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Abstract 
 
Manual approaches to deforestation monitoring are time-consuming, inconsistent, and difficult to scale. Most existing systems rely 
on subjective interpretation or semi-automated tools, limiting repeatability and real-time assessment. While Sentinel-2 offers high 
spatial and temporal resolution, persistent cloud cover, especially in tropical areas like Palawan, hampers consistent observation. 
Moreover, most deforestation studies focus only on detecting past changes, lacking spatially aware forecasting capabilities. This 
study presents an automated, regionally trained pipeline for deforestation monitoring and forecasting using cloud-free Sentinel- 
2 imagery and machine learning. Imagery from 2017 to 2024 was preprocessed using OmniCloudMask for cloud and shadow 
masking, followed by VPint2 to fill cloud-covered gaps in the imagery. Manual annotations were used to classify land cover into six 
classes using Random Forest, XGBoost, and LightGBM. Random Forest achieved the best performance (90.59% accuracy). Forest 
classification in 2019 was validated against NAMRIA’s 2020 Land Cover Map, with an F1-score of 89.5% and IoU of 81% for the 
forest class, confirming strong agreement with ground truth for forest cover. Forest area declined gradually from 2017 to 2024, 
especially along edges near expanding croplands. To anticipate future change, a CNN–LSTM model was trained on tree probability 
maps to forecast forest cover from 2025 to 2029. The model achieved 93.12% accuracy and a forest F1-score of 92.48% when 
validated on 2024 data. The proposed system provides an objective and repeatable approach for forest monitoring and near-term 
forecasting. 

 
1. Introduction 

 
Deforestation remains a major global environmental issue, caus- 
ing biodiversity loss, ecosystem disruption, and accelerating 
climate change. In the Philippines—one of the most affected 
countries—Palawan stands out for its rich biodiversity and ex- 
tensive natural forests. However, the province has experienced 
significant deforestation, with over 44,000 hectares lost in the 
past two decades (Palawan News, 2021), driven by agriculture, 
illegal logging, mining, and infrastructure development (Nolos 
et al., 2022). Timely and accurate monitoring is essential to 
guide conservation and sustainable land use planning. 
 
Advances in remote sensing and machine learning have en- 
hanced deforestation analysis by improving detection speed and 
accuracy. Recent work has explored integrating artificial in- 
telligence and satellite imagery for forest surveillance (Haq et 
al., 2024). For example, Maheswara and Nurwatik (2024) ap- 
plied Sentinel-2 data and random forest classification to mon- 
itor forest cover and forecast changes in Indonesia (Maheswara 
and Nurwatik, 2024). 
 
Sentinel-2 is now widely used for land cover monitoring due 
to its high spatial resolution (10–60 m), frequent revisit in- 
tervals, and open-access availability (Phiri et al., 2020). Its 
multispectral bands support effective analysis of vegetation and 
surface dynamics. However, persistent cloud cover in tropical 
areas poses challenges to image usability. While cloud mask- 
ing tools like Fmask and UnetMobV2 exist, they often struggle 
with shadow detection and generalization. OmniCloudMask, 
trained specifically for Sentinel-2, offers improved detection 
accuracy—91.2% for clouds and 80.5% for shadows (Wright 
et al., 2025). Complementary to this, VPint2 enables cloud gap 

reconstruction using spatial-temporal interpolation without re- 
quiring extensive training data (Arp et al., 2024). 

Global land cover datasets such as Esri’s 10-Meter Map and 
Global Forest Watch have improved access to environmental 
insights (Esri and Microsoft, 2021, Global Forest Watch, 2024), 
but often suffer from poor performance in ecologically diverse 
regions due to limited regional representation (Zhang and Li, 
2022). Locally trained models have been shown to outperform 
these global products in producing more accurate and context- 
specific maps (Tadesse et al., 2024). 

While most platforms focus on classification and historical trends, 
few offer forecasting capabilities. Existing predictive approaches 
often rely on basic regressions that lack spatial nuance. Ro- 
bust forecasting requires models that can learn complex spatial- 
temporal patterns. 

This study proposes a machine learning-based pipeline for de- 
forestation monitoring and forecasting in Narra, Palawan using 
Sentinel-2 imagery and regionally trained data. The approach 
addresses current limitations by integrating cloud-resilient pre- 
processing, local annotation, ensemble classification, and deep 
learning forecasting to produce reliable and scalable forest cover 
predictions. 

