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Abstract

The increasing frequency of hydrometeorological extremes, such as torrential rainfall, strong winds, and hailstorms, often causes
widespread mechanical damage to crops. This study evaluates the potential of cost-effective unmanned aerial vehicle (UAV)
photogrammetry with a standard RGB camera for quantifying crop damage. A maize field with mechanical damage caused by wild
boar activity was used as an analogue for storm-induced damage. Two approaches were applied: (i) a 3D structural method based on
Canopy Surface Models (CSMs) derived from Structure-from-Motion (SfM) photogrammetry, and (ii) automated image classification
using a Support Vector Machine (SVM) combined with Object-Based Image Analysis (OBIA). The accuracy of the damage assessment
was compared using two terrain inputs: a UAV-derived DEM (UAV DEM) and the official Czech national LiDAR-based DEM
(DEM 5G). The results showed high consistency between both methods and datasets. The relative crop damage rate was 29.25% with
the UAV DEM and 26.76% with the DEM 5G, with a spatial agreement exceeding 95%. Jaccard similarity coefficients confirmed
strong concordance (0.8953 and 0.9207). The findings highlight the applicability of UAV-based 3D structural analysis for late-stage
crop monitoring, when spectral indices lose reliability. They also emphasise that the official DEM 5G can serve as a suitable substitute
for a UAV-derived DEM in damage assessment. The methodology thus represents a rapid, cost-effective, and operationally feasible

solution for agricultural monitoring, insurance claims, and environmental management.

1. Introduction

Ongoing climate change is increasing the occurrence of
hydrometeorological extremes (Trnka et al., 2009), such as
torrential rainfall, drought, or rising average annual temperatures
(CHMU, 2025). These changes, combined with shifts in crop
rotation and the intensification of agriculture, increase the
vulnerability of crops and soil to both mechanical and ecological
damage (Dobosz et al., 2023). Agricultural land is an
irreplaceable natural resource, and its protection is crucial for
food production and the sustainable functioning of landscape
ecosystems. Accurate and up-to-date information about the
condition of the soil and crops is essential for farmers to optimize
protective measures, reduce yield losses, and, if necessary, apply
for damage compensation from insurance companies or other
institutions (Dobosz et al., 2023; Drimaj et al., 2023).

Modern technologies — especially unmanned aerial vehicles
(UAVs) and digital photogrammetry — offer a fast, objective, and
highly accurate alternative to classical methods of damage
mapping. Their usage allows for recording the current state of an
area at a very high resolution, creating detailed 3D surface
models, and subsequently delineating damaged areas of the crop.
This is a versatile tool with a wide range of applications in
agriculture and environmental monitoring, including the
assessment of vegetation status, biomass, and crop phenotyping,
as seen in studies such as (Aszkowski et al., 2024; Belton et al.,
2019; Bendig et al., 2013; Montzka et al., 2023; Yue et al., 2019).
Mechanical crop damage can be quantified from UAV data by
analysing changes in crop and surface structure. In current
literature, the analysis of these changes has been performed in
three main directions: (i) 3D structural methods, (ii) machine and
deep learning, and (iii) texture analysis with object-based image
analysis (OBIA). For instance, Rutten et al. (2018) uses OBIA
analysis in their work to assess damaged maize.

The most widely used method for 3D structural reconstruction is
the photogrammetric technique Structure from Motion (SfM).
This technique is used to create a Digital Surface Model (DSM)
or a Canopy Surface Model/Canopy Height Model (CSM/CHM)
by subtracting the terrain model (DTM/DEM). This method, with
its notable high reliability, has been successfully applied in
numerous studies to quantify crop damage (Bendig et al., 2013,
2014; Kuzelka & Surovy, 2018; Ziliani et al., 2018). A key
advantage of this method is its emphasis on structural
information rather than spectral data, which often provides
significant benefits over, for example, machine learning (Dobosz
et al, 2023; Han et al.,, 2019). Although computationally
demanding (Ziliani et al., 2018; Glendell et al., 2017), structural
methods based on 3D data (such as SfM or LiDAR) are also
highly versatile and suitable for assessing vegetation status in
later growth stages (Dobosz et al., 2025; Drimaj et al., 2023).

