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Abstract 

This study investigates efficient, non-destructive approaches for estimating rice aboveground biomass (AGB), a key yield indicator. 
It integrates Unmanned Aerial Vehicle - based Light Detection and Ranging (UAV-LiDAR) sensor for structural data and 
multispectral satellite imagery for spectral data to develop individual and fused models aimed at improving AGB estimation 
accuracy. Data were collected across three rice growth stages during one planting season for National Seed Industry Council (NSIC) 
Rc 222 and NSIC Rc 160 rice cultivars, using UAV-LiDAR, PlanetScope imagery, and field-based AGB measurements, wherein 30 
samples were used for analysis. Multiple linear regression was used to model fused spectral and structural parameters for each 
variety. Results showed model performance depends on rice variety. Through Leave-One-Out Cross-Validation (LOOCV) and the 
corrected Akaike Information Criterion (AICc), the spectral-only model for NSIC Rc 160 using Green Normalized Difference 
Vegetation Index (GNDVI) performed best (R²=0.62, RMSE=5.16, rRMSE=1.85%, AICc=187.10). Structural data did not improve 
the model. For NSIC Rc 222, the fused model combining GNDVI, Normalized Difference Yellowness Index (NDYI), and canopy 
height achieved the highest accuracy (R² = 0.82, RMSE=10.40, rRMSE=5.86%, AICc=165.60), indicating that combining spectral 
and structural data enhances predictions. Due to the small sample size, LOOCV was used, but larger datasets are needed to explore 
advanced machine learning methods. These findings support modeling approaches per rice variety and highlight its potential for 
precision agriculture applications in rice biomass estimation. 

1. Introduction

Rice is a vital staple food for more than half of the global 
population (Fukagawa and Ziska, 2019). Despite having a 
tropical climate that supports year-round cultivation, the 
Philippines remains heavily reliant on rice import due to high 
domestic demand as a cultural mainstay, consumed with most 
meals. Accurate methods for estimating rice yield have become 
increasingly important in ensuring food security in the face of 
environmental and economic pressures. 

One of the most important indicators of rice crop performance 
is aboveground biomass (AGB), which refers to the dry weight 
of all crop material above the soil surface. Traditionally, AGB 
has been estimated through destructive sampling methods that 
involve selecting sample rice plants  and oven-drying until 
constant weight (Zheng et al., 2019; Mansaray et al., 2020). 
While this approach yields accurate results, it is labor-intensive, 
time-consuming, and can lead to crop loss, making it 
impractical for large-scale or frequent monitoring (Ndikumana 
et al., 2018). 

To address these limitations, remote sensing technologies allow 
for detailed spatial and temporal data on crop health and 
growth, covering large areas with minimal manual labor. Two 
promising methods are Light Detection and Ranging (LiDAR) 
and multispectral imaging. LiDAR can detect early signs of 
crop stress and monitor changes in plant structure, making it 
useful for timely yield forecasting and management 
interventions (Farhan et al., 2022). Multispectral imaging, on 
the other hand, captures data across various wavelengths to 
assess plant health. Vegetation indices are helpful during 
vegetative and reproductive phases, when rice plants are most 
vulnerable to environmental stressors, pests, and nutrient 
deficiencies (Sergieieva, 2024). 

The combination of LiDAR and multispectral imaging offers a 
comprehensive approach to biomass estimation by integrating 
both structural and spectral data. Research has shown that 
combining these datasets can enhance the accuracy of yield 
predictions (Wan et al., 2020; Khodjaev, 2023), yet there 
remains limited investigation into their combined use for rice 
AGB estimation specifically. Hence, the objectives of the study 
are to extract structural parameters from Unmanned Aerial 
Vehicle or UAV-based LiDAR data, derive spectral parameters 
from multispectral satellite imagery, develop individual AGB 
estimation models based on each data source, and construct a 
combined model using both spectral and structural inputs to 
assess accuracy and reliability in estimating rice aboveground 
biomass. 

2. Methodology

2.1​ Data Acquisition 

The study observed two rice cultivars, National Seed Industry 
Council (NSIC) Rc 222 and NSIC Rc 160 during one planting 
season. These varieties were cultivated in two 1,200-square 
meter controlled experimental rice plots, as shown in Figure 1, 
located at the University of the Philippines- Los Baños, which 
received different fertilizer treatments.  

