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Abstract 

The article explores the potential of remote sensing (RS) applications for identifying patterns of rare metal mineralization in the studied 
area of Eastern Kazakhstan. An analysis of the technical parameters related to RS data is conducted to highlight the structural and 
lithological features, which allows for a deeper understanding of the geological environment and the region's potential resources. The 
research is based on multispectral satellite data obtained within potentially promising magmatogenic ore systems. The authors 
emphasize the identification of areas with a high probability of discovering rare metal mineralization, which can play a crucial role in 
the exploration and development of deposits. A key element of the study is the analysis of spectral characteristics of rare metal 
pegmatites and their constituent minerals, enabling the establishment of their unique signatures in the spectral data. The article also 
discusses the methods for processing and interpreting multispectral images, which are essential for accurately identifying minerals and 
assessing their distribution. Modern machine learning techniques are applied in the research, significantly increasing the efficiency of 
data analysis and allowing for the automation of mineral identification and classification processes. As a result, meaningful conclusions 
are drawn about the region's potential for rare metal extraction, opening new prospects for further research and practical applications 
in geological exploration.

1. Introduction

The mining industry is a key sector of the economy in many 

countries worldwide. It serves, first and foremost, as an 

instrument of national security, as well as a source of 

employment and income for a significant part of the population. 

According to (Ericsson, Löf, 2019), the successful 

implementation of geological exploration activities determines 

the future dynamics of mining development and lays the 

foundation for increased mineral production within the next 10-

15 years. 

A review of key trends in the mining industry shows that over the 

next 5-10 years, the global sector will undergo significant 

transformations driven by global consumer and technological 

developments. Rising demands for higher product quality are 

increasing the need for innovation, including artificial 

intelligence (AI), machine learning (ML), remote control, and 

other.  

The introduction of remote methods, machine learning and 

artificial intelligence into Kazakhstan's mining and geological 

industry to optimise mineral exploration processes and manage 

ore deposit recognition is a relevant and promising area of 

development for the geological exploration industry, which 

makes it possible to increase the efficiency and accuracy of 

research, optimise the planning and design of work, improve the 

prediction of ore occurrences and control the results of research. 

When considering the specifics and role of the mining industry, 

it is necessary to note the following global problems facing 

society: depletion of profitable mineral reserves due to large 

volumes of extraction, complex and expensive geological 

conditions for exploration and development of deposits, a 

growing demand for rare and rare-earth metals in countries with 

high-tech industries, and intensifying competition between 

countries for mineral resources. 

Rare metals are a group of chemical elements with unique 

properties that are widely applied in high-tech industries such as 

emerging energy technologies, nuclear power, aerospace, and 

others, which makes them critical strategic resources linked to 

economic security and national defense (Li et al., 2020). These 

metals are often characterized by low concentrations in the 

Earth’s crust or by the complexity of their extraction and 

processing. To date, more than 60 types of rare metals have been 

identified. Among the most well-known are lithium (Li), 

beryllium (Be), and tantalum (Ta). Technological progress and 

the recent surge in demand for electronics and electric vehicles 

have triggered renewed global interest in these metals. For 

instance, according to the U.S. Geological Survey, a decade ago 

the primary market for lithium consumption was ceramics 

production, which accounted for one-third of total demand. 

Today, this share has decreased to just 7%, without a reduction 

in absolute consumption, while the dominant consumer has 

become the battery industry, which now represents more than 

80% of total demand (Lithium Statistics and Information, 2025). 

A similar trend can be observed in the market for other rare 

metals. Given the growth in metal prices and consumption, it is 

necessary to actively conduct geological research to expand the 

country's mineral resource base. 

The Republic of Kazakhstan possesses considerable reserves of 

rare-metal mineral resources. Currently, 37 deposits and about 

500 ore occurrences of rare metals and rare elements have been 

identified. However, the discovery of new deposits and the 

exploration of rare metals remain stagnant. For example, since 

the 1970s, no new deposits associated with rare-metal pegmatites 

have been discovered. In the 1990s, the extraction of rare-metal 

ores was almost completely halted and has not been resumed to 

date (Hunt, 1977). 

Eastern Kazakhstan is considered the primary rare metal and rare 

earth geological province, characterised predominantly by tin-

tantalum-niobium and zirconium-tantalum-niobium 
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mineralisation. All known industrial deposits and major ore 

occurrences have been identified in surface outcrops within the 

Kalba-Narym rare metal belt. However, since the 1970s, no new 

tantalum deposits associated with rare-metal pegmatites have 

been discovered, suggesting that the region's easily identifiable 

reserves have essentially been exhausted. 

