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Abstract

The article explores the potential of remote sensing (RS) applications for identifying patterns of rare metal mineralization in the studied
area of Eastern Kazakhstan. An analysis of the technical parameters related to RS data is conducted to highlight the structural and
lithological features, which allows for a deeper understanding of the geological environment and the region's potential resources. The
research is based on multispectral satellite data obtained within potentially promising magmatogenic ore systems. The authors
emphasize the identification of areas with a high probability of discovering rare metal mineralization, which can play a crucial role in
the exploration and development of deposits. A key element of the study is the analysis of spectral characteristics of rare metal
pegmatites and their constituent minerals, enabling the establishment of their unique signatures in the spectral data. The article also
discusses the methods for processing and interpreting multispectral images, which are essential for accurately identifying minerals and
assessing their distribution. Modern machine learning techniques are applied in the research, significantly increasing the efficiency of
data analysis and allowing for the automation of mineral identification and classification processes. As a result, meaningful conclusions
are drawn about the region's potential for rare metal extraction, opening new prospects for further research and practical applications

in geological exploration.

1. Introduction

The mining industry is a key sector of the economy in many
countries worldwide. It serves, first and foremost, as an
instrument of national security, as well as a source of
employment and income for a significant part of the population.
According to (Ericsson, Lof, 2019), the successful
implementation of geological exploration activities determines
the future dynamics of mining development and lays the
foundation for increased mineral production within the next 10-
15 years.

A review of key trends in the mining industry shows that over the
next 5-10 years, the global sector will undergo significant
transformations driven by global consumer and technological
developments. Rising demands for higher product quality are
increasing the need for innovation, including artificial
intelligence (AI), machine learning (ML), remote control, and
other.

The introduction of remote methods, machine learning and
artificial intelligence into Kazakhstan's mining and geological
industry to optimise mineral exploration processes and manage
ore deposit recognition is a relevant and promising area of
development for the geological exploration industry, which
makes it possible to increase the efficiency and accuracy of
research, optimise the planning and design of work, improve the
prediction of ore occurrences and control the results of research.
When considering the specifics and role of the mining industry,
it is necessary to note the following global problems facing
society: depletion of profitable mineral reserves due to large
volumes of extraction, complex and expensive geological
conditions for exploration and development of deposits, a
growing demand for rare and rare-earth metals in countries with
high-tech industries, and intensifying competition between
countries for mineral resources.

Rare metals are a group of chemical elements with unique
properties that are widely applied in high-tech industries such as
emerging energy technologies, nuclear power, aerospace, and
others, which makes them critical strategic resources linked to
economic security and national defense (Li et al., 2020). These
metals are often characterized by low concentrations in the
Earth’s crust or by the complexity of their extraction and
processing. To date, more than 60 types of rare metals have been
identified. Among the most well-known are lithium (Li),
beryllium (Be), and tantalum (Ta). Technological progress and
the recent surge in demand for electronics and electric vehicles
have triggered renewed global interest in these metals. For
instance, according to the U.S. Geological Survey, a decade ago
the primary market for lithium consumption was ceramics
production, which accounted for one-third of total demand.
Today, this share has decreased to just 7%, without a reduction
in absolute consumption, while the dominant consumer has
become the battery industry, which now represents more than
80% of total demand (Lithium Statistics and Information, 2025).
A similar trend can be observed in the market for other rare
metals. Given the growth in metal prices and consumption, it is
necessary to actively conduct geological research to expand the
country's mineral resource base.

The Republic of Kazakhstan possesses considerable reserves of
rare-metal mineral resources. Currently, 37 deposits and about
500 ore occurrences of rare metals and rare elements have been
identified. However, the discovery of new deposits and the
exploration of rare metals remain stagnant. For example, since
the 1970s, no new deposits associated with rare-metal pegmatites
have been discovered. In the 1990s, the extraction of rare-metal
ores was almost completely halted and has not been resumed to
date (Hunt, 1977).

Eastern Kazakhstan is considered the primary rare metal and rare
earth geological province, characterised predominantly by tin-
tantalum-niobium and zirconium-tantalum-niobium
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mineralisation. All known industrial deposits and major ore
occurrences have been identified in surface outcrops within the
Kalba-Narym rare metal belt. However, since the 1970s, no new
tantalum deposits associated with rare-metal pegmatites have
been discovered, suggesting that the region's easily identifiable
reserves have essentially been exhausted.

