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Abstract 
 
Agricultural drought has a considerable impact on agricultural productivity in the Philippines. This study evaluates the performance of 
agricultural drought indices: Standardized Vegetation and Temperature Ratio (SVTRe) and Vegetation Health Index (VHIe) derived 
from the Enhanced Vegetation Index (EVI) of the Moderate Resolution Imaging Spectroradiometer (MODIS) to assess drought 
conditions across the Philippines from 2000 to 2024. Using run theory, we quantified drought frequency, duration, and intensity, 
identifying drought-prone regions such as Cagayan Valley, Western Luzon, and Western Visayas. SVTRe recorded 15 to 20 incidents, 
and was more sensitive to moderate droughts, while VHIe recorded 15 to 30 events, capturing more extreme conditions. Both indices 
revealed consistent spatial and temporal drought patterns, with Mann-Kendall trend analysis indicating increased severity throughout 
the study period. SVTRe demonstrated higher overall accuracy (58.25%), whereas VHIe, achieved a higher hit rate (90.14%). Taken 
together, these indices offer complementary tools towards improving drought monitoring and enhancing agricultural resilience in the 
Philippines. 
 
 

1. Introduction 

Drought is a natural hazard characterized by prolonged periods 
of below-average rainfall, which can severely affect agriculture, 
ecosystems, industries, and economies (Perez et al., 2016). It is 
typically categorized into four stages: meteorological, 
hydrological, agricultural, and socio-economic. Agricultural 
drought occurs when insufficient soil moisture damages crops, 
causing reduced yield. The progression of drought begins with 
meteorological drought, leading to agricultural drought as soil 
moisture declines, followed by hydrological drought, affecting 
water supply in various economic sectors and causing adverse 
impacts such as food insecurity and economic losses. Hence, 
monitoring agricultural drought is critical for minimizing its 
impacts on crop productivity. 
 
Various drought indices have been developed to monitoring 
agricultural drought characteristics, progression, and impacts to 
help prevent significant crop losses. Commonly used indices 
include Palmer’s Drought Severity Index (PDSI; Palmer, 1965), 
which measures long-term drought by analyzing precipitation, 
soil moisture, and temperature; the Crop Moisture Index (CMI; 
Palmer, 1968) which tracks short-term changes in soil moisture; 
and the Standardized Precipitation Index (SPI) which provides 
flexible precipitation anomaly assessments (McKee et al, 1993). 
However, traditional data collection methods have limited spatial 
and temporal coverage. This has led  to the development of 
satellite-derived indices such as Standardized Precipitation 
Evapotranspiration Index (SPEI), Normalized Difference 
Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), 
Vegetation Health Index (VHI), and Temperature-Vegetation 
Difference Index (TVDI) to aid in assessing agricultural drought 
and plant health.  
 
In the Philippines, the Philippine Atmospheric, Geophysical, and 
Astronomical Services Administration (PAGASA) utilizes 
ground-based monitoring indices such as SPI and Percent 

Normal Precipitation (PNP) for operational drought monitoring. 
The Standardized Vegetation Temperature Ratio (SVTR) has 
been effective for localized drought assessments, especially 
during the 2015-2016 El Niño (Macapagal, 2017; Perez, et al., 
2016). Recent efforts have introduced refined drought indices to 
better capture vegetation stress and agricultural impacts. For 
example, Rojas (2020) enhanced VHI integration into a 
comprehensive Agricultural Stress Index (ASI) to evaluate dry 
periods and the extent of arable land affected. Perez et al. (2022) 
demonstrated that SVTR and VHI detected vegetation stress 
affecting nearly 50% of the country during the 2019 El Niño 
event. Valete et al. (2022) proposed the Combined Drought Index 
(CDI) which combines NDVI, Land Surface Temperature (LST), 
and SPI to monitor the transition from meteorological to 
agricultural drought.  
 
EVI measures vegetation greenness with improved sensitivity 
over the NDVI in densely vegetated regions by reducing 
atmospheric interference and reducing canopy background noise 
(Didan and Muñoz, 2019). This enhanced sensitivity of EVI 
allows for better assessment of vegetation health under drought 
conditions and captures extreme drought events closely aligned 
with meteorological drought indicators. Studies have shown that 
EVI outperforms NDVI-based indices like VCI and VHI in 
detecting severe droughts (Xie and Fan, 2021). Despite its 
advantages, EVI remains underutilized in the Philippines for 
agricultural drought monitoring. Traditional indices, while 
common, show limitations in local drought monitoring due to 
spatial constraints of ground-based methods. NDVI, while 
widely used, struggles with short-term vegetation stress 
detection, while EVI exhibits superior sensitivity (National 
Aeronautics and Space Administration, n.d.).  
 