The detection of mineral deposits using remote sensing methods 

has its specific features, as mineral reflectance spectra are 

generally unique and certain minerals exhibit distinct absorption 

and reflection bands corresponding to remote sensing image 

wavelengths. The primary factors influencing the spectral 

characteristics of minerals and rocks are limited to a few key 

elements: iron, which produces electronic transitions, and water, 

hydroxyl ions, and carbonates, which are responsible for 

vibrational transitions. In the near-infrared range, absorption 

features are primarily caused by iron (700-900 nm), while in the 

shortwave infrared range, spectral variations are attributed to 

water and hydroxyl ions. For instance, absorption features at 

approximately 1140 nm, 1400 nm, and 1900 nm indicate the 

presence of water within the mineral structure (Hunt, 1977). 

The identification of spectral signatures of pegmatites based on 

existing spectral libraries appears to be unfeasible. This is due to 

the fact that the spectral signature of each rock type represents a 

combination of the reflectance and absorption characteristics of 

its constituent minerals, as well as their relative proportions. For 

example, the authors of (Gao et al., 2020) note that rare-metal 

pegmatites exhibit reflectance in the visible-near infrared (VNIR) 

region (0,55-060 µm), while the authors of (Cardoso-Fernandes 

et al., 2021) indicate that rocks within the same range may instead 

absorb electromagnetic radiation. In addition, the presence of 

hydrothermally altered rocks can cause shifts or anomalies in 

certain spectral ranges. In the work (Wang et al., 2017), remote 

sensing methods are used to identify volcanogenic massive 

sulphide and hydrothermal deposits in the Honghai district 

(China), remote sensing methods are used, where exploration 

targets are identified based on a combination of geological 

factors from remote sensing and the integration of multiple 

change factors obtained from remote sensing with different 

weighting coefficients. The Google Earth Engine (GEE) plays an 

important role in this research, providing access to a huge archive 

of satellite images, in particular to archived multispectral images 

from the Landsat and Sentinel 2 satellite series, and other 

geospatial data, and offering tools for analysing this data using 

high-performance computing and machine learning capabilities 

(Lindsay et al., 2022, Zhao et al., 2021). 

The mineral composition of pegmatites is well-documented from 

archival data; however, since rocks represent a dense mixture in 

which constituent minerals are closely interlinked, it is not 

theoretically feasible to construct a spectral signature solely on 

the basis of reference spectra of individual minerals. 

The purpose of this work is to analyse the possibilities of using 

remote sensing methods, processing and interpreting 

multispectral images for accurate identification of minerals and 

assessment of their distribution. 

 

2. Material and Methods 

2.1 Research area 

The research area, the Kalba–Narym metallogenic (ore) zone, is 

located within the East Kazakhstan region of the Republic of 

Kazakhstan. Geographically, the ore zone lies on the 

southwestern margin of the Altai Mountains. It forms part of the 

Greater Altai together with the Altai, Zharma-Saur, and Western 

Kalba ore districts (D’yachkov B.A. et al., 2021). The 

metallogenic zone extends for more than 500 km in a 

northwestern direction, with a width ranging from 20 to 50 km. 

It borders the Russian Federation to the northwest and the 

People’s Republic of China to the southeast, while the Ertis 

gravel district lies to the northeast and the Terekty anomaly to the 

southwest. All known deposits and ore occurrences in this area 

are confined to granitoid complexes of varying ages and 

compositions (Figure 1). 

 

 

Figure 1. Kalba-Narym ore belt with indication of the Asubulak 

ore field 

 

The Asubulak deposit (pegmatite massif) is part of the Kalba–

Narym metallogenic zone. The pegmatite massif is located in the 

central part of the Kalba-Narym zone, at the intersection of three 

faults, within the granite intrusion of the Kalba Complex of 

Permian age. Across the area, aplite, aplite-pegmatite, pegmatite, 

and rare-metal pegmatites are widespread. The rare-metal 

pegmatites occur within the first-phase granites (Khromykh S.V. 

et al., 2020). 

 

2.2 Initial data 

As the primary data sources, satellite imagery from the Landsat-

8 and Sentinel-2 missions was used. Both satellite families 

include shortwave infrared (SWIR) bands, which are essential for 

geological mapping and for enhancing the contrast of geological 

features. 