Data were collected during three key growth stages: tillering, 
panicle initiation, and booting or heading, corresponding to the 
vegetative and reproductive phases of rice growth. LiDAR data 
were obtained from UAV-LiDAR using a LiAir X3C-H sensor 
mounted on a PPTI-ENT M410 drone flown at a 20-meter 
altitude in 3m/s, maintaining a 40% sidelap at stable light 
conditions. The UAV-LiDAR system generated point cloud data 
with a ground sampling resolution of approximately 5 cm, 
which was later processed to derive canopy height and cover. 
On the contrary, multispectral satellite data were obtained from 
PlanetScope 8-band surface reflectance imagery, which 
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provides a 3-meter spatial resolution, acquired within three days 
of each field campaign to minimize temporal variation. Field 
data for validation included plant height, tiller count, and 
aboveground biomass, collected through systematic sampling in 
0.5 by 0.5 meter plots across both rice fields. Rice samples, 
consisting of eight rice hills, were harvested, cleaned, and 
oven-dried for 72 to 120 hours, to determine dry weight. For 
this research a total of 30 samples were collected, with 15 
samples per rice variety. 
 

Figure 1. Study Area 
 

 Table 1 below shows the schedule of data acquisition in Days 
After Transplanting (DAT) for each type of dataset obtained.  
 

Data 
Acquisition 

Type 

Growth Stages (DAT, Date) 

Tillering 
Stage 

Panicle 
Initiation 

Stage 

Booting & 
Heading 

Stage 

NSIC Rc 222 

LiDAR 
45th day 

March 12, 
2025 

70th day 
April 05, 2025 

77th day 
April 12, 2025 

Satellite 
46th day 

March 13, 
2025 

67th day 
April 02, 2025 

74th day 
April 09, 2025 

Field 
49th day 

March 15, 
2025 

70th day 
April 05, 2025 

77th day 
April 12, 2025 

NSIC Rc 160 

LiDAR 
33rd day 

March 12, 
2025 

58th day 
April 05, 2025 

65th day 
April 12, 2025 

Satellite 
34th day 

March 13, 
2025 

55th day 
April 02, 2025 

62nd day 
April 09, 2025 

Field 
37th day 

March 15, 
2025 

58th day 
April 05, 2025 

65th day 
April 12, 2025 

Table 1. Data Acquisition Sessions 

 

2.2​ Data Processing 

The raw LiDAR data were georeferenced using Position and 
Orientation System (POS) processing with RINEX files from a 
continuous GNSS observation to correct horizontal and vertical 
positions based on known ground control points. A sample 
pre-processed colorized LiDAR point cloud and its 
corresponding profile view is shown Figure 2. Moreover, 
PlanetScope images were also georeferenced using observed 
semi-permanent ground points. This ensures spatial consistency 
across all the datasets. 
 

 

 
Figure 2. Colorized point cloud of NSIC Rc 222 plot in one data 

acquisition phase (77 Days After Acquisition) 
 
2.2.1​ Canopy Height: To obtain the canopy heights, 
Digital Elevation Models (DEM) to represent the ground and 
the Digital Surface Models (DSM) to represent the canopy were 
created for each data acquisition. The DSM had a 0.1 m 
resolution while the DEM was generated at 0.5 m and 
resampled to match DSM resolution. Canopy Height Models 
(CHM) were calculated using the difference between the  DSM 
and the DEM (Li et al., 2020), as given in Equation 1 below 
which were validated with actual plant height measurements. 

 
CHM = DSM - DEM  ,​ ​ (1) 

 
where,​ DSM = Digital Surface Model   
​ DEM = Digital Elevation Model 
​ CHM = Canopy Height Model  
 
2.2.2​ Canopy Cover: For canopy cover, classified point 
clouds were rasterized at 0.1 m resolution, and vegetation pixels 
identified by elevation thresholds of 0.30 m. Canopy cover 
percentage was calculated as the ratio of vegetation pixels to the 
total number of pixels (Lu et al., 2021). 

