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Abstract

This study investigates efficient, non-destructive approaches for estimating rice aboveground biomass (AGB), a key yield indicator.
It integrates Unmanned Aerial Vehicle - based Light Detection and Ranging (UAV-LiDAR) sensor for structural data and
multispectral satellite imagery for spectral data to develop individual and fused models aimed at improving AGB estimation
accuracy. Data were collected across three rice growth stages during one planting season for National Seed Industry Council (NSIC)
Rc 222 and NSIC Rc 160 rice cultivars, using UAV-LiDAR, PlanetScope imagery, and field-based AGB measurements, wherein 30
samples were used for analysis. Multiple linear regression was used to model fused spectral and structural parameters for each
variety. Results showed model performance depends on rice variety. Through Leave-One-Out Cross-Validation (LOOCYV) and the
corrected Akaike Information Criterion (AICc), the spectral-only model for NSIC Rc 160 using Green Normalized Difference
Vegetation Index (GNDVI) performed best (R>=0.62, RMSE=5.16, rRMSE=1.85%, AICc=187.10). Structural data did not improve
the model. For NSIC Rc 222, the fused model combining GNDVI, Normalized Difference Yellowness Index (NDYI), and canopy
height achieved the highest accuracy (R? = 0.82, RMSE=10.40, rRMSE=5.86%, AICc=165.60), indicating that combining spectral
and structural data enhances predictions. Due to the small sample size, LOOCV was used, but larger datasets are needed to explore
advanced machine learning methods. These findings support modeling approaches per rice variety and highlight its potential for

precision agriculture applications in rice biomass estimation.

1. Introduction

Rice is a vital staple food for more than half of the global
population (Fukagawa and Ziska, 2019). Despite having a
tropical climate that supports year-round cultivation, the
Philippines remains heavily reliant on rice import due to high
domestic demand as a cultural mainstay, consumed with most
meals. Accurate methods for estimating rice yield have become
increasingly important in ensuring food security in the face of
environmental and economic pressures.

One of the most important indicators of rice crop performance
is aboveground biomass (AGB), which refers to the dry weight
of all crop material above the soil surface. Traditionally, AGB
has been estimated through destructive sampling methods that
involve selecting sample rice plants and oven-drying until
constant weight (Zheng et al., 2019; Mansaray et al., 2020).
While this approach yields accurate results, it is labor-intensive,
time-consuming, and can lead to crop loss, making it
impractical for large-scale or frequent monitoring (Ndikumana
etal., 2018).

To address these limitations, remote sensing technologies allow
for detailed spatial and temporal data on crop health and
growth, covering large areas with minimal manual labor. Two
promising methods are Light Detection and Ranging (LiDAR)
and multispectral imaging. LiDAR can detect early signs of
crop stress and monitor changes in plant structure, making it
useful for timely yield forecasting and management
interventions (Farhan et al., 2022). Multispectral imaging, on
the other hand, captures data across various wavelengths to
assess plant health. Vegetation indices are helpful during
vegetative and reproductive phases, when rice plants are most
vulnerable to environmental stressors, pests, and nutrient
deficiencies (Sergieieva, 2024).

The combination of LiDAR and multispectral imaging offers a
comprehensive approach to biomass estimation by integrating
both structural and spectral data. Research has shown that
combining these datasets can enhance the accuracy of yield
predictions (Wan et al., 2020; Khodjaev, 2023), yet there
remains limited investigation into their combined use for rice
AGB estimation specifically. Hence, the objectives of the study
are to extract structural parameters from Unmanned Aerial
Vehicle or UAV-based LiDAR data, derive spectral parameters
from multispectral satellite imagery, develop individual AGB
estimation models based on each data source, and construct a
combined model using both spectral and structural inputs to
assess accuracy and reliability in estimating rice aboveground
biomass.

2. Methodology
2.1 Data Acquisition

The study observed two rice cultivars, National Seed Industry
Council (NSIC) Rc 222 and NSIC Rc 160 during one planting
season. These varieties were cultivated in two 1,200-square
meter controlled experimental rice plots, as shown in Figure 1,
located at the University of the Philippines- Los Bafios, which
received different fertilizer treatments.