This study aims to address this gap by developing and evaluating 
the performance of EVI-derived drought indices—the 
Standardized Vegetation and Temperature Ratio (SVTRe) and 
Vegetation Health Index (VHIe) for agricultural drought 
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monitoring in the Philippines. Specifically, this study aims to 
develop SVTRe and VHIe using EVI, characterize drought 
occurrences with MODIS-derived data, investigate the spatial 
and temporal progression of drought, and determine the 
correlation between these drought indices and quarterly rice 
yield. 
 

2. Materials and Methods 

2.1 Study Area 

This study focused on the Philippines, a tropical archipelago in 
Southeast Asia that is highly vulnerable to climate-related 
hazards. Drought is one of the major hazards affecting the 
country, resulting to significant damage to agriculture, 
particularly rice production. 
 
Rice is a staple crop and a key contributor to national food 
security and agricultural output. Around 32% of the country's 
terrain is devoted to farming, with rice and corn as the two most 
widely cultivated crops (PSA, 2024). Rice covers approximately 
30% of cultivated land and goes through a growth cycle 
consisting of vegetative, reproductive, and ripening phases, 
typically lasting 100 to more than 160 days, depending on the 
variety. In 2023, national rice production totaled 7.24 million 
metric tons, a slight increase from the previous year. The Ilocos 
Region led in production, followed by Central Luzon and 
Cagayan Valley. Although there was a 1.5% reduction in 
harvested area, yield per hectare rose from 4.06 to 4.13 metric 
tons, with Central Luzon having the highest yield at 4.96 metric 
tons (PSA, 2024). 
 
2.2 Datasets and pre-processing 

 
 

Figure 1. Process flowchart of the study. 
 

In this subsection, we describe how we calculated SVTRe and 
VHIe, and then how these indices will be used to characterize 
drought. Figure 1 shows the process flowchart, which starts with 
data collection and continued with pre-processing to obtain 
monthly satellite data and quarterly crop yield. We then 
processed the data using the appropriate equations to obtain the 
SVTRe, VHIe, and Rice standardized yield residual series (Rice 

SYRS). Following that, various analyses were conducted to 
achieve each of the study's specific objectives. 
 
2.2.1 Satellite data  
 
EVI and LST datasets were derived from MODIS land products 
Version 6 Level 3 (https://modis.gsfc.nasa.gov/data/dataprod/). 
MOD13C2 and MOD11C3 represent EVI and LST, respectively. 
Both datasets contain monthly data with a spatial resolution of 
0.05° or 5.6 km, covering from February 2000 to the present. For 
this study, data were extracted for the Philippine domain from 
February 2000 to February 2024. 
 
2.2.2 ENSO data  
 
The Oceanic Niño Index (ONI) for the same period was obtained 
from the NOAA Climate Prediction Center 
(https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/
ensostuff/ONI_v5.php). ENSO has two phases: warm phase (El 
Niño) that causes delayed rainy season and triggers drought, and 
cool phase (La Niña) that brings more rain, especially in the 
Western Pacific Region. The use of ONI in this study is 
motivated by previous findings that droughts in the Philippines 
are strongly linked with ENSO variability (Hilario et al., 2009). 
 
2.2.3 Rice production, Harvest, and Damage Statistics  
 
Rice production and harvested area statistics were obtained from 
the Philippine Statistical Authority's (PSA) OpenSTAT platform 
(https://openstat.psa.gov.ph/PXWeb/pxweb/en/DB/DB__2E__C
S/?tablelist=true&rxid=bdf9d8da-96f1-4100-ae09-
18cb3eaeb313). These are quarterly data, aggregated at the 
provincial level. For this analysis, data from the second quarter 
of 2000 through the fourth quarter of 2023 were used to match 
the coverage of SVTRe and VHIe, which began in February 
2000. 
 
The rice crop damage report from the Department of Agriculture 
– Food and Agriculture Organization (DA-FAO) during 2018-
2019 El Niño was used for accuracy assessment. Additionally, a 
rice map from the Philippine Rice Information System (PRISM) 
of the Philippine Rice Research Institute (DA-PhilRice) was used 
to mask the satellite data, isolating the rice areas, to correlate with 
the rice yield and evaluate the indices’ performance against rice 
damage reports. 
 