 
2. Study Area and Dataset 

 
Figure 1 shows the study area of this research, which is Narra, 
Palawan. It was selected as the study site due to its ecological 
sensitivity and growing environmental risks linked to land cover 
change, particularly from mining activities. While large-scale 
deforestation has not been widely reported, areas like Bato-Bato 
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have experienced forest loss, flooding, and reduced agricultural 
productivity following the reopening of open-pit nickel mining 
in 2011 (Acero, 2023). Soil and vegetation studies in the area 
show elevated nickel contamination, with potential long-term 
impacts on ecosystem health and food security. Narra also cov- 
ers part of the Victoria-Anepahan Mountain Range (VAMR), a 
Key Biodiversity Area (KBA) known for its rich concentration 
of endemic and endangered species (Palawan News, 2022). 
 

 
Figure 1. Study Area. 

 
Administrative boundaries for Narra were sourced from the Phil- 
ippine Statistics Authority (PSA) and NAMRIA via the Hu- 
manitarian Data Exchange (HDX) platform (Philippine Statist- 
ics Authority (PSA) and National Mapping and Resource In- 
formation Authority (NAMRIA), 2023). Sentinel-2 Level-2A 
imagery was acquired through Sentinel Hub from 2017 to 2024 
at two-week intervals, selecting the least cloud-covered scenes 
during the dry season (February–April) for seasonal consist- 
ency. Each image includes thirteen spectral bands, with analysis 
focused on those available at 10-meter resolution: B02–B04 
(visible), B05–B07 (red edge), B08 and B8A (near-infrared), 

a multispectral data cube. The labeled data points were used to 
train a supervised land cover classification model. 
 
Following model evaluation, the best-performing model was 
applied to classify all preprocessed imagery across the study 
period. The resulting classified satellite images were used for 
subsequent forest change detection and future land cover fore- 
casting. 
 
3.1 Cloud Masking 
 
This study used the OmniCloudMask (OCM) deep learning al- 
gorithm for cloud and shadow masking on Sentinel-2 Level-2A 
imagery. OCM is a sensor-agnostic segmentation model trained 
on the global CloudSEN12 dataset, capable of detecting cloud, 
thin cloud, and shadow using only red, green, and near-infrared 
bands. It achieves over 91% accuracy for cloud/clear classes 
and 80% for shadows on Sentinel-2 data (Wright et al., 2025). 
Key innovations include dynamic Z-score normalization, which 
adjusts pixel intensities per patch to handle varying illumina- 
tion, and a mixed-resolution training strategy for consistent per- 
formance across sensors and spatial scales. 
 
OCM was selected for its robustness in isolating both thick and 
thin clouds—crucial for enabling accurate VPint2 interpolation 
of cloud-contaminated pixels. This ensured the creation of tem- 
porally complete, radiometrically consistent image sequences 
for reliable land cover classification and forecasting. The OCM 
library is open-source and accessible via PyPI1 which supports 
reproducibility and scalability in remote sensing workflows. 
 
3.2 Cloud Reconstruction 
 
Cloud-covered pixels in Sentinel-2 imagery were reconstructed 
using the VPint2 algorithm (Arp et al., 2024), a training-free 
spatial interpolation method tailored for optical satellite data. 
VPint2 fills in missing values by referencing the most recent 
cloud-free image of the same area and leveraging spatial rela- 
tionships within the landscape. 

and B11–B12 (shortwave infrared) (Sentinel Hub, 2023), (European After cloud masking via OmniCloudMask, masked pixels were 
Space Agency, 2023). These datasets provided the spectral and 
temporal foundation for the land cover analysis. 
 

3. Methodology 

The flowchart in Figure 2 presents the methodological work- 
flow used in this study for forest and non-forest classification 
and land cover forecasting using Sentinel-2 Level-2A imagery 
from 2017 to 2024. The process begins with the acquisition 
of spatially clipped Sentinel-2 imagery for the Narra, Palawan 
study area. Cloud-affected pixels were identified using the Omni- 
CloudMask algorithm, which performs multi-class pixel-wise 
classification to distinguish between clouds, shadows, cirrus, 
haze, and clear-sky conditions. Cloud-labeled pixels were sub- 
sequently masked from the imagery. 