From Landsat-8, the USGS Landsat 8 Level 2, Collection 2, Tier 

2 dataset was utilized. This dataset provides atmospherically 

corrected surface reflectance and land surface temperature 

derived from the Landsat 8 OLI/TIRS sensors. The imagery 

includes five bands in the visible and near-infrared (VNIR) range 

and two bands in the shortwave infrared (SWIR) range, processed 

to surface reflectance orthorectified products, as well as one band 

in the thermal infrared (TIR) range, processed to orthorectified 

surface temperature. In addition, it contains intermediate bands 

used in the generation of ST products, along with quality 

assessment bands. 

Landsat 8 surface reflectance (SR) products are generated using 

the Land Surface Reflectance Code (LaSRC). All Collection 2 

surface temperature (ST) products are derived using the single-

channel algorithm jointly developed by the Rochester Institute of 

Technology (RIT) and the Jet Propulsion Laboratory (JPL) of the 

National Aeronautics and Space Administration (NASA). The 

acquired data fragments are assembled into overlapping “scenes” 

of approximately 170 × 183 km using a standard reference grid 

(Google Earth Engine, 2024). 

Sentinel-2 imagery was used in the form of Level-2A products 

from the Harmonized Sentinel-2 MSI (MultiSpectral Instrument) 

dataset, which are atmospherically corrected and therefore do not 

require additional preprocessing. Sentinel-2 is a wide-swath, 

high-resolution multispectral imaging system designed for 
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terrestrial monitoring under the Copernicus program, including 

vegetation, soil, and water cover assessment, as well as 

observations of inland waterways and coastal areas.  

Sentinel-2 L2 data were downloaded from the Copernicus Data 

Space Ecosystem (CDSE) and processed using sen2cor. 

The datasets contain 12 spectral bands in UINT16 format, 

representing surface reflectance (SR) scaled by a factor of 10000 

(unlike Level-1 data, Band 10 is not included). Several additional 

bands specific to Level-2 products are also available 

(S2Applications, 2025). 

 

2.3 Data processing 

The collection and processing of remote sensing data was carried 

out on the Google Earth Engine (GEE) platform (Zhao et al., 

2024). 

The processing of Landsat-8 images includes: 

- Landsat 8 data selection: the LANDSAT/LC08/C02/T1_L2 

satellite data collection provided by Google Earth Engine was 

used. This collection contains pre-calibrated images with high-

precision radiometric and geometric calibration, as well as 

atmospheric correction; 

- Filtering of the data by region and acquisition date to extract 

the region of interest (roi) was carried out using the filterBounds 

function, which allows the selection of images covering the 

specified area. The acquisition dates were restricted to the period 

from June 1, 2020 to September 1, 2024 using the filterDate 

method. Following this filtering, the first suitable image with the 

lowest cloud coverage was selected using the .first() method, 

which simplifies the process of image selection within the given 

time interval; 

- Image clipping was performed using the .clip(roi) function, 

which allows trimming of the imagery to the boundaries of the 

region of interest. This ensures precise correspondence of the 

data to the specified area, facilitating more convenient 

subsequent processing and visualization; 

- Data transformation was performed using the .toInt16() 

method, which converted the imagery into the Int16 format, 

thereby reducing data volume and optimizing computational 

efficiency. For the visualization of Sentinel-2 imagery, analogous 

techniques and JavaScript codes in Google Earth Engine were 

applied. 

To identify differences between the spectral properties of rocks, 

the Random Forest machine learning method was applied. 

Random Forest is an ensemble algorithm that utilizes multiple 

decision trees. The dataset for machine learning was derived from 

a shapefile with an attribute table. Based on archival geological 

maps and field observations, 80 points were selected and 

georeferenced on a Sentinel-2A satellite image. Each point was 

assigned a lithology class with numerical values (sedimentary 

rocks – 1, granites – 2, pegmatites – 3). In addition, using the 

Sample Raster Values plugin, spectral reflectance values for each 

point were extracted across all 12 Sentinel-2A bands. 

The model training with Random Forest was performed in 

Python using the Pandas and NumPy libraries. 

 

3. Results and discussion  

The downloaded satellite images were imported into QGIS 

software (version 3.36), which provides a more convenient 

environment for performing cartographic operations. To enhance 

the contrast between geological features, techniques such as RGB 

band combinations and band ratios were applied. 

RGB combinations involve the creation of false-color composites 

based on the known spectral properties of rocks and minerals 

relative to selected spectral bands. Each chosen band is assigned 

to a specific color channel (red, green, or blue), and depending 

on the reflectance characteristics, the surface features are 

displayed in new contrasting colors. 