The detection of mineral deposits using remote sensing methods
has its specific features, as mineral reflectance spectra are
generally unique and certain minerals exhibit distinct absorption
and reflection bands corresponding to remote sensing image
wavelengths. The primary factors influencing the spectral
characteristics of minerals and rocks are limited to a few key
elements: iron, which produces electronic transitions, and water,
hydroxyl ions, and carbonates, which are responsible for
vibrational transitions. In the near-infrared range, absorption
features are primarily caused by iron (700-900 nm), while in the
shortwave infrared range, spectral variations are attributed to
water and hydroxyl ions. For instance, absorption features at
approximately 1140 nm, 1400 nm, and 1900 nm indicate the
presence of water within the mineral structure (Hunt, 1977).

The identification of spectral signatures of pegmatites based on
existing spectral libraries appears to be unfeasible. This is due to
the fact that the spectral signature of each rock type represents a
combination of the reflectance and absorption characteristics of
its constituent minerals, as well as their relative proportions. For
example, the authors of (Gao et al., 2020) note that rare-metal
pegmatites exhibit reflectance in the visible-near infrared (VNIR)
region (0,55-060 um), while the authors of (Cardoso-Fernandes
etal., 2021) indicate that rocks within the same range may instead
absorb electromagnetic radiation. In addition, the presence of
hydrothermally altered rocks can cause shifts or anomalies in
certain spectral ranges. In the work (Wang et al., 2017), remote
sensing methods are used to identify volcanogenic massive
sulphide and hydrothermal deposits in the Honghai district
(China), remote sensing methods are used, where exploration
targets are identified based on a combination of geological
factors from remote sensing and the integration of multiple
change factors obtained from remote sensing with different
weighting coefficients. The Google Earth Engine (GEE) plays an
important role in this research, providing access to a huge archive
of satellite images, in particular to archived multispectral images
from the Landsat and Sentinel 2 satellite series, and other
geospatial data, and offering tools for analysing this data using
high-performance computing and machine learning capabilities
(Lindsay et al., 2022, Zhao et al., 2021).

The mineral composition of pegmatites is well-documented from
archival data; however, since rocks represent a dense mixture in
which constituent minerals are closely interlinked, it is not
theoretically feasible to construct a spectral signature solely on
the basis of reference spectra of individual minerals.

The purpose of this work is to analyse the possibilities of using
remote sensing methods, processing and interpreting
multispectral images for accurate identification of minerals and
assessment of their distribution.

2. Material and Methods
2.1 Research area

The research area, the Kalba—Narym metallogenic (ore) zone, is
located within the East Kazakhstan region of the Republic of
Kazakhstan. Geographically, the ore zone lies on the
southwestern margin of the Altai Mountains. It forms part of the
Greater Altai together with the Altai, Zharma-Saur, and Western
Kalba ore districts (D’yachkov B.A. et al., 2021). The
metallogenic zone extends for more than 500 km in a
northwestern direction, with a width ranging from 20 to 50 km.

It borders the Russian Federation to the northwest and the
People’s Republic of China to the southeast, while the Ertis
gravel district lies to the northeast and the Terekty anomaly to the
southwest. All known deposits and ore occurrences in this area
are confined to granitoid complexes of varying ages and
compositions (Figure 1).
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Figure 1. Kalba-Narym ore belt with indication of the Asubulak
ore field

The Asubulak deposit (pegmatite massif) is part of the Kalba—
Narym metallogenic zone. The pegmatite massif is located in the
central part of the Kalba-Narym zone, at the intersection of three
faults, within the granite intrusion of the Kalba Complex of
Permian age. Across the area, aplite, aplite-pegmatite, pegmatite,
and rare-metal pegmatites are widespread. The rare-metal
pegmatites occur within the first-phase granites (Khromykh S.V.
et al., 2020).

2.2 Initial data

As the primary data sources, satellite imagery from the Landsat-
8 and Sentinel-2 missions was used. Both satellite families
include shortwave infrared (SWIR) bands, which are essential for
geological mapping and for enhancing the contrast of geological
features.