2.2.4 Data pre-processing  
 
The downloaded MODIS EVI and LST values were pre-
processed by multiplying it with the appropriate scale factors: 
0.001 for EVI and 0.02 for LST. LST values are also converted 
from K to °C from the scaled LST. The outcome would be 
monthly EVI and LST values, with EVI being unitless and LST 
being in degrees Celsius. To match the satellite dataset to the 
quarterly rice dataset’s temporal resolution, the values were 
computed as three-month averages. 
 
For the rice datasets, rice yield was computed using the crop yield 
equation: 
 

Crop yield =  
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

  (1) 
 
where      crop production = amount of rice paddy harvested  
                area harvested = area where the rice paddies are 

harvested. 
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2.3 Data processing 

SVTRe was computed per pixel using pre-processed MODIS 
EVI and LST, as defined by the equation: 
 

  SVTRe = 
𝑅𝑅𝑖𝑖− 𝑅𝑅�𝑖𝑖
𝜎𝜎𝑅𝑅

     (2) 

 
where 𝑅𝑅𝑖𝑖  = quotient of NDVI over LST for month i, 
 𝑅𝑅�𝑖𝑖  = mean of EVI-LST ratio for month i, 

𝜎𝜎𝑅𝑅  = standard deviation of EVI-LST ratio for month i. 
 
SVTRe values are classified based on severity:  Normal, Mild, 
Moderate, and Severe (Table 1), where drought occurrence using 
SVTRe will start if  SVTRe < -0.50. 
 

SVTRe Values Drought Severity 
≥ 0.50 Normal 

-1.00 to -0.51 Mild 
-2.00 to -1.01 Moderate 

< 2.00 Severe 
Table 1. SVTRe drought severity classification. Adapted from 

Macapagal (2017). 
 
VHIe was also derived from the pre-processed MODIS EVI and 
LST data. The Vegetation Condition Index (VCI) and 
Temperature Condition Index (TCI) were first calculated using 
Equations 3 and 4 below.  
 

 VCI = 100 x 
𝐸𝐸𝐸𝐸𝐸𝐸− 𝐸𝐸𝐸𝐸𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚

𝐸𝐸𝐸𝐸𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚− 𝐸𝐸𝐸𝐸𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚
        (3) 

 

 TCI = 100 x 
𝐿𝐿𝐿𝐿𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚− 𝐿𝐿𝐿𝐿𝐿𝐿

𝐿𝐿𝐿𝐿𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚− 𝐿𝐿𝐿𝐿𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚
         (4) 

 
where VCI = vegetation condition index 
              TCI = temperature condition index  
               EVI = monthly enhanced vegetation value 
               EVImin = minimum EVI value from the series 
               EVImax = maximum EVI value from the series 
               LST = land surface temperature value 
 LSTmin = minimum LST from the series 
               LSTmax = maximum LST from the series 
 
VHIe values ranged from 0 to 100, with lower values indicating 
vegetation stress or drought conditions, and higher values 
representing healthier vegetation. 

 
VHIe = αVCI + (1-α)TCI         (5) 

 
where VHIe = Vegetation Health Index using EVI as 

vegetation index 
                 α = 0.5 
                VCI = vegetation condition index 
                TCI = temperature condition index  
 
Similarly, VHIe values can be classified into five categories: 
Normal, Mild, Moderate, Severe, and Extreme (Table 2), where 
drought occurrence using VHIe will start if the values drop at 
VHIe = 40. The drought severity classification for VHIe follows 
the same drought severity classification for VHI.  

 
The VHI threshold of 40 has been widely used in the literature to 
indicate the onset of drought stress, where VHI ≤ 40 denotes 
drought conditions and values above this threshold indicate no 

drought (Ghaleb, et al., 2015; Kogan, 2001; Kogan, 1995). This 
criterion is based on empirical studies linking VHI values to 
vegetation stress and agricultural yield reduction in various 
climatic regions, including tropical and subtropical areas. 
 

Drought Severity Values 
Extreme <10 
Severe <20 

Moderate <30 
Mild ≤40 

Normal >40 
Table 2. VHIe drought severity threshold. Adapted from 

Ghaleb, et al. (2015). 
 
For the crop yield, crop yield anomalies were first calculated to 
determine the deviation from the long-term mean and then 
standardized to generate the standardized yield residual series 
(SYRS) following the  method described by Waseem, et al., 2022 
and Potopová , et al., 2015: 
 

SYRS = 
𝑌𝑌𝑖𝑖− 𝜇𝜇
𝜎𝜎

    (6) 
 
where Yi = residual from the detrended yield for month i,  
 μ = mean of residuals 
 σ =  standard deviation of the residuals. 
 