In this study, a simple and sufficiently accurate 3D structural
method based on SfM image processing was used to evaluate
mechanical damage to an agricultural crop (maize lodging caused
by wild boars). The analysis was conducted using a conventional
cost-effective  UAV equipped with a RGB camera. The
mechanical damage to the crop caused by wild boar activity
exhibits signs analogous to the effects of torrential rainfall
accompanied by hail. The specific objective is to determine the
extent of mechanical damage to the degraded crop in the late
growth stage using both a 3D structural method and a machine
learning-supported image analysis method utilising OBIA. This
is done by using both an official state-provided DEM and a self-
generated photogrammetrically constructed DEM, with a
comparison of the accuracy of the results.
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2. Study site

The application of 3D structural methods and OBIA-supported
image analysis for non-contact quantification of damaged crops
was carried out in an intensively farmed area in the cadastral
territory of Lov¢ice u Kyjova (hereinafter referred to as Lovéice)
in the Chiiby Hills (South Moravian Region) (Figure 1). The
affected area spans 24.8 ha with a predominant soil type of
pararendzina. It is situated on a gentle slope ranging from 3% to
7%, at an altitude between 318 and 372 m above sea level.
According to the Land-Parcel Identification System (LPIS)
register, maize was cultivated on the plot in both 2023 and 2025.

Figure 1. Location of the studied area where the extent of
mechanical damage to crops was determined.

The site is situated in an area traditionally known for sugar beet
production, but due to climate change, it is now better suited for
maize cultivation. According to the Czech Hydrometeorological
Institute (CHMU, 2025), environmental changes have led to a
2 °C increase in the average annual temperature and shifts in
rainfall distribution and intensity between 1961 and 2021.
Monitoring by the Research Institute for Soil and Water
Conservation (RISWC) (VUMOP, 2025) indicates that
approximately one-third of the plot is designated as an erosion-
prone or highly erosion-prone slope. Several erosional events
have been recorded in the vicinity of the plot, and at the time of
the measurements, no anti-erosion measures were applied to the
affected slope.

3. Methodology
3.1 Field campaigns and UAV settings

A multirotor UAV platform was utilized for data collection,
followed by the creation of an orthophoto map and a Digital
Surface Model (DSM). The cost-effective DJI Phantom 4 Pro+
was employed, featuring a 1-inch CMOS sensor, which also
serves as a built-in 20 MP RGB camera. It is capable of UltraHD
(4K) quality at a frame rate of 60 frames per second, has a focal
length of 24 mm, and a tilt range from -90° to +30°. The camera
is mounted on a three-axis gimbal that eliminates unwanted
movements and rolling shutter effects during flight. (DJI, 2025)

The collection of primary geodata, in the form of vertical aerial
images, was carried out in two separate field campaigns. The first
took place on 19 October 2023, just before the crop was
harvested, and recorded the damaged surface of the maize crop.
The second campaign was conducted on 15 December 2023 with
the aim of capturing the current state of the terrain surface after
the crop had been harvested. Both monitoring campaigns were
performed under overcast conditions with a light, variable wind.

Geolocation of the UAV during flight is determined by GPS and
GLONASS satellite systems. However, their maximum
achievable accuracy, at the level of tens of centimetres, is
insufficient. For the purpose of georeferencing the orthophoto
map and correcting possible structural errors — and thus for more
effective joining of the captured photographs — Ground Control
Points (GCPs) were placed and surveyed on the monitored plot.
The correct placement, sufficient number, and precise surveying
of GCPs significantly affect the final accuracy of the digital
models (Nesbit and Hugenholtz, 2019). The accuracy of the
measurement can be influenced by factors such as terrain
ruggedness, the number of visible satellites, or signal shielding
by obstacles in the terrain. The corrected horizontal and vertical
accuracy of RTK using VRS (Virtual Reference Station) reaches
0.01 m and 0.02 m, respectively (Trimble Inc., 2024).

