 

this case, the objective was to distinguish between two classes: 

damaged vs. undamaged parts of the crop. SVM learns based on 

pre-labelled training samples, which were manually selected to 

cover the widest possible spectrum of appearances for both 

classes. To prevent one class from dominating (for example, if 

significantly more training objects were selected for the 

undamaged crop), the training samples were selected 

systematically and evenly across the entire site. 

 

Furthermore, the maximum number of training objects was set to 

1000 for each class. This number was determined by testing 

several variants (250, 500, 1000, and 5000 objects), with 1000 

yielding the most accurate classification results in terms of 

agreement with the known damage extent derived from the CSM. 

Setting this limit also reduced the computational complexity of 

the classification, ensuring the process remained computationally 

manageable and did not exceed the capacity of a standard desktop 

computer. 

 

For each object, the average values of its properties were 

calculated, such as the Mean Digital Number, which represents 

the average value of reflectance intensity or height within the 

object. These values served as inputs for the classifier. The result 

of the entire process is a classification output that displays the 

spatial distribution of damaged and undamaged parts of the crop 

in the analysed area. (ESRI, 2025b) 

 

3.3.3 Comparison of assessed damages by using different 

DEMs: To assess the extent of the differing results obtained from 

the two CSMs constructed based on two terrain models, a 

relational raster tool was used to compare the values of individual 

cells between the two raster layers. The output of this tool is a 

binary layer where a value of 1 indicates a match in values and a 

value of 0 indicates a difference (ESRI, 2025a). The interval of 

deviations between the CSM values derived from the DSM using 

the UAV DEM and the DEM 5G, which ranged from -0.02 m to 

0.02 m, was considered tolerable. This interval was determined 

based on the manufacturer-guaranteed vertical accuracy of the 

Trimble R2 GNSS receiver, which reaches a maximum of 0.02 m 

(Trimble Inc., 2024). The same relational tool was also used to 

assess the spatial agreement in determining damaged and 

undamaged crop areas, with the comparison based on the CSMs 

calculated from both input DEMs. The result was a quantitative 

evaluation of the relative extent of similarity between the outputs 

obtained from different data sources. 

 

The Jaccard similarity coefficient was used to evaluate the degree 

of similarity between two sets. This coefficient is used to 

compare the extent to which two sets overlap, specifically, the 

number of elements they have in common in proportion to their 

combined total number of elements. The coefficient was 

originally, according to Jaccard (1901), defined to measure the 

similarity between the species composition of different localities 

as follows: 

 

𝐽(𝐴, 𝐵) =
|𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|
,                                   (1) 

where ∣A ∩ B∣ = number of common elements  

 ∣A ∪ B∣ = number of unique elements from both sets 

 

The value is always between 0 (no similarity) and 1 (identity). 

Today, it is widely used in fields such as machine learning and 

image classification to compare datasets. The coefficient, 

therefore, quantifies the proportion of common pixels labelled as 

damaged relative to the total number of pixels labelled as 

damaged in at least one of the rasters being compared.  

 

The similarity rate was performed twice. In the first instance, the 

raster layers of the constructed CSM models, based on the 

different terrain models, were compared. In the second, the 

results of the image classification were compared. This 

classification was also performed twice, once for each CSM 

derived from the different terrain models. 

 

4. Results 

To begin, the crop damage rate was primarily assessed using a 

3D structural method based on a selected height threshold. The 

results were derived from two CSM models: the first was created 

by calculating the height difference between the DSM (recording 
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crop height before harvest) and the UAV DEM (as shown in 

Figure 2), and the second was based on the height difference 

between the DSM and the DEM 5G. As a secondary approach, 

an automated image classification method was used for 

verification. This method was based on the Support Vector 

Machine (SVM) algorithm and Object-Based Image Analysis 

(OBIA). The inputs for this classification were the CSM models 

created using the 3D structural method, as well as the orthophoto 

map of the study area before harvest. 

 

 

Figure 2. Example of maize crop damage extent in the form of 

its presence and absence, with a classification of CSM height 

constructed by the 3D structural method based on the official 

state DEM 5G. 

A comparison of the terrain models themselves, using the 

difference between the UAV DEM and the DEM 5G, showed that 

the UAV DEM is higher across 38.19% of the area. The tolerated 

vertical deviation, determined by the guaranteed accuracy of the 

GNSS receiver and representing a height difference of ±0.02 m, 

covers 23.73% of the identified height difference in the area. The 

remaining 15.46% of the area exceeds this threshold, which may 

lead to an overestimation or underestimation of the damage 

extent depending on the direction of the deviation. Despite these 

differences, the results of the damage extent calculation spatially 

agree across 95.75% of the area, regardless of which terrain 

model was used as the basis. 

 

4.1 Damage assessed by 3D structural method 

The relative crop damage rate, expressed as the percentage of the 

damaged area in individual polygons, was quantified based on 

two different terrain models. The results are visualised in 

Figure 3 as a cartogram with percentage damage intervals: 1%, 

15%, 35%, and 60%. The normalised relative damage across the 

entire area was 29.25% for the UAV DEM and 26.76% for the 

DEM 5G. The absolute difference in damaged crop area is 

0.62 ha. 