2.4 Data Analysis 

To characterize drought occurrences using SVTRe and VHIe,  
drought events were identified when their values are below the 
threshold values of -0.50 for SVTRe and 40 for VHIe. Each 
drought episode was described using run theory (Yevjevich, 
1967) metrics according to duration (DD), defined as the number 
of months the index remained below the threshold; severity (DS) 
calculated as the cumulative index deficit; and intensity (DI), the 
ratio of severity to duration. To determine the spatial extent of 
the drought, the proportion of impacted areas was computed. 
 
Spatial and temporal progression of drought was conducted to 
investigate the patterns during the weak (2018-2019), moderate 
(2009-2010), and strong (2014-2016) El Niño events. We then 
evaluated the drought events during El Niño events by 
conducting correlation analysis for SVTRe and VHIe for the 
period February 2000 to February 2024. The Mann-Kendall test 
was performed to detect temporal trends. Pearson correlation 
analysis was performed to examine the relationship between the 
drought indices, and other parameters such as SYRS for rice, and 
ONI. These analyses provided insights into the ENSO-driven 
drought dynamics across the country. 
 
To evaluate the reliability of SVTRe and VHIe in detecting 
agricultural drought, we evaluated these indices against rice 
damage reports from DA-FAO during the 2018-2019 weak El 
Niño event. We define drought event periods where the values of 
the calculated indices were less than index thresholds for at least 
two months (-0.5 for SVTRe and 40 for VHIe). Both datasets 
were transformed into binary classifications (drought or no 
drought), where 440 of the 1,267 towns identified with farm rice 
reported damage from the drought. Model performance was 
evaluated using accuracy metrics, including accuracy, precision, 
recall, and specificity. By confirming the indices' usefulness in 
identifying the effects of drought, this validation helped to 
develop systems for drought prediction and response. 
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3. Results 

3.1 Drought Characterization using SVTRe and VHIe 

Both indices identified drought-prone areas, including Cagayan 
Valley, western Luzon, Western Visayas, and western Mindanao. 
Figure 2 showed that SVTRe identified 15 to 20 drought events 
(Figure 2a), with VHIe identifying 15 to 30 (Figure 2b). 
Moreover, VHIe detected more extreme drought events, while 
SVTRe showed a more balanced detection of moderate droughts. 
 
Drought duration analysis shows regions classified under Type I 
climate (e.g., Western Luzon, Visayas, Zamboanga Peninsula), 
experienced mean drought durations of 9 to 14 months or longer. 
These regions are more susceptible due to factors like El Niño, 
rain-shadow effects, and weak monsoonal influences. In contrast, 
eastern areas like Eastern Visayas and Bicol experienced shorter 
droughts due to exposure to moist trade winds and typhoons. 
 
 

 
 

 
Figure 2. Spatial distribution of the number of drought events 

based on (a) SVTRe and (b) VHIe. 
 
When looking further in terms of percent area damage shown in 
Figure 3, both SVTRe and VHIe showed similar trends in 
percentage areas affected by agricultural drought, highlighting 
their potential for rapid and initial assessment of the extent of 
damage during drought. Furthermore, when evaluating the spatial 

coverage affected based on severity, SVTRe has more percentage 
area affected due to moderate drought. On the other hand, VHIe 
has more percentage area affected due to extreme drought. These 
results suggest that the indices were able to identify the affected 
area, but with difference in severity of the drought. Hence, further 
field validation is recommended for verification on the severity 
of the drought in the affected areas. 
 

 
 

 
Figure 3. Total percentage area affected per drought severity 

using (a) SVTRe and (b) VHIe. 
 
3.2 Spatial and temporal distribution of drought 

The spatial and temporal progression of agricultural drought was 
analyzed using both indices during the strong El Niño event from 
November 2014 to April 2016.  
 

 
 

Figure 4. Spatial extent and progression of drought based on 
SVTRe. As both SVTRe and VHIe showed similar patterns, 

only SVTRe is displayed in this paper.  
 
Severe drought conditions were highlighted in red and wetter-
than-normal conditions in blue (Figure 4). Mild drought occurred 

(a) 

(b) 

(a) 

(b) 
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initially, but conditions intensified in mid-2015 (panels 6 to 8 in 
Figure 4), particularly in central and southern regions. By late 
2015 (panels 12 to 15 of Figure 4), severe drought was 
widespread in Mindanao and western Visayas, reaching its height 
from March to April 2016, coinciding with the peak phase of the 
2015–2016 El Niño, showing significant vegetation stress. After 
the event ended in May 2016, some recovery was noted.  
 