Data were collected during three key growth stages: tillering,
panicle initiation, and booting or heading, corresponding to the
vegetative and reproductive phases of rice growth. LIDAR data
were obtained from UAV-LiDAR using a LiAir X3C-H sensor
mounted on a PPTI-ENT M410 drone flown at a 20-meter
altitude in 3m/s, maintaining a 40% sidelap at stable light
conditions. The UAV-LiDAR system generated point cloud data
with a ground sampling resolution of approximately 5 cm,
which was later processed to derive canopy height and cover.
On the contrary, multispectral satellite data were obtained from
PlanetScope 8-band surface reflectance imagery, which
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provides a 3-meter spatial resolution, acquired within three days
of each field campaign to minimize temporal variation. Field
data for validation included plant height, tiller count, and
aboveground biomass, collected through systematic sampling in
0.5 by 0.5 meter plots across both rice fields. Rice samples,
consisting of eight rice hills, were harvested, cleaned, and
oven-dried for 72 to 120 hours, to determine dry weight. For
this research a total of 30 samples were collected, with 15
samples per rice variety.
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Figure 1. Study Area

Table 1 below shows the schedule of data acquisition in Days
After Transplanting (DAT) for each type of dataset obtained.

Growth Stages (DAT, Date)
Data - -
Acquisition Tillering Panicle Booting &
T Initiation Heading
ype Stage
Stage Stage
NSIC Rec 222
45th day
. 70th day 77th day
LiDAR March 12, . .
2005 April 05, 2025 | April 12, 2025
46th
Satellite Mj;cl;iall}; 67th day 74th day
> | April 02, 2025 | April 09, 2025
2025
49th d
Field March ?}5, 70th day 77th day
2005 April 05, 2025 | April 12, 2025
NSIC Rc 160
33rd day
. 58th day 65th day
LiDAR March 12, . .
2025 April 05, 2025 | April 12, 2025
34th day
. 55th day 62nd day
tellit March 13
Satellite A 55 April 02, 2025 | April 09, 2025
2025
Ficld 131;111? 15 58th day 65th day
2025 > | April 05, 2025 | April 12, 2025

Table 1. Data Acquisition Sessions

2.2 Data Processing

The raw LiDAR data were georeferenced using Position and
Orientation System (POS) processing with RINEX files from a
continuous GNSS observation to correct horizontal and vertical
positions based on known ground control points. A sample
pre-processed  colorized LiDAR point cloud and its
corresponding profile view is shown Figure 2. Moreover,
PlanetScope images were also georeferenced using observed
semi-permanent ground points. This ensures spatial consistency
across all the datasets.

Figure 2. Colorized point cloud of NSIC Rc 222 plot in one data
acquisition phase (77 Days After Acquisition)

221 Canopy Height: To obtain the canopy heights,
Digital Elevation Models (DEM) to represent the ground and
the Digital Surface Models (DSM) to represent the canopy were
created for each data acquisition. The DSM had a 0.1 m
resolution while the DEM was generated at 0.5 m and
resampled to match DSM resolution. Canopy Height Models
(CHM) were calculated using the difference between the DSM
and the DEM (Li et al., 2020), as given in Equation 1 below
which were validated with actual plant height measurements.

CHM = DSM - DEM , 0))]
where, DSM = Digital Surface Model
DEM = Digital Elevation Model
CHM = Canopy Height Model
2.2.2 Canopy Cover: For canopy cover, classified point

clouds were rasterized at 0.1 m resolution, and vegetation pixels
identified by elevation thresholds of 0.30 m. Canopy cover
percentage was calculated as the ratio of vegetation pixels to the
total number of pixels (Lu et al., 2021).

No. of Vegetation Pixels
No. of Pixels

Canopy Cover (%) = * 100%, (2)

223 Vegetation Indices: Vegetation indices including the
Normalized Difference Vegetation Index (NDVI) Normalized
Difference Yellowness Index (NDYI), Enhanced Vegetation
Index (EVI), Chlorophyll Index - Red Edge (Clgedrage)s
Normalized Difference Red Edge Index (NDRE), Green
Normalized Difference Vegetation Index (GNDVI) were
calculated from the georeferenced PlanetScope imagery which
were then processed for extraction on VIs in Google Earth
Engine.
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_ NIR-R
NDVI = NIR+R ° (€)
_ G-B
NDYI = 5 “)
G-B
EVI = 0 ®)
_G-B
CIRedEdge ~ G+B (6)
_ G-B
NDRE =~ . @)
_ G-B
GNDVI =-—~"1 . ®)
where R = Red (Band 6)
G = Green (Band 4)
B=Blue (Band 2)
NIR= Near-Infrared (Band 8)
RE= Red Edge Band (Band 7)
2.3 Model Development & Validation