 
 ,​  (2) 𝐶𝑎𝑛𝑜𝑝𝑦 𝐶𝑜𝑣𝑒𝑟 (%) =  𝑁𝑜. 𝑜𝑓 𝑉𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛 𝑃𝑖𝑥𝑒𝑙𝑠

𝑁𝑜. 𝑜𝑓 𝑃𝑖𝑥𝑒𝑙𝑠  *  100%

 
2.2.3​ Vegetation Indices: Vegetation indices including the 
Normalized Difference Vegetation Index (NDVI) Normalized 
Difference Yellowness Index (NDYI), Enhanced Vegetation 
Index (EVI), Chlorophyll Index - Red Edge (CIRedEdge), 
Normalized Difference Red Edge Index (NDRE), Green 
Normalized Difference Vegetation Index (GNDVI) were 
calculated from the georeferenced PlanetScope imagery which 
were then processed for extraction on VIs in Google Earth 
Engine. 
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  ,  ​ ​ (3) 𝑁𝐷𝑉𝐼 = 𝑁𝐼𝑅 − 𝑅
𝑁𝐼𝑅 + 𝑅

    ,​ ​ ​ (4) 𝑁𝐷𝑌𝐼 = 𝐺 − 𝐵
𝐺 + 𝐵

    ,​ ​ ​ (5) 𝐸𝑉𝐼 = 𝐺 − 𝐵
𝐺 + 𝐵

  ,  ​ ​ (6) 𝐶𝐼
𝑅𝑒𝑑𝐸𝑑𝑔𝑒

 = 𝐺 − 𝐵
𝐺 + 𝐵

  ​ ,​ ​ (7) 𝑁𝐷𝑅𝐸 = 𝐺 − 𝐵
𝐺 + 𝐵

  ​ ,​ ​ (8) 𝐺𝑁𝐷𝑉𝐼 = 𝐺 − 𝐵
𝐺 + 𝐵

 
where  ​ R =  Red (Band 6) 
​ G =  Green (Band 4) 
​ B= Blue (Band 2) 
​ NIR= Near-Infrared (Band 8) 
​ RE= Red Edge Band (Band 7) 
 
2.3​ Model Development & Validation 

To obtain the different AGB estimation models, the two rice 
cultivars were separated due to phenological differences. Linear 
regression was performed to relate rice aboveground biomass 
(AGB) with individual remote sensing parameters. Multiple 
Linear Regression (MLR) was performed to incorporate both 
structural and spectral variables, with Pearson correlation and 
Variance Inflation Factor (VIF) used to select predictors and 
avoid multicollinearity (Kelly, 2025). Typically, a VIF value 
exceeding 10 suggests significant collinearity, indicating that 
the parameter should be removed with others to ensure the 
interpretability of the model. 
 
Model validation process used Leave-One-Out Cross Validation 
(LOOCV) due to limited sample size, wherein n=15 for each 
rice cultivar, computing R², RMSE, and relative RMSE 
(rRMSE) (Ma et al., 2023). The corrected Akaike Information 
Criterion (AICc) was also used to balance model fit and 
complexity, helping identify the best model per cultivar, with 
ΔAICc < 2, which corresponds to the difference between AICc 
values of models from the minimum AICc, indicates statistical 
equivalence (Aabeyir et al., 2020; Akpa and Unuabonah, 2011). 
 

3.​ Results and Discussion 

3.1​ LiDAR - Derived Structural Parameters and Rice 
Aboveground Biomass 

This section presents the results for rice AGB estimation using 
the structural parameters derived from LiDAR data. 
Furthermore, this discusses the implications of the utilization of 
canopy height and canopy cover for aboveground biomass 
estimation from regression analysis. 
 
3.1.1​ Canopy Height: Figure 3 shows the CHMs for each 
rice variety across the data acquisition sessions.For NSIC Rc 
160, the regression equation (y = 606.89x - 36.173) yielded an 
R² of 0.3362, indicating a moderate correlation and suggesting 
that other factors may also influence biomass. In contrast, NSIC 
Rc 222 showed a stronger relationship (y = 827.07x - 229.6, R² 
= 0.7315), with a steeper slope, indicating higher sensitivity of 
AGB to canopy height and stronger predictive potential. 