The GCPs used at the Lov¢ice site were circular with a diameter
of 0.3 m, and a small depression was located at the geometric
centre of each one. The pole of a professional dual-frequency
GNSS receiver, a Trimble R2, was placed in this depression. In
RTK (Real-Time Kinematic) mode, this enabled the surveying of
planimetric and altimetric data with high precision. For both
campaigns, seven GCPs were surveyed on the agricultural plot,
which was situated in a moderately undulating terrain with
minimal shading from surrounding vegetation. The number of
visible satellites was 15 or more at every moment of the
measurement. These conditions allowed for the GCPs to be
surveyed with a high degree of accuracy.

The site was imaged using an autonomous flight, with parameters
(flight altitude, photo overlap, image frequency, target DSM
resolution, etc.) set by the UAV operator based on the size, shape,
and ruggedness of the area of interest, as well as the prevailing
weather conditions. Data collection then took place automatically
along a pre-defined flight path. For the Lov¢ice site, the average
flight altitude was set at 70 metres above the area, with a photo
overlap of 60% for side overlap and 80% for forward overlap.
This high overlap ensures that each point is captured in multiple
images, which is crucial for reconstruction using the SfM method
(Westoby et al., 2012). A total of 1052 aerial images were
captured for the first campaign and 987 for the second. The
autonomous UAV flight time for both campaigns, given the
settings and meteorological conditions, was approximately 51
minutes.
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3.2 Image processing by SfM method

The datasets acquired in the field were processed using digital
photogrammetry methods in Agisoft PhotoScan Professional
software, which utilises the SfM method (Agisoft, 2018). This
approach allows for the generation of a 3D surface model from
overlapping images without the need for prior knowledge of their
spatial position.

In the first stage of processing, Image Alignment occurs, where
distinctive image features, known as key points, are
automatically detected and identified on the individual aerial
photographs. The software utilises algorithms such as SIFT
(Scale-Invariant Feature Transform) to find recurring points
between images captured from different distances and angles.
Subsequently, the geometric relationships between the
photographs are determined, their relative orientation is
established, and the spatial arrangement of the images, along with
their internal parameters (focal length, lens distortion) are
calculated. The output is a sparse point cloud, which represents a
preliminary 3D model of the scene. In the next step, the GCPs are
manually identified on the photographs, and the altimetric and
planimetric information obtained from the field survey is
assigned to them. The software then uses this data to
georeference the model, thus obtaining absolute orientation for
the final outputs. Concurrently, the position and scale are refined
within the real-world coordinate system.

Based on the known geometry and image overlap,
stereophotogrammetric triangulation is performed. For each
pixel, a corresponding point is found in different images, and its
spatial position is calculated. The result is a dense point cloud,
often containing hundreds of millions of points, which represents
the detailed geometry of the surface. This point cloud can then be
filtered by quality (e.g., to remove noise or erroneous points).
From the dense point cloud, a polygonal mesh can be generated,
where individual points are connected by triangular facets (TIN)
to form a DSM that includes all above-ground objects, including
vegetation, or a DEM, which represents only the terrain itself.
This step can be performed manually or semi-automatically
through point classification. Another output is the orthophoto
map. In this case, the software combines information about the
camera's position and the 3D model to create a seamless mosaic
image with an accurate scale (Agisoft, 2018). The basic data from
the processing of both campaigns in Agisoft PhotoScan
Professional software is shown in Table 1.

Output parameter Field campaign

Study site Lov¢ice | before harvest after harvest
Taken photos N 1052 987
Ground resolution | (cm/pix) 1,96 1,56
Point density | (pts/m?) 684,464 1031,11
GSD (m) 0,05 0,05

RMS (pix) 0,045 0,047
RMSE-xy (m) 0,0019 0,0049
RMSE-z (m) 0,0003 0,0013

Table 1. Quality and accuracy parameters of the
photogrammetric models for both campaigns at the Lov¢ice site.