From Landsat-8, the USGS Landsat 8 Level 2, Collection 2, Tier
2 dataset was utilized. This dataset provides atmospherically
corrected surface reflectance and land surface temperature
derived from the Landsat 8 OLI/TIRS sensors. The imagery
includes five bands in the visible and near-infrared (VNIR) range
and two bands in the shortwave infrared (SWIR) range, processed
to surface reflectance orthorectified products, as well as one band
in the thermal infrared (TIR) range, processed to orthorectified
surface temperature. In addition, it contains intermediate bands
used in the generation of ST products, along with quality
assessment bands.

Landsat 8 surface reflectance (SR) products are generated using
the Land Surface Reflectance Code (LaSRC). All Collection 2
surface temperature (ST) products are derived using the single-
channel algorithm jointly developed by the Rochester Institute of
Technology (RIT) and the Jet Propulsion Laboratory (JPL) of the
National Aeronautics and Space Administration (NASA). The
acquired data fragments are assembled into overlapping “scenes”
of approximately 170 x 183 km using a standard reference grid
(Google Earth Engine, 2024).

Sentinel-2 imagery was used in the form of Level-2A products
from the Harmonized Sentinel-2 MSI (MultiSpectral Instrument)
dataset, which are atmospherically corrected and therefore do not
require additional preprocessing. Sentinel-2 is a wide-swath,
high-resolution multispectral imaging system designed for
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terrestrial monitoring under the Copernicus program, including
vegetation, soil, and water cover assessment, as well as
observations of inland waterways and coastal areas.

Sentinel-2 L2 data were downloaded from the Copernicus Data
Space Ecosystem (CDSE) and processed using sen2cor.

The datasets contain 12 spectral bands in UINT16 format,
representing surface reflectance (SR) scaled by a factor of 10000
(unlike Level-1 data, Band 10 is not included). Several additional
bands specific to Level-2 products are also available
(S2Applications, 2025).

2.3 Data processing

The collection and processing of remote sensing data was carried
out on the Google Earth Engine (GEE) platform (Zhao et al.,
2024).

The processing of Landsat-8 images includes:

- Landsat § data selection: the LANDSAT/LC08/C02/T1_L2
satellite data collection provided by Google Earth Engine was
used. This collection contains pre-calibrated images with high-
precision radiometric and geometric calibration, as well as
atmospheric correction;

- Filtering of the data by region and acquisition date to extract
the region of interest (roi) was carried out using the filterBounds
function, which allows the selection of images covering the
specified area. The acquisition dates were restricted to the period
from June 1, 2020 to September 1, 2024 using the filterDate
method. Following this filtering, the first suitable image with the
lowest cloud coverage was selected using the .first() method,
which simplifies the process of image selection within the given
time interval,

- Image clipping was performed using the .clip(roi) function,
which allows trimming of the imagery to the boundaries of the
region of interest. This ensures precise correspondence of the
data to the specified area, facilitating more convenient
subsequent processing and visualization;

- Data transformation was performed using the .tolnt16()
method, which converted the imagery into the Intl6 format,
thereby reducing data volume and optimizing computational
efficiency. For the visualization of Sentinel-2 imagery, analogous
techniques and JavaScript codes in Google Earth Engine were
applied.

To identify differences between the spectral properties of rocks,
the Random Forest machine learning method was applied.
Random Forest is an ensemble algorithm that utilizes multiple
decision trees. The dataset for machine learning was derived from
a shapefile with an attribute table. Based on archival geological
maps and field observations, 80 points were selected and
georeferenced on a Sentinel-2A satellite image. Each point was
assigned a lithology class with numerical values (sedimentary
rocks — 1, granites — 2, pegmatites — 3). In addition, using the
Sample Raster Values plugin, spectral reflectance values for each
point were extracted across all 12 Sentinel-2A bands.

The model training with Random Forest was performed in
Python using the Pandas and NumPy libraries.

3. Results and discussion

The downloaded satellite images were imported into QGIS
software (version 3.36), which provides a more convenient
environment for performing cartographic operations. To enhance
the contrast between geological features, techniques such as RGB
band combinations and band ratios were applied.

RGB combinations involve the creation of false-color composites
based on the known spectral properties of rocks and minerals
relative to selected spectral bands. Each chosen band is assigned
to a specific color channel (red, green, or blue), and depending

on the reflectance characteristics, the surface features are
displayed in new contrasting colors.