The band ratio technique involves enhancements obtained by 

dividing the digital number (DN) values of one spectral band by 

the corresponding values of another band. This method is 

particularly useful for highlighting specific materials that may 

not be visible in unprocessed bands. In addition, it helps to reduce 

shading and topographic effects, making it especially suitable for 

complex terrains (Bekishev et al., 2024). 

Based on a review of the relevant literature, well-established 

band combinations and ratios were selected for this study (Table 

1). 

 

RGB combinations 

Landsat-8 Sentinel-2 Features Authors  

2-5-7  

Iron oxides 

and clay 

minerals 

Ali and Pour (Ali 

and Pour, 2014) 

5-6-7 
11-4-12 

8-12-3 

Lithological 

contrasts 

Mwaniki et al. 

(Mwaniki et al., 

2015) 

5-7-3 8-12-3 

Altered 

rock 

formations 

Bodruddoza and 

Fujimitsu 

(Bodruddoza, 

Fujimitsu, 2012 

Aspect ratio 

6/7 11/12 
Altered 

rocks 

Sabins (Sabins, 

1999) 

Table 1. RGB combinations and band ratios. 

 

At the Akhmetkino deposit site, Sentinel-2 and Landsat-8 

imagery, after processing, clearly revealed the contours of 

anthropogenic impacts as well as exposures of bedrock at the 

surface. On the Sentinel-2 scene, when using the 8-12-3 band 

combination (Figure 2b), the rocks appeared in dark gray, while 

in the 8-11-12 combination they appeared in blue (Figure 2c). A 

similar result was obtained after processing Landsat-8 imagery 

(Figure 3b, c). The color differentiation distinctly separates 

bedrock from the surrounding features. Band ratio analysis 

further delineates geological objects based on differences in the 

digital values of pixels across the selected bands. Bright pixels 

on the Sentinel-2 scene (Figure 2d) highlighted these variations, 

as did the 6/7 band ratio from Landsat-8 (Figure 3d). However, 

Landsat-8 imagery has a lower spatial resolution (30 m), which 

reduces the interpretability of small-scale features. 
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Figure 2. Targyn area (Akhmetkino deposit): a) satellite image 

in natural colors; b) Sentinel-2 image, band combination 8-12-3; 

c) Sentinel-2 image, band combination 8-11-12; d) Sentinel-2 

image, band ratio 11/12. 

 

Figure 3. Targyn area (Akhmetkino deposit): a) satellite image 

in natural colors; b) Landsat-8 image, band combination 5-6-7; 

c) Landsat-8 image, band combination 2-5-7; d) Landsat-8 

image, band ratio 6/7. 

 

The study area near Zhantas village did not yield significant 

results, as reed thickets surrounding the artificial reservoir 

obscured the geological features. Consequently, this site 

produced spectral confusion with other types of vegetation 

(Figure 4b, c; Figure 5b, c). The band ratio technique using 

Sentinel-2 shortwave infrared bands also showed no meaningful 

results due to the absence of exposed geological formations in the 

area (Figure 4d). A similar approach applied to Landsat-8 

imagery likewise did not reveal any spectral anomalies (Figure 

5d). 

Lake Zharkynkol and the former quarry are clearly visible in the 

images, as geological features have high reflectance in the SWIR 

range. In all combinations and ratios of Landsat-8 and Sentinel-

2, the pixels of the man-made area acquired characteristic colours 

and brightness, which are visually easy to distinguish from other 

cartographic objects (Figures 6, 7). 

Figure 4. Zhantas village area: a) satellite image in natural 

colors; b) Sentinel-2 image, band combination 8-12-3; c) 

Sentinel-2 image, band combination 8-11-12; d) Sentinel-2 

image, band ratio 11/12. 

Figure 5. Zhantas village area: a) satellite image in natural 

colors; b) Landsat-8 image, band combination 5-6-7; c) 

Landsat-8 image, band combination 2-5-7; d) Landsat-8 image, 

band ratio 6/7. 

 

 

Figure 6. Zharkynkol Lake area: a) satellite image in natural 

colors; b) Sentinel-2 image, band combination 8-12-3; c) 

Sentinel-2 image, band combination 11-4-2; d) Sentinel-2 

image, band ratio 3/8. 
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Figure 7. Zharkynkol Lake area: a) satellite image in natural 

colors; b) Landsat-8 image, band combination 5-7-3; c) 

Landsat-8 image, band combination 2-5-7; d) Landsat-8 image, 

band ratio 6/7. 

 

 

Figure 8. Spectral reflectance curves for intrusive and 

sedimentary rocks. 