 

 
Figure 3. Extracted LiDAR Canopy Height Models 

 
3.1.2​ Canopy Height: Figure 4 shows the canopy cover 
(%) for each rice variety across the different data acquisition 
sessions. Both rice varieties showed a positive linear trend, with 
similar slopes (4.51 for Rc 222 and 4.61 for Rc 160), indicating 
comparable biomass gain per unit increase in canopy cover. 
NSIC Rc 222 had a stronger correlation (R² = 0.6764) than Rc 
160 (R² = 0.40), suggesting canopy cover is a more reliable 
AGB predictor for Rc 222. 

 

 
Figure 4. Extracted LiDAR Canopy Cover 

 
3.2​ PlanetScope - Derived Spectral Parameters and 
Rice Aboveground Biomass 

The Normalized Difference Vegetation Index (NDVI), one of 
the most widely used vegetation indices for vegetation health, 
was evaluated for its relationship with rice aboveground 
biomass (AGB) using PlanetScope imagery. The analysis 
showed a positive linear relationship between NDVI and AGB 
for both NSIC Rc 222 and NSIC Rc 160 rice varieties. NSIC Rc 
222 exhibited a stronger correlation, with an R² value of 0.4862, 
indicating that approximately 48.62% of the variation in AGB 
could be explained by NDVI. In contrast, NSIC Rc 160 showed 
a moderate correlation, with an R² value of 0.3907. These 
findings suggest that while NDVI is a useful indicator for 
biomass estimation its predictive strength may be improved 
with cultivar-specific calibration or additional variables. 
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The Normalized Difference Yellowness Index (NDYI), which 
captures reflectance in the yellow spectral region and can 
indicate plant maturity or stress, also showed a 
cultivar-dependent performance. For NSIC Rc 222, NDYI 
demonstrated a moderate positive relationship with AGB, with 
an R² value of 0.45. This indicates that NDYI could serve as a 
useful parameter for biomass estimation in this variety. 
However, for NSIC Rc 160, the correlation was weak and 
negative, with an R² of only 0.11, suggesting that NDYI had 
little to no predictive capability for this cultivar and may not be 
reliable during early growth stages. 
 
The Enhanced Vegetation Index (EVI) showed very low 
correlation with AGB for both varieties. For NSIC Rc 222 and 
NSIC Rc 160, R² values were 0.04 and 0.0008 respectively, 
indicating that EVI explained less than 5% of the variability in 
AGB. This implies EVI may not be an effective index for 
estimating biomass in these rice cultivars under the study 
conditions. 
 
Similarly, the Chlorophyll Index - Red Edge (CIRedEdge), which is 
sensitive to chlorophyll content, showed very weak 
relationships with AGB. For NSIC Rc 222, the R² was nearly 
zero (0.00003), with a negative slope suggesting a 
non-significant or possibly erroneous relationship. NSIC Rc 
160 performed slightly better with an R² of 0.16, but this still 
reflects a weak correlation, suggesting CIRedEdge is not a reliable 
indicator for biomass estimation in rice. 

The Normalized Difference Red Edge Index (NDRE), which 
uses red-edge and near-infrared bands, also showed weak 
relationships with AGB. For NSIC Rc 222, the R² value was 
nearly zero (0.00009), while NSIC Rc 160 had a slightly better, 
yet still weak, correlation (R² = 0.17). These results suggest that 
NDRE is also not suitable for biomass estimation for either 
cultivar. 
 
In contrast, the Green Normalized Difference Vegetation Index 
(GNDVI),  derived from the green and NIR bands, showed the 
strongest performance among the indices tested. For NSIC Rc 
222, the R² value was 0.51, indicating that over 50% of the 
AGB variation could be explained by GNDVI. For NSIC Rc 
160, the correlation was even stronger, with an R² value of 0.62. 
Positive trends in both cultivars support the potential of GNDVI 
as a reliable, non-destructive parameter for rice AGB 
estimation. 

 
3.3​ Fusion of Spectral and Structural Parameters 

This section focuses on the fusion of spectral and structural 
parameters derived from the multispectral imagery and LiDAR 
data, respectively. Moreover, this section presents the 
multicollinearity tests results of the parameters using statistical 
metrics, as well as, validation results to determine the best 
model for rice AGB estimation for the two rice cultivars. 
 