The band ratio technique involves enhancements obtained by
dividing the digital number (DN) values of one spectral band by
the corresponding values of another band. This method is
particularly useful for highlighting specific materials that may
not be visible in unprocessed bands. In addition, it helps to reduce
shading and topographic effects, making it especially suitable for
complex terrains (Bekishev et al., 2024).

Based on a review of the relevant literature, well-established
band combinations and ratios were selected for this study (Table

).

RGB combinations
Landsat-8 | Sentinel-2 Features Authors
Iron oxides . .
2.5.7 and clay Ali and Pour (Ali
. and Pour, 2014)
minerals
. . Mwaniki et al.
567 | iz | iologieal | aniki etal.
2015)
Altered Boiﬁgigf:uand
5-7-3 8-12-3 rock J
formation (Bodruddoza,
OrMatons - pyiimitsu, 2012
Aspect ratio
6/7 11/12 Altered Sabins (Sabins,
1999)
rocks

Table 1. RGB combinations and band ratios.

At the Akhmetkino deposit site, Sentinel-2 and Landsat-8
imagery, after processing, clearly revealed the contours of
anthropogenic impacts as well as exposures of bedrock at the
surface. On the Sentinel-2 scene, when using the 8-12-3 band
combination (Figure 2b), the rocks appeared in dark gray, while
in the 8-11-12 combination they appeared in blue (Figure 2¢). A
similar result was obtained after processing Landsat-8 imagery
(Figure 3b, c). The color differentiation distinctly separates
bedrock from the surrounding features. Band ratio analysis
further delineates geological objects based on differences in the
digital values of pixels across the selected bands. Bright pixels
on the Sentinel-2 scene (Figure 2d) highlighted these variations,
as did the 6/7 band ratio from Landsat-8 (Figure 3d). However,
Landsat-8 imagery has a lower spatial resolution (30 m), which
reduces the interpretability of small-scale features.
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Figure 2. Targyn area (Akhmetkino deposit): a) satellite image
in natural colors; b) Sentinel-2 image, band combination 8-12-3;
¢) Sentinel-2 image, band combination 8-11-12; d) Sentinel-2
image, band ratio 11/12.

Figure 3. Targyn area (Akhmetkino deposit): a) satellite image
in natural colors; b) Landsat-8 image, band combination 5-6-7;
¢) Landsat-8 image, band combination 2-5-7; d) Landsat-8
image, band ratio 6/7.

The study area near Zhantas village did not yield significant
results, as reed thickets surrounding the artificial reservoir
obscured the geological features. Consequently, this site
produced spectral confusion with other types of vegetation
(Figure 4b, c; Figure 5b, c). The band ratio technique using
Sentinel-2 shortwave infrared bands also showed no meaningful
results due to the absence of exposed geological formations in the
area (Figure 4d). A similar approach applied to Landsat-8
imagery likewise did not reveal any spectral anomalies (Figure
5d).

Lake Zharkynkol and the former quarry are clearly visible in the
images, as geological features have high reflectance in the SWIR
range. In all combinations and ratios of Landsat-8 and Sentinel-
2, the pixels of the man-made area acquired characteristic colours
and brightness, which are visually easy to distinguish from other
cartographic objects (Figures 6, 7).

403434

Figure 4. Zhantas village area: a) satellite image in natural
colors; b) Sentinel-2 image, band combination 8-12-3; c)
Sentinel-2 image, band combination 8-11-12; d) Sentinel-2
image, band ratio 11/12.

5275031 8275938

Figure 5. Zhantas village area: a) satellite image in natural
colors; b) Landsat-8 image, band combination 5-6-7; c)
Landsat-8 image, band combination 2-5-7; d) Landsat-8 image,
band ratio 6/7.

Figure 6. Zharkynkol Lake area: a) satellite image in natural
colors; b) Sentinel-2 image, band combination 8-12-3; ¢)
Sentinel-2 image, band combination 11-4-2; d) Sentinel-2

image, band ratio 3/8.
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Figure 7. Zharkynkol Lake area: a) satellite image in natural
colors; b) Landsat-8 image, band combination 5-7-3; ¢)
Landsat-8 image, band combination 2-5-7; d) Landsat-8 image,

band ratio 6/7.
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Figure 8. Spectral reflectance curves for intrusive and
sedimentary rocks.