 

However, the differences between the models were not so 

significant or spatially distinct as to cause a fundamental change 

in the relative damage assessment across the chosen intervals. In 

both cases, the most damaged polygons, with over 60% damage, 

were located in the northern part of the area. The height 

deviations outside the tolerated boundary were most apparent in 

the eastern part of the area. When using the DEM 5G, the 

polygons there were assessed as undamaged (up to 1%), whereas 

with the UAV DEM, the damage rate reached up to 15%. 

 

Figure 3. Extent of maize crop damage, expressed as a relative 

value in equally sized polygons, determined from CSMs 

constructed from two terrain models: the top shows the official 

LiDAR-based Digital Relief Model DEM 5G, and the bottom 

shows the UAV DEM derived from proprietary data. 

 

4.2 Damage assessed by image classification 

All the outputs shown were processed using the DEM 5G terrain 

model. Figure 4 illustrates the detailed spatial agreement between 

the two methodological approaches for assessing maize crop 

damage: the 3D structural method and the machine learning-
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supported OBIA method. Three selected representative areas, 

each with an area of 1,000 m², were chosen as examples to 

visualise the qualitative agreement between the results of the 

assessment approaches. The visualised data corresponds with the 

overall assessment for the entire study area, where the results of 

the OBIA-supported image classification based on CSMs 

constructed from the UAV DEM and DEM 5G showed a very 

similar spatial distribution, with a spatial agreement of 94.01% 

and 91.08% of the area, respectively. This indicates a high degree 

of mutual consistency in damage determination, regardless of 

whether the UAV DEM or the DEM 5G is used as a basis. 

 

Figure 4. Three selected squares in the study area are illustrated 

in detail: (A) the condition of the maize crop, (B) the CSM crop 

height and the extent of its damage, (C) the extent of damage 

determined by the 3D structural method, and (D) the extent of 

damage determined by OBIA-supported image analysis. (Note: 

all displayed analyses were performed using the DEM 5G). 

4.3 Differences in damage results when comparing DEMs 

The results of the similarity assessment using the Jaccard 

coefficient confirmed a high consistency of the outputs from both 

the two terrain models and the two assessment approaches. A 

comparison of the crop damage rasters created by the 3D 

structural method based on the UAV DEM and DEM 5G yielded 

a coefficient of 0.8953, which indicates significant spatial 

consistency between these height models. An even higher level 

of agreement, 0.9207, was achieved in the image classification 

using machine learning supported by OBIA, again when 

comparing outputs generated from the UAV DEM and DEM 5G. 

These values suggest that the differences between the height data 

have only a minimal impact on the overall evaluation of crop 

damage extent. 

5. Discussion 

The results confirm the high application potential of UAV 

photogrammetry for assessing mechanical crop damage caused 

by hydrometeorological extremes. Damage to the crop by wild 

boars shows visual and structural signs similar to damage caused 

by torrential rainfall, strong winds, or hail, which allows for their 

joint assessment within a single methodology. In this study, a 

cost-effective UAV equipped with a consumer-grade RGB 

camera and the SfM method achieved high spatial resolution and 

accuracy that do not differ significantly from the results 

published in similarly focused research (Bendig et al., 2014). The 

applied methodology also proved to be robust, as confirmed by 

other studies (Aszkowski et al., 2024; Rutten et al., 2018). 

 

An advantage of 3D structural methods is their ability to detect 

the extent of agricultural crop damage even in the late growth 

stage, when spectral indices fail (Aszkowski et al., 2024). In this 

study, a high spatial resolution was achieved for the input DSMs, 

which allows for the identification of damaged areas even in the 

absence of a spectral response. In the late growth stage (October–

November), this is a fundamental advantage over indices such as 

NDVI, which suffer from a saturation effect in areas of high 

vegetation density and also lose their descriptive capability with 

low chlorophyll content, when the spectral response of the 

vegetation decreases significantly (Dobosz et al., 2023). 

 

This study also expands the professional discussion on the 

importance of 3D structural and spectral data in the context of 

crop assessment. Studies such as (Yue et al., 2019) and (Han et 

al., 2019) demonstrate that a combination of textural properties, 

the 3D structural method, and spectral reflectance provides the 

most accurate results, while approaches based exclusively on 

spectral data show significant limitations. This study confirmed 

that 3D structural data can be sufficient on its own for 

determining crop damage in the late growth stage. This supports 

the conclusions of (Dobosz et al., 2023), who consider the 

structural approach to be more universal and less dependent on 

the data acquisition period and the use of expensive sensors. 

 
The availability of cost-effective UAV systems increases the 

accessibility of this methodology to a wider range of users. The 

results demonstrate that even without the use of expensive 

hyperspectral or NIR sensors, it is possible to obtain accurate and 

quantifiable data (Belton et al., 2019). A significant advantage of 

this technology is also its temporal and operational flexibility, 

which allows for simple, rapid, and non-invasive deployment of 

UAVs during the period before and after crop harvest. 