3.3 Datasets and crop damage GIS processing

This chapter describes the methodological framework for spatial
and image analysis within a GIS environment, focused on
assessing the extent of mechanically-induced crop damage. For
this purpose, a 3D structural method, which works with changes
in crop height, was applied alongside a machine learning-based
image analysis method supported by object-based image analysis
(OBIA). The latter analyses the spectral reflectance of the images
in combination with the average crop heights obtained through
the 3D structural method. Both methods were applied to two
different terrain models — an official state model and a self-
generated photogrammetrically constructed model — with the aim
of comparing their accuracy. The resulting damage extent values
were then compared using a raster analysis tool to quantify the
differences.

For these purposes, three datasets were used:

(1) orthophoto map and DSM before crop harvest, with a
resolution of 0.05 m and a vertical and horizontal accuracy of
0.014 mand 0.019 m,

(2) orthophoto map and DSM after crop harvest, which served as
a more accurate RGB-based UAV DEM (UAV DEM), with a
vertical and horizontal accuracy of 0.008 m and 0.016 m,

(3) the 5th generation LiDAR-based digital relief model of the
Czech Republic (DEM 5G), managed by the State
Administration of Land Surveying and Cadastre, is based on a
point cloud with X, Y, Z coordinates and has a vertical accuracy
of up to 0.18 m in open terrain and up to 0.3 m in forested terrain
(CUZK, 2025).

The raw DEM 5G was first transformed from its original point-
based form into a spatial representation as a Triangulated
Irregular Network (TIN). This vector model was then rasterised
into a regular grid with a cell size of 0.05 m, which ensured
compatibility with all subsequent calculations and datasets.

3.3.1 Assessment by 3D structural method: Crop height is
determined by Canopy Surface Models (CSMs), which were
constructed using a map algebra operation. Specifically, this was
done by calculating the difference between the crop surface
model (DSM before harvest) and a selected terrain model (UAV
DEM and DEM 5G).

The raw CSM contained extreme and erroneous values that could
be incorrectly interpreted as crop height. Positive outliers, such
as a hunting stand, reached a height of up to 7.23 m. Negative
values reached a minimum of -5.48 m. Erroneous values, which
also constitute outliers, are a result of the photogrammetric image
processing method, and include, for instance, image alignment
errors caused by insufficient overlap or low/high contrast (James
& Robson, 2012), or a reduction in the quality of paired points
and the model in areas with low texture due to reflections (Nesbit
& Hugenholtz, 2019). Consequently, before the analysis, these
extremes and errors were removed based on a defined interval,
resulting in a clean CSM (hereinafter referred to as CSM). The
total area of data outside the defined interval covers 3.5% of the
total area, of which values below -0.15 m constitute 1.76% and
values above 2.0 m constitute 1.74%. The lower boundary of the
interval, -0.15 m, expresses the deviation that resulted from the
difference between the DSM and the terrain models (UAV DEM
or DEM 5G). Values in the range of 0 to -0.15 m account for the
difference between the DSM and the terrain models used, while
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also preserving depressions created by agricultural activities,
wild animals, or erosion, which are not processing artefacts. The
upper boundary of the interval, 2 m, sets the maximum observed
maize height and, in addition to positive extreme values, also
eliminates isolated taller individual plants. The CSM height
threshold for detecting the presence or absence of damage was
set at 0.2 m. According to field observations, this value accounts
for the height of the crop's base, above which ears are formed and
where most of the biomass is located. CSM height values above
this threshold indicated an undamaged crop, while values below
it indicated crop damage. Crop damage was expressed relatively
as the proportion of the damaged area to the CSM area in one of
60 equal area polygons (each with an area of 4119 m?), which
were distributed throughout the entire area of interest.

The final normalised relative damage takes into account the
effect of inter-row spaces, which could have been incorrectly
interpreted as damaged crop. This distortion was eliminated by
subjectively establishing the location of four reference squares,
each with an area of 10 m?. These squares were chosen because
they contained no damaged crop but had varying crop densities.
Consequently, the average relative area of inter-row spaces
within the healthy crop was calculated to be 13% of the CSM area
within the polygon, and this value was then subtracted from the
damage determined relatively in each polygon.