3.3.1​ Multicollinearity Measures: This section shows the 
results of the different metrics computed to assess the 
multicollinearity of the different rice parameters derived from 
LiDAR and multispectral data. In this section, rice cultivars 
were assessed to determine the correlation of the variables with 
each other and with the actual rice AGB data. Measures to 
prevent data redundancy are also discussed in this section for 
the model development of the rice AGB model. 

 

3.3.1.1​ NSIC Rc 160 

 Variable Correlation (r) p-value 

0 Canopy Height 0.5694 0.0267 
1 Canopy Cover 0.6639 0.007 
2 NDVI 0.6602 0.0074 
3 NDYI -0.1065 0.7057 
4 EVI 0.0908 0.7476 
5 CIRedEdge 0.4845 0.0672 
6 NDRE 0.4964 0.0599 
7 GNDVI 0.8088 0.0003 

Table 2. Correlation values and p-value of parameters for NSIC 
Rc 160 rice plot 

 
For the NSIC Rc 160 variety, several parameters showed 
significant positive correlations with rice AGB, including 
Canopy Height (r = 0.5694, p = 0.0267), Canopy Cover (r = 
0.6639, p = 0.0070), NDVI (r = 0.6602, p = 0.0074), and 
GNDVI (r = 0.8088, p = 0.0003), with GNDVI showing the 
strongest relationship. In contrast, NDYI and EVI had weak, 
non-significant correlations. CIRedEdge and NDRE showed 
moderate correlations but had p-values slightly above the 0.05 
threshold. Thus, only the significantly correlated variables, 
namely Canopy Height, Canopy Cover, NDVI, and GNDVI, are 
suitable for model development, as shown in Table 2. 
 

 Canopy 
Height 

Canopy 
Cover NDVI GNDVI 

Canopy 
Height 1    

Canopy 
Cover 0.7761 1   

NDVI 0.2730 0.4445 1  

GNDVI 0.5116 0.6768 0.8851 1 
Table 3. Correlation Matrix for NSIC Rc 160 rice plot 

 
The correlation matrix for NSIC Rc 160, as shown in Table 3, 
shows a strong relationship between Canopy Height and 
Canopy Cover while Canopy Cover and GNDVI also show 
moderate correlation, indicating potential redundancy and 
multicollinearity risk. Significantly, NDVI and GNDVI are 
highly correlated (r=0.8851), which signifies a strong 
collinearity, suggesting possible multicollinearity which may 
affect the model development. Hence, to address this the VIF 
was computed, as seen in Table 4. While both parameters have 
VIF values above the acceptable threshold, GNDVI 
demonstrates a stronger individual correlation with rice AGB 
(r=0.7082). GNDVI is retained in the model, while NDVI is 
excluded to reduce multicollinearity. 
 

 R2 VIF 

NDVI 0.8357 6.0863 

GNDVI 0.8873 8.8736 

Canopy Height 0.6215 2.6423 

Canopy Cover 0.7227 3.6064 
Table 4. Variance Inflation Factors for NSIC Rc 222 rice plot 
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3.3.1.2​ NSIC Rc 222 

 Variable Correlation (r) p-value 

0 Canopy Height 0.8544 0 

1 Canopy Cover 0.8219 0.0002 

2 NDVI 0.6975 0.0038 

3 NDYI 0.6705 0.0062 

4 EVI 0.1936 0.4894 

5 CIRedEdge -0.0201 0.9433 

6 NDRE -0.007 0.9802 

7 GNDVI 0.7082 0.0031 
Table 5. Correlation values and p-value of parameters for NSIC 

Rc 222 rice plot 
 
For NSIC Rc 222, correlation analysis revealed stronger 
relationships between parameters with rice AGB, as shown in 
Table 5, in comparison to results for Rc 160. Canopy Height 
and Canopy Cover showed very strong, significant correlations, 
while NDVI, GNDVI, and NDYI were also strongly and 
significantly correlated. In contrast, EVI, CIRedEdge, and NDRE 
showed weak or no correlations (p > 0.05) and are not 
recommended for modeling. Overall, Canopy Height, Canopy 
Cover, NDVI, NDYI, and GNDVI are the most promising 
parameters for AGB estimation in Rc 222. 
 