To obtain the different AGB estimation models, the two rice
cultivars were separated due to phenological differences. Linear
regression was performed to relate rice aboveground biomass
(AGB) with individual remote sensing parameters. Multiple
Linear Regression (MLR) was performed to incorporate both
structural and spectral variables, with Pearson correlation and
Variance Inflation Factor (VIF) used to select predictors and
avoid multicollinearity (Kelly, 2025). Typically, a VIF value
exceeding 10 suggests significant collinearity, indicating that
the parameter should be removed with others to ensure the
interpretability of the model.

Model validation process used Leave-One-Out Cross Validation
(LOOCYV) due to limited sample size, wherein n=15 for each
rice cultivar, computing R?, RMSE, and relative RMSE
(rRMSE) (Ma et al., 2023). The corrected Akaike Information
Criterion (AICc) was also used to balance model fit and
complexity, helping identify the best model per cultivar, with
AAICc < 2, which corresponds to the difference between AICc
values of models from the minimum AICc, indicates statistical
equivalence (Aabeyir et al., 2020; Akpa and Unuabonah, 2011).

3. Results and Discussion

3.1 LiDAR - Derived Structural Parameters and Rice
Aboveground Biomass

This section presents the results for rice AGB estimation using
the structural parameters derived from LiDAR data.
Furthermore, this discusses the implications of the utilization of
canopy height and canopy cover for aboveground biomass
estimation from regression analysis.

3.1.1 Canopy Height: Figure 3 shows the CHMs for each
rice variety across the data acquisition sessions.For NSIC Rec
160, the regression equation (y = 606.89x - 36.173) yielded an
R? of 0.3362, indicating a moderate correlation and suggesting
that other factors may also influence biomass. In contrast, NSIC
Rc 222 showed a stronger relationship (y = 827.07x - 229.6, R?
= 0.7315), with a steeper slope, indicating higher sensitivity of
AGB to canopy height and stronger predictive potential.
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Figure 3. Extracted LiDAR Canopy Height Models

3.1.2 Canopy Height: Figure 4 shows the canopy cover
(%) for each rice variety across the different data acquisition
sessions. Both rice varieties showed a positive linear trend, with
similar slopes (4.51 for Rc 222 and 4.61 for Rc 160), indicating
comparable biomass gain per unit increase in canopy cover.
NSIC Rc 222 had a stronger correlation (R? = 0.6764) than Rc
160 (R? = 0.40), suggesting canopy cover is a more reliable
AGB predictor for Rc 222.
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Figure 4. Extracted LiDAR Canopy Cover

3.2 PlanetScope - Derived Spectral Parameters and
Rice Aboveground Biomass

The Normalized Difference Vegetation Index (NDVI), one of
the most widely used vegetation indices for vegetation health,
was evaluated for its relationship with rice aboveground
biomass (AGB) using PlanetScope imagery. The analysis
showed a positive linear relationship between NDVI and AGB
for both NSIC Rc 222 and NSIC Rc 160 rice varieties. NSIC Rc
222 exhibited a stronger correlation, with an R? value of 0.4862,
indicating that approximately 48.62% of the variation in AGB
could be explained by NDVI. In contrast, NSIC Rc 160 showed
a moderate correlation, with an R? value of 0.3907. These
findings suggest that while NDVI is a useful indicator for
biomass estimation its predictive strength may be improved
with cultivar-specific calibration or additional variables.
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The Normalized Difference Yellowness Index (NDYI), which
captures reflectance in the yellow spectral region and can
indicate plant maturity or stress, also showed a
cultivar-dependent performance. For NSIC Rc 222, NDYI
demonstrated a moderate positive relationship with AGB, with
an R? value of 0.45. This indicates that NDYI could serve as a
useful parameter for biomass estimation in this variety.
However, for NSIC Rc 160, the correlation was weak and
negative, with an R? of only 0.11, suggesting that NDYI had
little to no predictive capability for this cultivar and may not be
reliable during early growth stages.