 

Despite its significant benefits, the SfM method also has certain 

limitations. One is its high time and computational complexity, 

which can be exacerbated when monitoring large areas due to the 

requirement for a high image overlap, although it remains lower 

compared to LiDAR data (Ziliani et al., 2018). The accuracy of 

the outputs depends on the quality of the input photographs; thus, 

poor lighting conditions or dense vegetation cover can lead to a 

reduction in accuracy. While SfM models achieve very accurate 

results in open terrain, in forested or shaded areas, the use of 

active sensors like LiDAR remains a more suitable solution 

(Montzka et al., 2023). Further limitations include the UAV's 

dependence on weather conditions, as well as the need for a 

qualified operator and adequate software (Glendell et al., 2017). 

 

When comparing the results with alternative processing methods, 

such as deep learning, machine learning, and texture analysis 

methods, it is apparent that algorithms like CNN (Teshome et al., 

2023) offer high accuracy and automation potential. Conversely, 

they require an extensive training dataset, higher computational 

power, and well-lit, high-resolution input photographs. Texture 

analysis (e.g., SFTA) is useful in situations where chlorophyll is 

absent, but its spatial distinguishability may be lower than that of 

CSMs and DSMs (Tan et al., 2021). OBIA approaches offer an 

advantage in object classification, but they are sensitive to 

segmentation parameterisation and do not always handle the 
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natural heterogeneity of damage well (Rutten et al., 2018). From 

the perspective of practical applicability (speed, cost, accuracy, 

and robustness in different phenological stages), the 3D structural 

method appears to be the most effective compromise, a 

conclusion also supported by other studies (Glendell et al., 2017). 

 

In the context of crop damage assessment, the results of the 3D 

structural method using the UAV DEM and DEM 5G showed a 

high degree of spatial similarity when the same height threshold 

was used. However, damage expressed as a relative value in 

equally sized polygons differed between the DEMs in individual 

parts of the area. The high similarity of the results between the 

two DEMs indicates that significant differences in accuracy were 

not apparent. Therefore, for determining the extent of crop 

damage using the 3D structural method, the use of the DEM 5G 

along with a suitably chosen height threshold and tolerated 

deviations appears to be sufficient and recommended. 

 

The deployment of a cost-effective UAV system allows for the 

acquisition of a comprehensive picture of a crop's current 

condition in a very short time and, in combination with SfM 

methods, provides detailed spatial information of the captured 

surface. The technology is economically accessible and easily 

reproducible. The methodology applied in this article confirms 

that UAV photogrammetry significantly supplements, or even 

partially replaces, traditional methods of crop damage 

assessment. Despite the limitations of data acquisition, cost-

effective UAVs equipped with a standard RGB camera represent 

a competitive solution that achieves the required level of 

accuracy. The method has wide application potential not only in 

research but also in practice, where it can serve as a valuable tool 

for damage assessment, planning crop rotation, or designing anti-

erosion measures. 

6. Conclusion 

This study confirmed that UAV photogrammetry, based on the 

Structure from Motion (SfM) image processing technique and 

simple 3D structural approaches, is an effective and affordable 

tool for assessing mechanical agricultural crop damage, even in 

the late growth stages when traditional spectral indices lose their 

descriptive value. The results showed that by using a crop height 

threshold of 0.2 m, it was possible to accurately identify the 

extent of maize crop damage, with the damage rate determined 

by the 3D structural method reaching 29.25% (UAV DEM) and 

26.76% (DEM 5G). Subsequent image classification with 

machine learning supported by OBIA confirmed the high 

consistency between both approaches and between the terrain 

models used, as documented by Jaccard coefficients above 0.89. 

 

The findings highlight the practical utility of the officially 

available DEM 5G terrain model in the Czech Republic for 

creating Canopy Surface Models without the need for proprietary 

data acquisition and the creation of a terrain model after crop 

harvest. This simplifies the entire process, saves time and costs, 

and also offers opportunities for the broader use of this 

assessment approach in agricultural practice. The high spatial 

agreement of the outputs suggests that UAV data combined with 

the state elevation model provides a sufficiently accurate and 

robust basis for the rapid mapping of damage caused by wild 

animals or hydrometeorological extremes. 

 

Despite its proven benefits, the used methodology also has 

limitations, particularly the time and computational demands of 

data processing with the SfM method and its sensitivity to the 

quality of input images. Therefore, it is advisable to further test 

the methodology on other crop types and different kinds of 

mechanical damage, as well as to expand it by combining it with 

spectral or textural approaches. The integration of multiple data 

sources can contribute to increased accuracy and universality of 

the assessment. 

 

This study expands the general knowledge of the possibilities of 

UAV photogrammetry in agricultural damage assessment and 

confirms its significant application potential in the areas of 

agronomic decision-making, environmental monitoring, and 

crisis management. 
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