To restore missing spectral information in the cloud-masked 
areas, VPint2 interpolation was applied, generating cloud-free 
composite images by leveraging temporal consistency across 
the time series. The reconstructed images were then used for 
pixel-level annotation, where forest and non-forest classes were 
manually labeled. These annotations were integrated with spec- 

treated as missing data. VPint2 did not copy reflectance values 
directly; instead, it computed spatial weights based on struc- 
tural similarity within the cloud-free reference. This approach 
preserves local textures and features, assuming that spatial struc- 
tures like roads, field edges, and forest boundaries remain stable 
over time—even as reflectance may vary due to seasonal or ve- 
getation changes. This ensured visually coherent and radiomet- 
rically consistent image sequences for land cover analysis. 
 
To minimize cloud contamination, we restricted image selec- 
tion to the dry season (February–April), when cloud cover is 
generally lower and vegetation is captured at a consistent phen- 
ological stage. A March acquisition with the least visible clouds 
was selected as the baseline composite. Residual clouds were 
addressed by dividing the scene into patches, and for each patch 
the least cloud-contaminated image was used as a reference be- 
fore applying VPint2. 

Similar to mosaicking, VPint2 relies on cloud-free observations 
from nearby dates, but instead of directly stitching them into the 
composite, it adjusts brightness, hue, and texture to match the 
base image. 

tral reflectance values through multiband reflectance prepro-   
cessing, involving per-band scaling, clipping, and stacking into 1 https://pypi.org/project/omnicloudmask/ 
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Figure 2. Research Flowchart. 
 
3.3 Annotation and Labeling 
 
Manual annotation was performed in QGIS to generate refer- 
ence data for supervised land cover classification. Using Sentinel- 
2 imagery and contextual knowledge, representative points were 
labeled into six classes based on an adapted version of Esri’s 
Land Cover schema (Esri and Microsoft, 2021): (1) Trees – tall, 
dense vegetation with continuous canopy; (2) Crops – cultiv- 
ated vegetation below tree height; (3) Built Area – impervious 
surfaces like buildings and roads; (4) Bare Ground – exposed 
soil, sand, or rock with minimal vegetation; (5) Rangeland – 
open areas dominated by grasses or shrubs; and (6) Water – 
consistently water-covered areas with little to no vegetation. 

To complement these pixel counts, qualitative assessment of 
classification maps confirmed that forest pixels appeared in con- 
tiguous upland blocks, built-up and cropland classes were con- 
centrated along lowlands and road networks, and water pixels 
were sharply delineated along coasts, consistent with known 
land use in Narra. 

Each point was georeferenced and aligned with the spatial res- 
olution of the VPint2-reconstructed Sentinel-2 stack. Annota- 
tions were then rasterized into pixel-wise class masks, forming 
the labeled dataset used to train and validate the classification 
model. 

Training data were collected from the 2017 imagery through 
manual annotation of land cover points. Using a single refer- 
ence year ensured that the model learned stable spectral–textural 
signatures and reduced risk of overfitting to annual fluctuations. 
We note that the absence of a formal probability-based sampling 
design (Stehman and Foody, 2019) may introduce bias and limit 
representativeness, so accuracy results should be interpreted with 
caution. 
 
3.4 Machine Learning Models 
 
Three ensemble models—Random Forest (RF), XGBoost, and 
LightGBM—were used for land cover classification. These 
methods are accurate, efficient, and robust with limited training 
data, making them well suited for remote sensing tasks. While 

deep learning models such as U-Net can achieve strong results, 
they require large labeled datasets and high computational re- 
sources, which were beyond the scope of this study. Since our 
goal is to develop an operational and deployable workflow, we 
prioritized lightweight ensemble methods that balance perform- 
ance, efficiency, and ease of integration. 
 
3.4.1 Random Forest Random Forest is a non-parametric 
ensemble method that builds multiple decision trees using ran- 
dom subsets of data and features. It reduces overfitting through 
averaging and performs well on noisy and imbalanced datasets. 
RF has been widely used in remote sensing for its strong clas- 
sification performance and ease of interpretation (Belgiu and 
Dra˘gu¸t, 2016). 
 