3.3.2 Assessment by image classification using OBIA-
assisted machine learning: The aim of the automated image
classification, using machine learning supported by Object-
Based Image Analysis (OBIA) in ArcGIS Pro software (ESRI,
California, Redlands), was to create the simplest and most
accurate classification model possible. This model was designed
to distinguish between damaged and undamaged parts of the crop
based on plant height and image characteristics captured in the
images. The analysis was performed twice: the first analysis used
an orthophoto map from before the crop harvest with a CSM
constructed from the UAV DEM, while the second was based on
the DEM 5G.

Subsequently, the image was segmented — divided into smaller,
visually coherent units called objects (or segments) — through
automatic segmentation. In this context, an object represents a
group of neighbouring pixels with similar properties (colour,
texture, height) that together form a compact unit with greater
analytical significance than individual pixels. This OBIA
approach was used, for instance, by Hunt et al. (2017) to detect
crop damage caused by the Colorado potato beetle.

The segments were then further analysed using a machine
learning technique, specifically the Support Vector Machine
(SVM) classification algorithm. This algorithm is one of the most
widely used methods for analysing image and spatial data, as it
can find the boundary between two or more classes of objects. In
this case, the objective was to distinguish between two classes:
damaged vs. undamaged parts of the crop. SVM learns based on
pre-labelled training samples, which were manually selected to
cover the widest possible spectrum of appearances for both
classes. To prevent one class from dominating (for example, if
significantly more training objects were selected for the
undamaged crop), the training samples were selected
systematically and evenly across the entire site.

Furthermore, the maximum number of training objects was set to
1000 for each class. This number was determined by testing
several variants (250, 500, 1000, and 5000 objects), with 1000
yielding the most accurate classification results in terms of
agreement with the known damage extent derived from the CSM.

Setting this limit also reduced the computational complexity of
the classification, ensuring the process remained computationally
manageable and did not exceed the capacity of a standard desktop
computer.

For each object, the average values of its properties were
calculated, such as the Mean Digital Number, which represents
the average value of reflectance intensity or height within the
object. These values served as inputs for the classifier. The result
of the entire process is a classification output that displays the
spatial distribution of damaged and undamaged parts of the crop
in the analysed area. (ESRI, 2025b)

3.3.3 Comparison of assessed damages by using different
DEMs: To assess the extent of the differing results obtained from
the two CSMs constructed based on two terrain models, a
relational raster tool was used to compare the values of individual
cells between the two raster layers. The output of this tool is a
binary layer where a value of 1 indicates a match in values and a
value of 0 indicates a difference (ESRI, 2025a). The interval of
deviations between the CSM values derived from the DSM using
the UAV DEM and the DEM 5G, which ranged from -0.02 m to
0.02 m, was considered tolerable. This interval was determined
based on the manufacturer-guaranteed vertical accuracy of the
Trimble R2 GNSS receiver, which reaches a maximum of 0.02 m
(Trimble Inc., 2024). The same relational tool was also used to
assess the spatial agreement in determining damaged and
undamaged crop areas, with the comparison based on the CSMs
calculated from both input DEMs. The result was a quantitative
evaluation of the relative extent of similarity between the outputs
obtained from different data sources.

The Jaccard similarity coefficient was used to evaluate the degree
of similarity between two sets. This coefficient is used to
compare the extent to which two sets overlap, specifically, the
number of elements they have in common in proportion to their
combined total number of elements. The coefficient was
originally, according to Jaccard (1901), defined to measure the
similarity between the species composition of different localities
as follows:

|A N B|

J(A,B) = AUB

1

|A N B| = number of common elements
|A U Bl = number of unique elements from both sets

where

The value is always between 0 (no similarity) and 1 (identity).
Today, it is widely used in fields such as machine learning and
image classification to compare datasets. The -coefficient,
therefore, quantifies the proportion of common pixels labelled as
damaged relative to the total number of pixels labelled as
damaged in at least one of the rasters being compared.