Table 6 shows the correlation matrix for NSIC Rc 222, wherein 
strong correlations were observed among independent 
parameters, suggesting possible multicollinearity. Canopy 
Height and Canopy Cover (r=0.8094), NDVI and GNDVI 
(r=0.8666), and NDVI and NDYI (r=0.7580) may reflect 
overlapping information. 
 

 Canopy 
Height 

Canopy 
Cover NDVI NDYI GNDVI 

Canopy 
Height 1     

Canopy 
Cover 0.8094 1    

NDVI 0.6478 0.4047 1   

NDYI 0.6031 0.5995 0.7578 1  

GNDVI 0.5490 0.3933 0.8666 0.5570 1 
Table 6. Correlation Matrix for NSIC Rc 222 rice plot 

 
Table 7 shows that NDVI had the highest VIF (12.24), 
exceeding the threshold of 10, indicating strong 
multicollinearity. Canopy Height and Canopy Cover showed 
moderate multicollinearity, but Canopy Height was retained due 
to its stronger correlation with biomass. Thus, NDVI and 
Canopy Cover were excluded, while Canopy Height, GNDVI, 
and NDYI were retained for model reliability. 
 
 
 
 
 
 
 

 R2 VIF 

Canopy Height 0.819999 5.555512 

Canopy Cover 0.810142 5.26709 

NDVI 0.918333 12.24487 

NDYI 0.774693 4.438386 

GNDVI 0.816922 5.46216 
Table 7. Variance Inflation Factors for NSIC Rc 222 rice plot 

 
3.3.2​ Multiple Linear Regression: Six AGB estimation 
models were developed per rice variety using selected spectral, 
structural, and data fusion parameters. Parameter selection was 
guided by correlation analysis and VIF results to minimize 
multicollinearity and improve model stability. 

As summarized in Table 8 and visualized in Figures 5 to 10, 
model performance varied across parameter types and rice 
varieties.  
 

Data Type Parameters R2 RMSE 
(g) 

rRMSE 
(%) 

NSIC Rc 160 

Spectral  
(GNDVI) 

y = -2225.41 
+3809.67x 0.62 5.16 1.85 

Structural 
(Canopy 
Height & 
Canopy 
Cover) 

y = -114.82 + 
223.00x1 + 

3.36x2 
0.41 103.19 37.05 

Data Fusion 
(GNDVI, 
Canopy 

Height, & 
Canopy 
Cover) 

y = -1911.59 + 
3113.81x1 + 
181.24x2 + 

0.60x3 

0.65 9.79 3.51 

NSIC Rc 222 

Spectral  
(NDYI & 
GNDVI) 

y = -1789.72 
 + 1598.04x1 + 

2934.80x2 
0.62 38.07 21.45 

Structural 
(Canopy 
Height) 

y = -229.59 
 + 827.06x 0.73 17.05 9.61 

Data Fusion 
(NDYI, 

GNDVI, & 
Canopy 
Height) 

y = 
-1258.281+ 
559.83x1 + 
1782.83x2 + 
582.820x3 

0.82 10.39 5.86 

Table 8. Summary of Rice AGB Estimation Models and 
Performance Metrics 

 
For NSIC Rc 160, the spectral model using GNDVI performed 
best, achieving an R² of 0.62 and the lowest rRMSE of 1.85%. 
The structural model, using canopy height and canopy cover, 
showed the weakest performance (R² = 0.41, rRMSE = 
37.05%), while the fusion model moderately improved accuracy 
(R² = 0.65, rRMSE = 3.51%). 
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For NSIC Rc 222, the data fusion model combining NDVI, 
GNDVI, and canopy height yielded the best performance 
overall, with an R² of 0.82, RMSE of 10.39 g, and the lowest 
rRMSE of 5.86%. The structural model followed with an R² of 
0.73 and rRMSE of 9.61%, while the spectral model showed 
higher error levels (rRMSE = 21.45%). 
 