3.4.2 XGBoost XGBoost is an efficient gradient boosting 
algorithm that builds decision trees sequentially, correcting pre- 
vious errors with each iteration. It includes regularization and 
pruning mechanisms that improve generalization. XGBoost has 
shown strong results in land cover and vegetation mapping us- 
ing satellite data such as Sentinel-2 (Magidi et al., 2025). 
 
3.4.3 LightGBM LightGBM is a fast and memory-efficient 
boosting algorithm that grows trees leaf-wise with depth lim- 
its. Its histogram-based splits and native handling of categor- 
ical features make it ideal for large remote sensing datasets. It 
has been applied successfully to land cover classification across 
varied spatial and temporal resolutions (Li et al., 2024). 
 
3.5 Model Training, Evaluation, and Change Detection 
 
Three ensemble-based classifiers—Random Forest (RF), XG- 
Boost, and LightGBM—were trained to perform land cover 
classification using 13 spectral bands from reconstructed Sentinel- 
2 imagery (2017). Manually annotated points served as refer- 
ence labels, and min-max normalization was applied. A strati- 
fied 70/30 split ensured class balance across training and testing 
sets (Table 1). Hyperparameters were tuned via grid search with 
3-fold cross-validation, and model performance was evaluated 
using accuracy, precision, recall, F1-score, and class-specific 
Producer’s and User’s Accuracy. 
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Land Cover Class Train Count Test Count 
Tree 8,480 3,634 
Crops 7,913 3,392 
Built Area 7,300 3,128 
Bare Ground 6,911 2,962 
Rangeland 9,882 4,236 
Water 2,443 1,047 

Table 1. Number of training and testing samples per land cover 
class. 

 
The best-performing model, based on F1-score, was applied to 
classify annual images from 2017 to 2024. A 7×7 majority fil- 
ter was used post-classification to reduce speckle and improve 
spatial coherence (Danoedoro et al., 2021). To assess classi- 
fication accuracy and spatial reliability, the 2019 output was 
compared to NAMRIA’s 2020 Land Cover Map, which was de- 
rived from Sentinel-2 imagery (Dec 2018–Apr 2019) and val- 
idated through field surveys (Dag-uman, 2020). The NAMRIA 
map was reclassified into six land cover categories to match 
the model’s schema and served as a benchmark for evaluating 
thematic consistency. 

For change detection, we tracked the percentage share of each 
land cover class annually from 2017 to 2024. Instead of pixel- 
level differencing, a class-based statistical approach was used, 
computing per-class pixel counts as a proportion of the total 
classified area. This method captured general trends in land 
cover dynamics—highlighting shifts in forest, cropland, built- 
up, and other classes over time. 

3.6 Forecasting Using CNN-LSTM Architecture 
 
To forecast forest cover, we adapted a CNN–ConvLSTM–CNN 
architecture based on (Varma et al., 2024). The model used 
6-year sequences (2017–2022) of tree probability rasters, split 
into 64×64-pixel patches. Only patches containing some forest 
pixels were included to ensure informative learning. 

The architecture consists of: (1) a CNN encoder to extract spa- 
tial features from each annual frame; (2) a ConvLSTM unit to 
capture spatiotemporal dynamics; and (3) a CNN decoder to 
generate pixel-wise binary forest predictions. Training used the 
2023 land cover map as ground truth and validated on 2024 
data, with an 80/20 split. The model was trained for 50 epochs 
using the Adam optimizer and categorical cross-entropy loss, 
and saved for future forecasting from 2025 to 2029. 

 
4. Results and Discussion 

 
4.1 Cloud Masking and VPint2 Interpolation 
 
To address cloud cover in Sentinel-2 images, OmniCloudMask 
and VPint2 were used for masking and reconstruction, respect- 
ively. The resulting cloud-free mosaics supported year-to-year 
comparison from 2017 to 2024. As seen in Figure 5 in the ap- 
pendix, the resulting mosaics are visually consistent and cloud- 
free, making them suitable for year-to-year comparison from 
2017 to 2024. 

4.2 Model Evaluation 
 
We tested three ensemble models—Random Forest, LightGBM, 
and XGBoost—on a stratified test set covering six land cover 
classes. As shown in Table 2, Random Forest achieved the 
best performance (90.6% accuracy) and was selected for final 

mapping. To gain insight into how well the classes separate in 
feature space, we ran a t-SNE projection (Figure 3). Tree and 
Water samples formed clear clusters, while the rest—especially 
Crops, Range Land, and Built-up areas—showed some overlap, 
which helps explain the relatively lower performance in those 
categories. 
 