The similarity rate was performed twice. In the first instance, the
raster layers of the constructed CSM models, based on the
different terrain models, were compared. In the second, the
results of the image classification were compared. This
classification was also performed twice, once for each CSM
derived from the different terrain models.

4. Results

To begin, the crop damage rate was primarily assessed using a
3D structural method based on a selected height threshold. The
results were derived from two CSM models: the first was created
by calculating the height difference between the DSM (recording
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crop height before harvest) and the UAV DEM (as shown in
Figure 2), and the second was based on the height difference
between the DSM and the DEM 5G. As a secondary approach,
an automated image -classification method was used for
verification. This method was based on the Support Vector
Machine (SVM) algorithm and Object-Based Image Analysis
(OBIA). The inputs for this classification were the CSM models
created using the 3D structural method, as well as the orthophoto
map of the study area before harvest.

Maize presence
CSM Height (m)

]
02 08 14 2,0

Maize absence

outliers | damage

Equal area
polygons (60)

Chosen squares
for detailed view

(3)

Figure 2. Example of maize crop damage extent in the form of
its presence and absence, with a classification of CSM height
constructed by the 3D structural method based on the official

state DEM 5G.

A comparison of the terrain models themselves, using the
difference between the UAV DEM and the DEM 5G, showed that
the UAV DEM is higher across 38.19% of the area. The tolerated
vertical deviation, determined by the guaranteed accuracy of the
GNSS receiver and representing a height difference of +£0.02 m,
covers 23.73% of the identified height difference in the area. The
remaining 15.46% of the area exceeds this threshold, which may
lead to an overestimation or underestimation of the damage
extent depending on the direction of the deviation. Despite these
differences, the results of the damage extent calculation spatially
agree across 95.75% of the area, regardless of which terrain
model was used as the basis.

4.1 Damage assessed by 3D structural method

The relative crop damage rate, expressed as the percentage of the
damaged area in individual polygons, was quantified based on
two different terrain models. The results are visualised in
Figure 3 as a cartogram with percentage damage intervals: 1%,
15%, 35%, and 60%. The normalised relative damage across the
entire area was 29.25% for the UAV DEM and 26.76% for the

DEM 5G. The absolute difference in damaged crop area is
0.62 ha.

However, the differences between the models were not so
significant or spatially distinct as to cause a fundamental change
in the relative damage assessment across the chosen intervals. In
both cases, the most damaged polygons, with over 60% damage,
were located in the northern part of the area. The height
deviations outside the tolerated boundary were most apparent in
the eastern part of the area. When using the DEM 5G, the
polygons there were assessed as undamaged (up to 1%), whereas
with the UAV DEM, the damage rate reached up to 15%.

Crop damage
per polygon

Relatively (%)
1 15 35 60

B | .

Polygons border

I Crop occurrence

Figure 3. Extent of maize crop damage, expressed as a relative
value in equally sized polygons, determined from CSMs
constructed from two terrain models: the top shows the official
LiDAR-based Digital Relief Model DEM 5G, and the bottom
shows the UAV DEM derived from proprietary data.

4.2 Damage assessed by image classification

All the outputs shown were processed using the DEM 5G terrain
model. Figure 4 illustrates the detailed spatial agreement between
the two methodological approaches for assessing maize crop
damage: the 3D structural method and the machine learning-
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supported OBIA method. Three selected representative areas,
each with an area of 1,000 m?, were chosen as examples to
visualise the qualitative agreement between the results of the
assessment approaches. The visualised data corresponds with the
overall assessment for the entire study area, where the results of
the OBIA-supported image classification based on CSMs
constructed from the UAV DEM and DEM 5G showed a very
similar spatial distribution, with a spatial agreement of 94.01%
and 91.08% of the area, respectively. This indicates a high degree
of mutual consistency in damage determination, regardless of
whether the UAV DEM or the DEM 5G is used as a basis.