The Enhanced Vegetation Index (EVI) showed very low
correlation with AGB for both varieties. For NSIC Rc 222 and
NSIC Re 160, R? values were 0.04 and 0.0008 respectively,
indicating that EVI explained less than 5% of the variability in
AGB. This implies EVI may not be an effective index for
estimating biomass in these rice cultivars under the study
conditions.

Similarly, the Chlorophyll Index - Red Edge (Clgedrqge), Which is
sensitive to chlorophyll content, showed very weak
relationships with AGB. For NSIC Rc 222, the R? was nearly
zero (0.00003), with a negative slope suggesting a
non-significant or possibly erroneous relationship. NSIC Rec
160 performed slightly better with an R? of 0.16, but this still
reflects a weak correlation, suggesting Clyegrqg. 1S not a reliable
indicator for biomass estimation in rice.

The Normalized Difference Red Edge Index (NDRE), which
uses red-edge and near-infrared bands, also showed weak
relationships with AGB. For NSIC Rc 222, the R? value was
nearly zero (0.00009), while NSIC Rc 160 had a slightly better,
yet still weak, correlation (R? = 0.17). These results suggest that
NDRE is also not suitable for biomass estimation for either
cultivar.

In contrast, the Green Normalized Difference Vegetation Index
(GNDVI), derived from the green and NIR bands, showed the
strongest performance among the indices tested. For NSIC Rc
222, the R? value was 0.51, indicating that over 50% of the
AGB variation could be explained by GNDVI. For NSIC Rc
160, the correlation was even stronger, with an R? value of 0.62.
Positive trends in both cultivars support the potential of GNDVI
as a reliable, non-destructive parameter for rice AGB
estimation.

33 Fusion of Spectral and Structural Parameters

This section focuses on the fusion of spectral and structural
parameters derived from the multispectral imagery and LiDAR
data, respectively. Moreover, this section presents the
multicollinearity tests results of the parameters using statistical
metrics, as well as, validation results to determine the best
model for rice AGB estimation for the two rice cultivars.

3.3.1 Multicollinearity Measures: This section shows the
results of the different metrics computed to assess the
multicollinearity of the different rice parameters derived from
LiDAR and multispectral data. In this section, rice cultivars
were assessed to determine the correlation of the variables with
each other and with the actual rice AGB data. Measures to
prevent data redundancy are also discussed in this section for
the model development of the rice AGB model.

3.3.1.1 NSIC Rc 160

Variable Correlation (r) p-value
0 Canopy Height 0.5694 0.0267
1 Canopy Cover 0.6639 0.007
2 NDVI 0.6602 0.0074
3 NDYI -0.1065 0.7057
4 EVI 0.0908 0.7476
5 Clredrdge 0.4845 0.0672
6 NDRE 0.4964 0.0599
7 GNDVI 0.8088 0.0003

Table 2. Correlation values and p-value of parameters for NSIC
Rc 160 rice plot

For the NSIC Rc 160 variety, several parameters showed
significant positive correlations with rice AGB, including
Canopy Height (r = 0.5694, p = 0.0267), Canopy Cover (r =
0.6639, p = 0.0070), NDVI (r = 0.6602, p = 0.0074), and
GNDVI (r = 0.8088, p = 0.0003), with GNDVI showing the
strongest relationship. In contrast, NDYI and EVI had weak,
non-significant correlations. Clgegrqee and NDRE  showed
moderate correlations but had p-values slightly above the 0.05
threshold. Thus, only the significantly correlated variables,
namely Canopy Height, Canopy Cover, NDVI, and GNDVI, are
suitable for model development, as shown in Table 2.

Canopy
Height
Canopy 1
Height
Canopy | 7761
Cover )
NDVI 0.2730
GNDVI 0.5116

Table 3. Correlation Matrix for NSIC Rc 160 rice plot

The correlation matrix for NSIC Rc 160, as shown in Table 3,
shows a strong relationship between Canopy Height and
Canopy Cover while Canopy Cover and GNDVI also show
moderate correlation, indicating potential redundancy and
multicollinearity risk. Significantly, NDVI and GNDVI are
highly correlated (r=0.8851), which signifies a strong
collinearity, suggesting possible multicollinearity which may
affect the model development. Hence, to address this the VIF
was computed, as seen in Table 4. While both parameters have
VIF values above the acceptable threshold, GNDVI
demonstrates a stronger individual correlation with rice AGB
(r=0.7082). GNDVI is retained in the model, while NDVI is
excluded to reduce multicollinearity.