 
Figure 3. t-SNE projection of labeled land cover samples from 
13-band Sentinel-2 data. Tree and Water form distinct clusters, 

while other classes overlap due to spectral similarity. 

 
Table 3 shows that the model handled Tree, Water, and Bare 
Ground best, all with F1-scores over 96%. Crops and Range 
Land had the lowest scores, likely due to their spectral similar- 
ity and seasonal variation. Given its strong and consistent res- 
ults, Random Forest was selected for generating the final land 
cover maps. 

4.3 Land Cover Classification 

Maps show stable upland forest and gradual cropland expansion 
in lowland areas from 2017 to 2024. As shown in Figures 6, 
and 7 in the appendix, tree cover remained stable in the upland 
areas, while Croplands gradually expanded in the eastern and 
southeastern parts. Built-up areas also grew slightly near roads 
and settlements. 

Range Land often appeared in transitional zones between Tree, 
Crops, and Bare Ground, reflecting its mixed spectral nature. 
Water bodies stayed mostly consistent, with only minor sea- 
sonal or reconstruction-related changes. Overall, the classific- 
ation maps capture both stable land cover zones and areas of 
gradual change over time. 

One notable limitation was the spectral confusion observed between 
crops and rangeland, which are spectrally similar in single-season 
composites. This confusion introduces uncertainty for monitor- 
ing, particularly in transitional zones where croplands expand 
into previously mixed-use areas. Such misclassification may 
lead to under- or overestimation of cropland-driven forest con- 
version. Future work could reduce this issue by using additional 
vegetation indices, seasonal composites, or ancillary data such 
as topography. 

4.4 Comparison with NAMRIA 2020 Land Cover Map 

To evaluate the accuracy of the 2019 land cover output, we com- 
pared it with the 2020 Land Cover Map developed by NAM- 
RIA. This reference dataset was created through digital inter- 
pretation of Sentinel-2 imagery (10-meter resolution) acquired 
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Model Accuracy Precision Recall F1-Score 
XGBoost 0.8837 0.8838 0.8837 0.8837 
LightGBM 0.9015 0.9012 0.9015 0.9013 
Random Forest 0.9059 0.9058 0.9059 0.9058 

Table 2. Performance comparison of machine learning models for land cover classification. 
 

Class Producer’s Acc. User’s Acc. Precision Recall F1-Score 
Tree 0.9684 0.9524 0.9524 0.9684 0.9603 
Crops 0.8517 0.8452 0.8452 0.8517 0.8485 
Built Area 0.9057 0.8957 0.8957 0.9057 0.9007 
Bare Ground 0.9706 0.9843 0.9843 0.9706 0.9774 
Range Land 0.8243 0.8420 0.8420 0.8243 0.8331 
Water 0.9599 0.9654 0.9654 0.9599 0.9626 

Table 3. Per-class accuracy metrics for the Random Forest model. 
 

between December 2018 and April 2019, and was validated 
with a ground survey (Dag-uman, 2020). For alignment with 
our classification scheme, NAMRIA’s original 12 categories were 
reclassified into six broader classes as follows: (1) Forest – in- 
cluding Closed Forest, Open Forest, and Mangrove Forest; (2) 
Cropland – comprising Annual Crop and Perennial Crop; (3) 
Built-up – consisting only of Built-up areas; (4) Bare Ground 
– representing Open/Barren land; (5) Rangeland – combining 
Brush/Shrubs and Grassland; and (6) Water/Others – covering 
Fishpond, Inland Water, and Marshland/Swamp. The compar- 
ison was limited to the Narra municipal boundary, with the 
NAMRIA map rasterized to 10-meter resolution to match the 
model output. 

As shown in Table 4, the model achieved an overall accuracy 
of 71.5% , indicating moderate to substantial agreement with 
the reference. Class-specific metrics (Table 5) show strong per- 
formance for the Forest class (F1 = 0.895, IoU = 0.81), which is 
crucial for deforestation monitoring. Cropland and Rangeland 
were classified moderately well, while Built-up, Bare Ground, 
and Water/Others were more difficult to distinguish—likely due 
to spectral confusion, small object size, or limited training data. 
Despite these limitations, the results validate the model’s ability 
to map forest cover accurately and support its use in environ- 
mental monitoring. 
 