The 1. chosen square The 2. chosen square The 3. chosen square

RGB image of damaged
and degraded maize

0 4 8 16 m
L 1

Maize presence
CSM Height (m)
B
02 08 L4 20

Maize absence

outliers | damage

= Crop damage detected
“% by the 3D structural
method as

present | absent

Crop damage assesed
by the OBIA-assisted
machine learning as

present| absent

Figure 4. Three selected squares in the study area are illustrated
in detail: (A) the condition of the maize crop, (B) the CSM crop
height and the extent of its damage, (C) the extent of damage
determined by the 3D structural method, and (D) the extent of
damage determined by OBIA-supported image analysis. (Note:
all displayed analyses were performed using the DEM 5G).

4.3 Differences in damage results when comparing DEMs

The results of the similarity assessment using the Jaccard
coefficient confirmed a high consistency of the outputs from both
the two terrain models and the two assessment approaches. A
comparison of the crop damage rasters created by the 3D
structural method based on the UAV DEM and DEM 5G yielded
a coefficient of 0.8953, which indicates significant spatial
consistency between these height models. An even higher level
of agreement, 0.9207, was achieved in the image classification
using machine learning supported by OBIA, again when
comparing outputs generated from the UAV DEM and DEM 5G.
These values suggest that the differences between the height data
have only a minimal impact on the overall evaluation of crop
damage extent.

5. Discussion

The results confirm the high application potential of UAV
photogrammetry for assessing mechanical crop damage caused
by hydrometeorological extremes. Damage to the crop by wild
boars shows visual and structural signs similar to damage caused
by torrential rainfall, strong winds, or hail, which allows for their

joint assessment within a single methodology. In this study, a
cost-effective UAV equipped with a consumer-grade RGB
camera and the SfM method achieved high spatial resolution and
accuracy that do not differ significantly from the results
published in similarly focused research (Bendig et al., 2014). The
applied methodology also proved to be robust, as confirmed by
other studies (Aszkowski et al., 2024; Rutten et al., 2018).

An advantage of 3D structural methods is their ability to detect
the extent of agricultural crop damage even in the late growth
stage, when spectral indices fail (Aszkowski et al., 2024). In this
study, a high spatial resolution was achieved for the input DSMs,
which allows for the identification of damaged areas even in the
absence of a spectral response. In the late growth stage (October—
November), this is a fundamental advantage over indices such as
NDVI, which suffer from a saturation effect in areas of high
vegetation density and also lose their descriptive capability with
low chlorophyll content, when the spectral response of the
vegetation decreases significantly (Dobosz et al., 2023).

This study also expands the professional discussion on the
importance of 3D structural and spectral data in the context of
crop assessment. Studies such as (Yue et al., 2019) and (Han et
al., 2019) demonstrate that a combination of textural properties,
the 3D structural method, and spectral reflectance provides the
most accurate results, while approaches based exclusively on
spectral data show significant limitations. This study confirmed
that 3D structural data can be sufficient on its own for
determining crop damage in the late growth stage. This supports
the conclusions of (Dobosz et al., 2023), who consider the
structural approach to be more universal and less dependent on
the data acquisition period and the use of expensive sensors.

The availability of cost-effective UAV systems increases the
accessibility of this methodology to a wider range of users. The
results demonstrate that even without the use of expensive
hyperspectral or NIR sensors, it is possible to obtain accurate and
quantifiable data (Belton et al., 2019). A significant advantage of
this technology is also its temporal and operational flexibility,
which allows for simple, rapid, and non-invasive deployment of
UAVs during the period before and after crop harvest.

Despite its significant benefits, the SfM method also has certain
limitations. One is its high time and computational complexity,
which can be exacerbated when monitoring large areas due to the
requirement for a high image overlap, although it remains lower
compared to LiDAR data (Ziliani et al., 2018). The accuracy of
the outputs depends on the quality of the input photographs; thus,
poor lighting conditions or dense vegetation cover can lead to a
reduction in accuracy. While SfM models achieve very accurate
results in open terrain, in forested or shaded areas, the use of
active sensors like LiDAR remains a more suitable solution
(Montzka et al., 2023). Further limitations include the UAV's
dependence on weather conditions, as well as the need for a
qualified operator and adequate software (Glendell et al., 2017).