R? VIF
NDVI 0.8357 6.0863
GNDVI 0.8873 8.8736
Canopy Height 0.6215 2.6423
Canopy Cover 0.7227 3.6064

Table 4. Variance Inflation Factors for NSIC Rc 222 rice plot
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3.3.1.2 NSIC Rc 222

Variable Correlation (r) p-value
0 Canopy Height 0.8544 0
1 Canopy Cover 0.8219 0.0002
2 NDVI 0.6975 0.0038
3 NDYI 0.6705 0.0062
4 EVI 0.1936 0.4894
5 Clredrage -0.0201 0.9433
6 NDRE -0.007 0.9802
7 GNDVI 0.7082 0.0031

Table 5. Correlation values and p-value of parameters for NSIC
Rc 222 rice plot

For NSIC Rc 222, correlation analysis revealed stronger
relationships between parameters with rice AGB, as shown in
Table 5, in comparison to results for Re 160. Canopy Height
and Canopy Cover showed very strong, significant correlations,
while NDVI, GNDVI, and NDYI were also strongly and
significantly correlated. In contrast, EVI, Clggge, and NDRE
showed weak or no correlations (p > 0.05) and are not
recommended for modeling. Overall, Canopy Height, Canopy
Cover, NDVI, NDYI, and GNDVI are the most promising
parameters for AGB estimation in Rc 222.

Table 6 shows the correlation matrix for NSIC Rc 222, wherein
strong correlations were observed among independent
parameters, suggesting possible multicollinearity. Canopy
Height and Canopy Cover (r=0.8094), NDVI and GNDVI
(r=0.8666), and NDVI and NDYI (r=0.7580) may reflect
overlapping information.

R? VIF
Canopy Height 0.819999 5.555512
Canopy Cover 0.810142 5.26709
NDVI 0.918333 12.24487
NDYI 0.774693 4.438386
GNDVI 0.816922 5.46216

Table 7. Variance Inflation Factors for NSIC Rc 222 rice plot

3.3.2 Multiple Linear Regression: Six AGB estimation
models were developed per rice variety using selected spectral,
structural, and data fusion parameters. Parameter selection was
guided by correlation analysis and VIF results to minimize
multicollinearity and improve model stability.

As summarized in Table 8 and visualized in Figures 5 to 10,
model performance varied across parameter types and rice
varieties.

Canopy | Canopy
Height | Cover

Canopy 1

Height

Canopy | ¢094

Cover

NDVI | 0.6478

NDYI | 0.6031

GNDVI | 0.5490

Table 6. Correlation Matrix for NSIC Rc 222 rice plot

Table 7 shows that NDVI had the highest VIF (12.24),
exceeding the threshold of 10, indicating strong
multicollinearity. Canopy Height and Canopy Cover showed
moderate multicollinearity, but Canopy Height was retained due
to its stronger correlation with biomass. Thus, NDVI and
Canopy Cover were excluded, while Canopy Height, GNDVI,
and NDYI were retained for model reliability.

RMSE | rRMSE
Data Type | Parameters R?
P ® | ©»
NSIC Re 160
Spectral y =-2225.41
(GNDVI) +3809.67x 0.62 516 1.85
Structural
(Canopy y=-114.82 +
Height & 223.00x, + 041 | 103.19 37.05
Canopy 3.36x,
Cover)
Data Fusion
(GNDVI, [y=-1911.59+
Canopy 3113.81x, +
Height, & | 181.24x,+ | 06 [ 979 | 331
Canopy 0.60x;
Cover)
NSIC Rec 222
Spectral y=-1789.72
(NDYI & +1598.04x, +| 0.62 38.07 21.45
GNDVI) 2934.80x,
Structural _
(Canopy | ¥ +’8'2272?)'65)? 073 | 17.05 9.61
Height) ’
Data Fusion y=
(NDYI, -1258.281+
GNDVI, & 559.83x, + 0.82 10.39 5.86
Canopy 1782.83x, +
Height) 582.820x;

Table 8. Summary of Rice AGB Estimation Models and
Performance Metrics

For NSIC Rc 160, the spectral model using GNDVI performed
best, achieving an R? of 0.62 and the lowest rRMSE of 1.85%.
The structural model, using canopy height and canopy cover,
showed the weakest performance (R* = 0.41, rRMSE =
37.05%), while the fusion model moderately improved accuracy
(R?=0.65, rRMSE = 3.51%).
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For NSIC Rc 222, the data fusion model combining NDVI,
GNDVI, and canopy height yielded the best performance
overall, with an R? of 0.82, RMSE of 10.39 g, and the lowest
rRMSE of 5.86%. The structural model followed with an R? of
0.73 and rRMSE of 9.61%, while the spectral model showed
higher error levels (rRMSE = 21.45%)).