Metric Value 
Overall Accuracy 0.715 
Mean Intersection-over-Union (IoU) 0.365 

Table 4. Accuracy metrics comparing model output and 2020 
NAMRIA land cover. 

 
Class IoU Precision Recall F1-score 
Forest 0.8099 0.841 0.956 0.895 
Cropland 0.3942 0.748 0.455 0.565 
Built-up 0.1917 0.574 0.224 0.322 
Bare Ground 0.2023 0.233 0.607 0.337 
Rangeland 0.4210 0.528 0.676 0.592 
Water/Others 0.1691 0.424 0.220 0.289 

Table 5. Per-class evaluation metrics. 

4.5 Change Detection 

Deforestation was quantified using post-classification differen- 
cing, where a change is defined if a pixel’s class label differed 
between two years. This approach not only identifies where 
changes occurred but also specifies the type of transition (e.g., 
forest to cropland, forest to built-up). Such transition-level in- 
formation provides more insight into land-use pressures than 
binary change/no-change labels. Although direct change de- 
tection from raw time-series imagery is possible, it requires a 

dataset specifically labeled for change and no-change, which 
was not available for this study. 
 
From 2017 to 2024, land cover in Narra, Palawan changed gradu- 
ally. Tree cover remained dominant but declined steadily, likely 
due to expanding agriculture and rural settlements. Cropland 
increased notably between 2017 and 2019, while built-up areas 
grew slowly, reflecting ongoing municipal development (Table 6). 
Range Land increased slightly in recent years, possibly indicat- 
ing conversion from former forest or cropland areas into more 
open, mixed-use landscapes. Bare Ground and Water remained 
relatively stable, with only minor year-to-year changes that may 
be tied to seasonal variation or classification differences. Over- 
all, the results suggest low but ongoing land use pressure, with 
slow forest loss and crop expansion being the most consistent 
trends. 
 

Year Tree Crops Built 
Area 

Bare 
Ground 

Range 
Land Water 

2017 41.62 9.60 1.43 0.90 20.85 0.92 
2018 39.87 10.82 1.92 1.03 20.84 0.83 
2019 37.51 13.40 1.86 1.36 20.50 0.69 
2020 36.60 13.25 1.43 1.46 21.80 0.77 
2021 37.43 11.83 1.92 1.36 21.77 1.00 
2022 37.65 10.29 2.41 1.04 22.67 1.25 
2023 37.69 11.20 2.26 1.13 21.75 1.28 
2024 36.33 12.00 2.02 1.28 22.86 0.83 

Table 6. Annual area (in kilohectares, kha) of land cover classes 
in Narra, Palawan from 2017 to 2024. 

 
4.6 Forecasting 
 
A CNN–LSTM model was trained on tree probability maps 
from 2017 to 2022 and used to forecast forest/non-forest classi- 
fications from 2025 to 2029. Model performance was first val- 
idated by predicting tree cover for 2024 and comparing it with 
the actual classification, achieving strong results (overall accur- 
acy 93.12% and F1-score 92.48% for forest). This indicates re- 
liable identification of forested areas in the near term. However, 
forecasts were validated only against 2024 data, since no inde- 
pendent land cover maps beyond this year were available. As 
a result, predictions for later years, especially 2029, should be 
interpreted with caution and considered indicative rather than 
definitive. 
 
The forecasted maps (Figure 9) show a gradual but steady de- 
cline in forest cover, with the most noticeable reductions occur- 
ring after 2025 along agricultural boundaries and in the western 
part of Narra. The area trend derived from the forecast maps 
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(Figure 4) reflects this continued pressure from land conver- 
sion. While these results are consistent with observed trends 
from 2017 to 2024, they also emphasize the need for proactive 
monitoring and management. To strengthen long-term forecast- 
ing, future work will incorporate updated reference maps from 
NAMRIA or field surveys, explore hindcasting experiments to 
test robustness, and generate cloud-frequency and uncertainty 
layers. These additions will help distinguish highly reliable 
predictions in cloud-free zones from less certain estimates in 
persistently cloudy areas. 
 