When comparing the results with alternative processing methods,
such as deep learning, machine learning, and texture analysis
methods, it is apparent that algorithms like CNN (Teshome et al.,
2023) offer high accuracy and automation potential. Conversely,
they require an extensive training dataset, higher computational
power, and well-lit, high-resolution input photographs. Texture
analysis (e.g., SFTA) is useful in situations where chlorophyll is
absent, but its spatial distinguishability may be lower than that of
CSMs and DSMs (Tan et al., 2021). OBIA approaches offer an
advantage in object classification, but they are sensitive to
segmentation parameterisation and do not always handle the
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natural heterogeneity of damage well (Rutten et al., 2018). From
the perspective of practical applicability (speed, cost, accuracy,
and robustness in different phenological stages), the 3D structural
method appears to be the most effective compromise, a
conclusion also supported by other studies (Glendell et al., 2017).

In the context of crop damage assessment, the results of the 3D
structural method using the UAV DEM and DEM 5G showed a
high degree of spatial similarity when the same height threshold
was used. However, damage expressed as a relative value in
equally sized polygons differed between the DEMs in individual
parts of the area. The high similarity of the results between the
two DEMs indicates that significant differences in accuracy were
not apparent. Therefore, for determining the extent of crop
damage using the 3D structural method, the use of the DEM 5G
along with a suitably chosen height threshold and tolerated
deviations appears to be sufficient and recommended.

The deployment of a cost-effective UAV system allows for the
acquisition of a comprehensive picture of a crop's current
condition in a very short time and, in combination with SfM
methods, provides detailed spatial information of the captured
surface. The technology is economically accessible and easily
reproducible. The methodology applied in this article confirms
that UAV photogrammetry significantly supplements, or even
partially replaces, traditional methods of crop damage
assessment. Despite the limitations of data acquisition, cost-
effective UAVs equipped with a standard RGB camera represent
a competitive solution that achieves the required level of
accuracy. The method has wide application potential not only in
research but also in practice, where it can serve as a valuable tool
for damage assessment, planning crop rotation, or designing anti-
erosion measures.

6. Conclusion

This study confirmed that UAV photogrammetry, based on the
Structure from Motion (SfM) image processing technique and
simple 3D structural approaches, is an effective and affordable
tool for assessing mechanical agricultural crop damage, even in
the late growth stages when traditional spectral indices lose their
descriptive value. The results showed that by using a crop height
threshold of 0.2 m, it was possible to accurately identify the
extent of maize crop damage, with the damage rate determined
by the 3D structural method reaching 29.25% (UAV DEM) and
26.76% (DEM 5G). Subsequent image classification with
machine learning supported by OBIA confirmed the high
consistency between both approaches and between the terrain
models used, as documented by Jaccard coefficients above 0.89.

The findings highlight the practical utility of the officially
available DEM 5G terrain model in the Czech Republic for
creating Canopy Surface Models without the need for proprietary
data acquisition and the creation of a terrain model after crop
harvest. This simplifies the entire process, saves time and costs,
and also offers opportunities for the broader use of this
assessment approach in agricultural practice. The high spatial
agreement of the outputs suggests that UAV data combined with
the state elevation model provides a sufficiently accurate and
robust basis for the rapid mapping of damage caused by wild
animals or hydrometeorological extremes.

Despite its proven benefits, the used methodology also has
limitations, particularly the time and computational demands of
data processing with the SfM method and its sensitivity to the
quality of input images. Therefore, it is advisable to further test
the methodology on other crop types and different kinds of

mechanical damage, as well as to expand it by combining it with
spectral or textural approaches. The integration of multiple data
sources can contribute to increased accuracy and universality of
the assessment.

This study expands the general knowledge of the possibilities of
UAV photogrammetry in agricultural damage assessment and
confirms its significant application potential in the areas of
agronomic decision-making, environmental monitoring, and
crisis management.
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