These results emphasize the advantage of data fusion models, 
which consistently outperformed single-parameter models by 
capturing complementary information from both structural and 
spectral domains, leading to more accurate rice AGB 
prediction. 
 
In the following Figures 5 to 10, the AGB estimates from the 
parameters combinations and utilizing Multiple Linear 
Regression, per rice cultivar are shown for visualization of the 
ability of each of the models to estimate rice AGB. Figure 5 
shows the spatial distribution of rice AGB generated using the 
spectral model for NSIC Rc 160, with GNDVI as the predictor. 
The map highlights relatively uniform estimates across the 
field, reflecting GNDVI’s capacity to capture vegetation vigor.  
 

 
Figure 5. NSIC Rc 160 Spectral-Based AGB Estimation 

 
Figure 6 presents the structural model for NSIC Rc 160, derived 
from canopy height and canopy cover. The map shows greater 
variability in biomass distribution, with some areas 
underestimated compared to field conditions. 
 

 
Figure 6. NSIC Rc 160 Structural-Based AGB Estimation 

 
Figure 7 illustrates the data fusion model for NSIC Rc 160, 
integrating GNDVI, canopy height, and canopy cover. The 
resulting AGB map displays improved differentiation across 
plots, with better representation of biomass variation compared 
to the structural model.  
 
 
 

 

 
Figure 7. NSIC Rc 160 Fusion-Based AGB Estimation 

 
Figure 8 shows the spectral model for NSIC Rc 222, combining 
NDYI and GNDVI. The spatial map indicates inconsistent 
biomass predictions across the field, with patches of 
overestimation and underestimation.  
 

 
Figure 8. NSIC Rc 222 Spectral-Based AGB Estimation 

 
Figure 9 displays the structural model for NSIC Rc 222, based 
solely on canopy height. The AGB map shows a clearer spatial 
gradient that aligns more closely with observed field biomass.  
 
 

​
Figure 9. NSIC Rc 222 Structural-Based AGB Estimation 

 
Figure 10 presents the data fusion model for NSIC Rc 222, 
integrating NDYI, GNDVI, and canopy height. The spatial 
distribution map demonstrates the most consistent and realistic 
biomass patterns, minimizing both underestimation and 
overestimation.  
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Figure 10. NSIC Rc 222 Fusion-Based AGB Estimation 

 
3.3.3​ Model Validation: This section presents the results 
of model validation using Leave-One-Out Cross Validation 
(LOOCV) to minimize bias and overfitting, given the limited 
sample size. For each rice variety, three models, the 
spectral-only, structural-only, and data fusion, were developed. 
The corrected Akaike Information Criterion (AICc) was also 
computed to support model selection. Table 9 summarizes the 
performance metrics of the regression models for rice AGB 
estimation. 

Data Type Parameters R2 RMSE 
(g) 

rRMSE 
(%) 

NSIC Rc 160 

Spectral  
(GNDVI) 

y = -2225.41 
+3809.67x 0.51 124.30 47.05 

Structural 
(Canopy 
Height & 
Canopy 
Cover) 

y = -114.82 + 
223.00x1 + 

3.36x2 
0.07 171.08 64.76 

Data 
Fusion 

(GNDVI, 
Canopy 

Height, & 
Canopy 
Cover) 

y = -1911.59 + 
3113.81x1 + 
181.24x2 + 

0.60x3 

0.33 146.09 55.30 

NSIC Rc 222 

Spectral  
(NDYI & 
GNDVI) 

y = -1789.72 
 + 1598.04x1 + 

2934.80x2 
0.33 146.09 55.30 

Structural 
(Canopy 
Height) 

y = -229.59 
 + 827.06x 0.36 78.83 44.19 

Data 
Fusion 
(NDYI, 

GNDVI, & 
Canopy 
Height) 

y = -1258.281+ 
559.83x1 + 

1782.83x2 + 
582.820x3 

0.64 58.87 33.00 

Table 9. Summary of Rice AGB Estimation Models and 
Performance Metrics After Leave One Out Cross Validation 

 

Table 10 presents the AICc values used to assess model fit and 
complexity. Alongside RMSE, rRMSE, and R², these values 
help identify the most effective model for estimating rice AGB 
per variety. 
 