These results emphasize the advantage of data fusion models,
which consistently outperformed single-parameter models by
capturing complementary information from both structural and
spectral domains, leading to more accurate rice AGB
prediction.

In the following Figures 5 to 10, the AGB estimates from the
parameters combinations and utilizing Multiple Linear
Regression, per rice cultivar are shown for visualization of the
ability of each of the models to estimate rice AGB. Figure 5
shows the spatial distribution of rice AGB generated using the
spectral model for NSIC Re 160, with GNDVI as the predictor.
The map highlights relatively uniform estimates across the
field, reflecting GNDVTI’s capacity to capture vegetation vigor.

§ NSIC RC 160
~ SPECTRAL - BASED
RICE AGB ESTIMATION
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CRS: EPSG:32651 - WGS 84/ UTM z0ne 1N

Figure 5. NSIC Rc 160 Spectral-Based AGB Estimation

Figure 6 presents the structural model for NSIC Re 160, derived
from canopy height and canopy cover. The map shows greater
variability in biomass distribution, with some areas
underestimated compared to field conditions.
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Figure 6. NSIC Rc 160 Structural-Based AGB Estimation

Figure 7 illustrates the data fusion model for NSIC Rc 160,
integrating GNDVI, canopy height, and canopy cover. The
resulting AGB map displays improved differentiation across
plots, with better representation of biomass variation compared
to the structural model.
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Figure 7. NSIC Rc 160 Fusion-Based AGB Estimation

Figure 8 shows the spectral model for NSIC Rc 222, combining
NDYI and GNDVI. The spatial map indicates inconsistent
biomass predictions across the field, with patches of
overestimation and underestimation.
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Figure 8. NSIC Rc 222 Spectral-Based AGB Estimation

Figure 9 displays the structural model for NSIC Rc 222, based
solely on canopy height. The AGB map shows a clearer spatial
gradient that aligns more closely with observed field biomass.
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Figure 9. NSIC Rc 222 Structural-Based AGB Estimation

Figure 10 presents the data fusion model for NSIC Rc 222,
integrating NDYI, GNDVI, and canopy height. The spatial
distribution map demonstrates the most consistent and realistic
biomass patterns, minimizing both underestimation and
overestimation.
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Figure 10. NSIC Rc 222 Fusion-Based AGB Estimation

3.33 Model Validation: This section presents the results
of model validation using Leave-One-Out Cross Validation
(LOOCYV) to minimize bias and overfitting, given the limited

sample size. For each rice variety, three models, the
spectral-only, structural-only, and data fusion, were developed.

The corrected Akaike Information Criterion (AICc) was also
computed to support model selection. Table 9 summarizes the
performance metrics of the regression models for rice AGB

estimation.
RMSE | rRMSE
Data Type | Parameters R?
P ® | %
NSIC Re 160
Spectral y =-2225.41
(GNDVI) 13809.67x 0.51 124.30 47.05
Structural
(Canopy | y=-114.82+
Height & 223.00x, + 0.07 171.08 64.76
Canopy 3.36x,
Cover)
Data
Fusion _
ONDVL 173 S s
Canopy oot 0.33 146.09 55.30
; 181.24x, +
Height, &
0.60x;
Canopy
Cover)
NSIC Rec 222
Spectral y=-1789.72
(NDYI & | +1598.04x, + 0.33 146.09 55.30
GNDVI) 2934.80x,
Structural B
(Canopy | ~ +’8'2272%§f 036 | 78.83 | 44.19
Height) ’
Data
Fusion |y=-1258.281+
(NDYI, 559.83x, +
GNDVL & | 1782.83x,+ | 064 | 887 | 33.00
Canopy 582.820x;
Height)

Table 9. Summary of Rice AGB Estimation Models and
Performance Metrics After Leave One Out Cross Validation

https://doi.org/10.5194/isprs-archives-XLVI11-5-W4-2025-111-2026 | © Author(s) 2026. CC BY 4.0 License.