Metric Value 
Overall Accuracy 0.9312 
Precision (Tree) 0.9787 
Recall (Tree) 0.8766 
F1-score (Tree) 0.9248 
Precision (Non-tree) 0.8951 
Recall (Non-tree) 0.9822 

Table 7. Evaluation metrics for tree cover forecasting in 2024. 
 

 
Figure 4. Trend in tree area from 2017 to 2024 (actual) and 2025 
to 2029 (forecasted). The dashed line indicates the beginning of 

the forecast period. 

 
5. Conclusion 

 
This study developed a cloud-aware and locally trained land 
cover classification and forecasting pipeline for Narra, Palawan 
using Sentinel-2 imagery. The integration of OmniCloudMask 
and VPint2 reconstruction allowed consistent, cloud-free com- 
posites to be generated for the dry season from 2017 to 2024. 
Supervised classification using Random Forest outperformed 
other ensemble models and accurately mapped six major land 
cover classes. 

The analysis revealed that while tree cover remained dominant, 
its extent gradually declined over the study period, particularly 
along agricultural frontiers. Change detection captured these 
class-specific shifts spatially and temporally. 

Finally, a CNN-LSTM model was employed to forecast forest 
cover for 2025–2029, showing a potential continuation of this 
declining trend. These forecasts provide early warning signals 
for decision-makers and emphasize the need for proactive land 
management and conservation strategies. 

 
6. Recommendations 

 
To strengthen land monitoring in Narra, Palawan, several steps 
are recommended. First, the projected forest loss underscores 
the need for stronger conservation policies, particularly in areas 
experiencing agricultural expansion. Second, regular updates 
to training datasets and the use of recent satellite imagery will 
improve the responsiveness of the models to ongoing changes. 

The inclusion of socio-economic and zoning information such 
as roads, land permits, and population growth can further refine 
forecasts by linking observed patterns with potential drivers. 
Third, future versions of the pipeline may adopt advanced ar- 
chitectures such as attention-based networks or spatiotemporal 
transformers, which are better suited to capturing long-term dy- 
namics. Expanding the training dataset through probability- 
based sampling designs (Stehman and Foody, 2019) would also 
reduce bias and provide a stronger foundation for testing deep 
learning approaches once larger datasets become available. The 
transferability of the workflow should be assessed by apply- 
ing it to other regions with different land cover dynamics and 
socio-economic conditions to ensure broader applicability. Ad- 
dressing class confusion, particularly between crops and range- 
land, is also a priority. Potential solutions include incorporating 
additional spectral indices such as NDVI and EVI, integrating 
seasonal composites to capture phenological differences, and 
using ancillary data such as topography or zoning maps to im- 
prove separability. Finally, deploying the workflow as a web 
or mobile application would empower local governments, civil 
society, and communities to monitor forest change in near real 
time, thereby enhancing transparency and enabling proactive 
responses to emerging deforestation risks. 
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Figure 5. VPint2 cloud-minimization workflow. (a) Least-cloudy base image (patch) from March 12, 2017; (b) Cloud mask from 
OmniCloudMask: black = clear, gray/white = cloud and shadow.; (c) base image with mask applied, showing residual cloud/opaque 
areas; (d) cloud-free reference from July 9, 2017 (nearest low-cloud acquisition for this patch); (e) final result after applying VPint2. 
Image selection was restricted to the dry season (Feb–April), and the March scene was chosen as the baseline to keep phenology and 
illumination consistent. For each patch, a nearby cloud-free observation (here July 9) was used only as a donor. Rather than stitching, 

VPint2 transfers brightness, hue, and local texture from the donor to the base so infilled areas match the base image. 
 

 
Figure 6. Land Cover maps of Narra, Palawan (2017–2024) from VPint2-reconstructed Sentinel-2 imagery, classified into six classes 
using the top-performing ML model. Forest cover remains stable in uplands, while croplands and built-up areas expand in lowlands 

 

 
Figure 7. Annual tree probability maps (2017–2024) for Narra, Palawan, derived from the best-performing classification model. 
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Figure 8. Zoomed-in view of annual tree probability maps (2017–2024) for a representative area in Narra, Palawan. The closer look 
highlights gradual forest loss and expansion of non-forest classes, particularly along the lowland–upland transition zones. 

 

 
Figure 9. Forecasted binary tree masks from 2025 to 2029 in Narra, Palawan. Areas in green represent predicted forest cover. 
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