The visual distinction in lithological mapping is primarily
explained by the different reflectance properties of rocks. Figure
8 shows the averaged spectral reflectance curves derived from
Sentinel-2A data for intrusive rocks (granites, pegmatites) and
sedimentary rocks (clay shales). It is evident that intrusive rocks
(orange curve) exhibit higher reflectance values across almost the
entire spectral range (0,4 — 2,2 pm), with a pronounced increase
in the near-infrared region (around 1,6 pm). In contrast,
sedimentary rocks (black curve) are characterized by lower
reflectance and a smoother spectral trend.

The key differences are as follows:

1. Visible range (0,4 — 0,7 um). Intrusive rocks exhibit higher
reflectance due to the light color of their constituent minerals
(quartz, feldspar, and muscovite in pegmatites). In contrast,
sedimentary clay shales appear darker, as they contain organic
matter and iron-bearing compounds, which reduce reflectance.
2. Red edge (around 0,7 — 0,8 pm). Granites and pegmatites
show a more pronounced increase in reflectance, which is
associated with their mineralogical composition and lower
concentrations of absorbing impurities. In clay shales, the
transition is less pronounced.

3. Near-infrared (1,6 pm). Intrusive rocks reach their maximum
reflectance values, whereas sedimentary rocks remain at
relatively low levels. This is due to differences in texture:
granites and pegmatites consist of large-grained minerals with
high reflectivity, while shales consist of a fine-grained clay
matrix that better absorbs radiation.

4. Mid-infrared range (2,1 — 2,2 um). In this region, reflectance
decreases for both groups, but intrusive rocks still maintain
higher values. For shales, absorption features become more
pronounced, associated with the presence of hydrated minerals

such as kaolinite and montmorillonite. Granites and pegmatites
are rich in quartz and feldspar, which have relatively high
reflectance. Clay shales contain dark minerals, iron, and organic
matter, resulting in reduced albedo. The coarse-grained texture of
intrusive rocks enhances light scattering, while the fine-grained
and compact structure of shales promotes absorption.
Sedimentary clay-rich rocks contain minerals that actively absorb
in the near- and mid-infrared ranges (e.g., OH-group and H.O
absorption bands), leading to a further decline in reflectance.
Overall, the observed differences in spectral curves are primarily
controlled by mineralogy, color, and texture of the rocks, which
provides a basis for using satellite imagery to map and classify
intrusive and sedimentary complexes.

Supervised classification using the Random Forest method was
performed with class balancing and hyperparameter tuning. As a
result, the model achieved a moderately average accuracy in
distinguishing rock types (Figure 9).

True

-0.30

=025

-0.20

1 2 3
Predicted

Figure 9. Confusion Matrix

Figure 9 presents the confusion matrix illustrating the
classification accuracy of the model. The Y-axis (True)
represents the actual class labels (1 — sedimentary rocks, 2 —
granites, 3 — pegmatites), while the X-axis (Predicted) shows the
labels assigned by the model. Cells - the percentage of objects
that fall into the corresponding category.

The model identifies sedimentary rocks (clay shales) with an
accuracy of 60%, but misclassifies them into other categories in
about 20% of cases. The classification accuracy for granites and
pegmatites is 43% and 50%, respectively, although some pixel-
level confusion remains. Overall, the model’s accuracy can be
considered moderate. Apparently, relatively low spatial
resolutions of images do not yield high recognition results.

4. Conclusion

This article examined the potential of using Landsat-8 and
Sentinel-2 satellite data for mineralogical mapping and creating
contrast maps between different types of rocks. Based on the
analysis of RGB band combinations and the application of band
ratio techniques, attempts were made to identify rare-metal
pegmatites and to distinguish them from granites and host
sedimentary rocks.

The possibility of using machine learning for automatic detection
and mapping of rocks was also considered.

The results obtained showed that it is possible to reliably
distinguish between intrusive rocks and sedimentary complexes,
confirming the effectiveness of medium-resolution satellite data
for regional geological mapping tasks. However, the small size
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of pegmatite bodies, as well as the limited spatial and spectral
resolution of Sentinel-2 and Landsat-8 images, did not allow for
their detailed identification.

In the future, to improve the accuracy of mineralogical mapping
and the identification of small objects, it is advisable to use ultra-
high spatial resolution data, such as WorldView-3 images, as
well as hyperspectral survey materials. This will allow for more
reliable differentiation between pegmatite bodies and their
mineralogical features, opening up new prospects for the search
for and evaluation of rare metal deposits.
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