Table 10 presents the AICc values used to assess model fit and
complexity. Alongside RMSE, rRMSE, and R? these values
help identify the most effective model for estimating rice AGB
per variety.

Data Type AlCe A AICce

NSIC Rc 160

Spectral
(GNDVI)

Structural
(Canopy Height & Canopy 197.29 10.19
Cover)

187.10 0

Data Fusion
(GNDVI, Canopy Height, & 192.49 5.39
Canopy Cover)

NSIC Re 222

Spectral
(NDYI & GNDVI)

Structural
(Canopy Height)

174.21 8.61

165.60 0

Data Fusion

(NDYI, GNDVI, & Canopy 166.29 0.69

Height)

Table 10. Results of corrected Akaike Information Criterion
(AICc) for Rice AGB Estimation Models

For NSIC Rc 160, the spectral-only model using GNDVI
performed best, with consistent results across LOOCV (R? =
0.51, RMSE = 124.30, rRMSE = 47.05%) and independent
validation. It also had the lowest AICc (187.10), confirming its
suitability. Structural and data fusion models showed weaker
performance and higher AICc values, suggesting added
parameters did not improve accuracy and introduced noise.

In contrast, NSIC Rc 222 benefited from structural data. The
structural-only model had improved LOOCYV results (R? = 0.64,
RMSE = 58.87, rRMSE = 33.00%) and the lowest AICc
(165.60). The data fusion model had the best overall metrics (R?
= 0.66, RMSE = 57.56, rRMSE = 32.27%) and was consistent
with independent validation, despite a slightly higher AICc
(166.29). Since the AAICc between these two models was only
0.69, they are statistically equivalent in fit.

Overall, results indicate that spectral data alone suffices for
NSIC Rc 160, as the spectral model already yielded high
accuracy with minimal added value from structural data. This
suggests that Rc 160's canopy characteristics may be more
effectively captured through spectral responses such as
vegetation indices.

In contrast, NSIC Rc 222 benefited significantly from the
combination of both structural (LiDAR-derived) and spectral
inputs, indicating that this variety's AGB variation is influenced
by both canopy height and reflectance characteristics. The
strong performance of the fusion model for Rc 222 highlights
the importance of integrating LiDAR with multispectral
imagery to better represent its biophysical traits.
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The use of multiple evaluation metrics, including R?, RMSE,
and rRMSE, alongside AICc, ensured balanced assessment of
model quality. These insights emphasize the variety-specific
applicability of structural and spectral features in AGB
modeling, underlining the need to input selection based on crop
characteristics.

4. Conclusion

This study developed AGB estimation models for NSIC Rc 160
and NSIC Rc 222 using UAV-based LiDAR structural data and
PlanetScope spectral imagery. Three MLR models were built
per variety: spectral-only, structural-only, and data fusion.
Performance was assessed using LOOCYV, independent
validation, and AICc.

For NSIC Rc 160, the spectral-only model using GNDVI
performed best, with R? values of 0.51 (LOOCV) and 0.62
(validation), and the lowest AICc (187.10). Structural
parameters did not improve performance and introduced
variability, confirming Rc 160's responsiveness to spectral data
alone.

Conversely, Rc 222 benefited from structural input. The
structural-only model achieved R? = 0.64, while the data fusion
model reached R? = 0.66 (LOOCV) and 0.82 (validation), with
the lowest RMSE and rRMSE. Though the structural-only
model had a slightly lower AICc, the small AAICc (0.69)
indicates both models fit similarly well.

While the models were calibrated for specific varieties and
conditions, they offer a framework for AGB estimation that can
be adapted with local data. Due to the limited sample size,
LOOCV was used, though larger datasets in future studies
could allow for better generalization and the use of advanced
models like Random Forest.

In summary, MLR models using LiDAR and satellite data
effectively estimate rice AGB in a variety-sensitive way: Rc
160 favors spectral-only models, while Rc 222 performs better
with combined inputs. These models have potential for
precision agriculture and yield forecasting, especially if
expanded with more variables and seasonal data.
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