Data Type AICc Δ AICc 

NSIC Rc 160 

Spectral 
(GNDVI)  187.10 0 

Structural 
(Canopy Height & Canopy 

Cover) 
197.29 10.19 

Data Fusion 
(GNDVI, Canopy Height, & 

Canopy Cover) 
192.49 5.39 

NSIC Rc 222 

Spectral 
(NDYI & GNDVI) 174.21 8.61 

Structural 
(Canopy Height) 165.60 0 

Data Fusion 
(NDYI, GNDVI, & Canopy 

Height) 
166.29 0.69 

Table 10. Results of corrected Akaike Information Criterion 
(AICc) for Rice AGB Estimation Models 

 
For NSIC Rc 160, the spectral-only model using GNDVI 
performed best, with consistent results across LOOCV (R² = 
0.51, RMSE = 124.30, rRMSE = 47.05%) and independent 
validation. It also had the lowest AICc (187.10), confirming its 
suitability. Structural and data fusion models showed weaker 
performance and higher AICc values, suggesting added 
parameters did not improve accuracy and introduced noise. 
 
In contrast, NSIC Rc 222 benefited from structural data. The 
structural-only model had improved LOOCV results (R² = 0.64, 
RMSE = 58.87, rRMSE = 33.00%) and the lowest AICc 
(165.60). The data fusion model had the best overall metrics (R² 
= 0.66, RMSE = 57.56, rRMSE = 32.27%) and was consistent 
with independent validation, despite a slightly higher AICc 
(166.29). Since the ΔAICc between these two models was only 
0.69, they are statistically equivalent in fit. 
 
Overall, results indicate that spectral data alone suffices for 
NSIC Rc 160, as the spectral model already yielded high 
accuracy with minimal added value from structural data. This 
suggests that Rc 160's canopy characteristics may be more 
effectively captured through spectral responses such as 
vegetation indices. 
 
In contrast, NSIC Rc 222 benefited significantly from the 
combination of both structural (LiDAR-derived) and spectral 
inputs, indicating that this variety's AGB variation is influenced 
by both canopy height and reflectance characteristics. The 
strong performance of the fusion model for Rc 222 highlights 
the importance of integrating LiDAR with multispectral 
imagery to better represent its biophysical traits. 
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The use of multiple evaluation metrics, including R², RMSE, 
and rRMSE, alongside AICc, ensured balanced assessment of 
model quality. These insights emphasize the variety-specific 
applicability of structural and spectral features in AGB 
modeling, underlining the need to input selection based on crop 
characteristics. 
 

4.​ Conclusion 

This study developed AGB estimation models for NSIC Rc 160 
and NSIC Rc 222 using UAV-based LiDAR structural data and 
PlanetScope spectral imagery. Three MLR models were built 
per variety: spectral-only, structural-only, and data fusion. 
Performance was assessed using LOOCV, independent 
validation, and AICc. 
 
For NSIC Rc 160, the spectral-only model using GNDVI 
performed best, with R² values of 0.51 (LOOCV) and 0.62 
(validation), and the lowest AICc (187.10). Structural 
parameters did not improve performance and introduced 
variability, confirming Rc 160's responsiveness to spectral data 
alone. 
 
Conversely, Rc 222 benefited from structural input. The 
structural-only model achieved R² = 0.64, while the data fusion 
model reached R² = 0.66 (LOOCV) and 0.82 (validation), with 
the lowest RMSE and rRMSE. Though the structural-only 
model had a slightly lower AICc, the small ΔAICc (0.69) 
indicates both models fit similarly well. 
 
While the models were calibrated for specific varieties and 
conditions, they offer a framework for AGB estimation that can 
be adapted with local data. Due to the limited sample size, 
LOOCV was used, though larger datasets in future studies 
could allow for better generalization and the use of advanced 
models like Random Forest. 
 
In summary, MLR models using LiDAR and satellite data 
effectively estimate rice AGB in a variety-sensitive way: Rc 
160 favors spectral-only models, while Rc 222 performs better 
with combined inputs. These models have potential for 
precision agriculture and yield forecasting, especially if 
expanded with more variables and seasonal data. 
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