 

The visual distinction in lithological mapping is primarily 

explained by the different reflectance properties of rocks. Figure 

8 shows the averaged spectral reflectance curves derived from 

Sentinel-2A data for intrusive rocks (granites, pegmatites) and 

sedimentary rocks (clay shales). It is evident that intrusive rocks 

(orange curve) exhibit higher reflectance values across almost the 

entire spectral range (0,4 – 2,2 µm), with a pronounced increase 

in the near-infrared region (around 1,6 µm). In contrast, 

sedimentary rocks (black curve) are characterized by lower 

reflectance and a smoother spectral trend. 

The key differences are as follows: 

1. Visible range (0,4 – 0,7 µm). Intrusive rocks exhibit higher 

reflectance due to the light color of their constituent minerals 

(quartz, feldspar, and muscovite in pegmatites). In contrast, 

sedimentary clay shales appear darker, as they contain organic 

matter and iron-bearing compounds, which reduce reflectance. 

2. Red edge (around 0,7 – 0,8 µm). Granites and pegmatites 

show a more pronounced increase in reflectance, which is 

associated with their mineralogical composition and lower 

concentrations of absorbing impurities. In clay shales, the 

transition is less pronounced. 

3. Near-infrared (1,6 µm). Intrusive rocks reach their maximum 

reflectance values, whereas sedimentary rocks remain at 

relatively low levels. This is due to differences in texture: 

granites and pegmatites consist of large-grained minerals with 

high reflectivity, while shales consist of a fine-grained clay 

matrix that better absorbs radiation. 

4. Mid-infrared range (2,1 – 2,2 µm). In this region, reflectance 

decreases for both groups, but intrusive rocks still maintain 

higher values. For shales, absorption features become more 

pronounced, associated with the presence of hydrated minerals 

such as kaolinite and montmorillonite. Granites and pegmatites 

are rich in quartz and feldspar, which have relatively high 

reflectance. Clay shales contain dark minerals, iron, and organic 

matter, resulting in reduced albedo. The coarse-grained texture of 

intrusive rocks enhances light scattering, while the fine-grained 

and compact structure of shales promotes absorption. 

Sedimentary clay-rich rocks contain minerals that actively absorb 

in the near- and mid-infrared ranges (e.g., OH-group and H₂O 

absorption bands), leading to a further decline in reflectance. 

Overall, the observed differences in spectral curves are primarily 

controlled by mineralogy, color, and texture of the rocks, which 

provides a basis for using satellite imagery to map and classify 

intrusive and sedimentary complexes. 

Supervised classification using the Random Forest method was 

performed with class balancing and hyperparameter tuning. As a 

result, the model achieved a moderately average accuracy in 

distinguishing rock types (Figure 9). 

 

 

Figure 9. Confusion Matrix 

 

Figure 9 presents the confusion matrix illustrating the 

classification accuracy of the model. The Y-axis (True) 

represents the actual class labels (1 – sedimentary rocks, 2 – 

granites, 3 – pegmatites), while the X-axis (Predicted) shows the 

labels assigned by the model. Cells - the percentage of objects 

that fall into the corresponding category. 

The model identifies sedimentary rocks (clay shales) with an 

accuracy of 60%, but misclassifies them into other categories in 

about 20% of cases. The classification accuracy for granites and 

pegmatites is 43% and 50%, respectively, although some pixel-

level confusion remains. Overall, the model’s accuracy can be 

considered moderate. Apparently, relatively low spatial 

resolutions of images do not yield high recognition results.  

 

4. Conclusion 

This article examined the potential of using Landsat-8 and 

Sentinel-2 satellite data for mineralogical mapping and creating 

contrast maps between different types of rocks. Based on the 

analysis of RGB band combinations and the application of band 

ratio techniques, attempts were made to identify rare-metal 

pegmatites and to distinguish them from granites and host 

sedimentary rocks. 

The possibility of using machine learning for automatic detection 

and mapping of rocks was also considered. 

The results obtained showed that it is possible to reliably 

distinguish between intrusive rocks and sedimentary complexes, 

confirming the effectiveness of medium-resolution satellite data 

for regional geological mapping tasks. However, the small size 
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of pegmatite bodies, as well as the limited spatial and spectral 

resolution of Sentinel-2 and Landsat-8 images, did not allow for 

their detailed identification. 

In the future, to improve the accuracy of mineralogical mapping 

and the identification of small objects, it is advisable to use ultra-

high spatial resolution data, such as WorldView-3 images, as 

well as hyperspectral survey materials. This will allow for more 

reliable differentiation between pegmatite bodies and their 

mineralogical features, opening up new prospects for the search 

for and evaluation of rare metal deposits. 
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