3.3 Spatial distribution of drought trends using SVTRe 
and VHIe 

To assess long-term trends in agricultural drought, the Mann-
Kendall trend test was applied to the SVTRe and VHIe time 
series from 2000 to 2024. Autocorrelation was first applied  using 
the Durbin-Watson statistics to ensure validity in regions where  
autocorrelation was detected, the time series were first detrended 
using linear and polynomial regression models before applying 
the Mann-Kendal test. This preprocessing ensured that observed 
trends were not artifacts of serial correlation. 
 

 
 

 
 

Figure 5. Correlation between (a) SVTRe and ONI, and (b) 
VHIe and ONI. 

 
The results showed that key-drought-prone areas, particularly 
Northern Luzon and parts of the western region of the country, 

experienced slight but statistically significant declines in index 
values, suggesting drought severity over time during the study 
period. Sen's slope values are relatively low (-0.084 for SVTRe 
and -0.087 for VHIe), which implied gradual increase of drought 
intensity over the past 24 years. Although the results showed that 
this change is not abrupt, it highlights that conditions for these 
regions are increasingly drought prone.  
 
3.4 Relationship between drought indices and ENSO 

We explored the correlation between ONI and agricultural 
drought indices which relates the intensity of droughts with the 
El Nino Southern Oscillation (ENSO) phases. The results in 
Figure 5 showed positive results indicating that the drought 
regions did have some correlation, albeit moderate negative 
correlations, with the drought indices and ONI (drought 
correlation index lower than -0.35). SVTRe showed having 82% 
and 5% of the spatial extent being weak and moderate negative 
correlations respectively. VHIe showed weaker correlations with 
84% and 0.2% of the spatial extent being considered weak and 
moderate negative correlations respectively. Lag relationship 
may be further explored using lag correlation analysis. 
Nonetheless, results show the potential of drought indices to 
delineate regions where significant drought impacts are expected 
during the El Niño phases 
 
When looking at the correlation per month as seen in Figure 6, 
the months of January to April showed to have the most areas 
with moderate to high negative correlation for both SVTRe and 
VHIe. Interestingly, the mentioned months were within the dry 
season of the country (November to May) according to DOST-
PAGASA (n.d.). Thus, the months of January to April would be 
considered critical periods for drought impact during El Niño, 
especially to the areas vulnerable to drought. 
 

 
 

Figure 6. Spatial extent and progression of drought based on 
SVTRe. As both SVTRe and VHIe showed similar patterns, 

only SVTRe is displayed in this paper. 
 
3.5 Relationship between drought indices with rice yield 

The study analyzed the correlation between quarterly rice yield 
per province and average vegetation temperature (VT) indices. 

(a) 

(b) 
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Figure 7 showed a weak to moderate yet significant positive 
correlation in drought-affected areas, indicating that higher VT 
values correlate with higher rice yields and vice versa. Moderate 
correlations emerged in Northern Luzon, the western regions, and 
western Mindanao, with maximum correlations of 0.427 for 
SVTRe and 0.457 for VHIe.  
 

 
 

 
 

Figure 7. Correlation between standardized yield residual series 
for rice and VT indices for SVTRe (a) and VHIe (b). 

 
Many provinces exhibiting moderate positive correlations with 
rice yield were statistically significant (p < 0.05), suggesting a 
weak to moderate causal relationship between EVI-based VT 
indices and rice yield. The analysis showed SVTRe had more 
significant correlations with rice yield in Mindanao while VHIe 
showed more significance in Luzon. Despite these correlations, 
the indices alone may not fully account for yield variability, as 
other factors like climate extremes and irrigation practices also 
play a crucial role. Additionally, spatial variability in farming 
systems and the timing of satellite observations could weaken 
this relationship. The study recommends integrating 
meteorological data and ground-based observations to enhance 
the predictive accuracy of these indices for rice yield forecasting 
and suggests further research on their applicability to other crops 
in the country. 

3.6 Accuracy assessment of the drought indices during 
2018-2019 Weak El Niño 

The performance evaluation of the EVI-derived indices during 
the 2018-2019 Weak El Niño was done using the reported 
affected rice area data as a reference. The confusion matrix was 
used to determine the number of places affected by the drought. 
Table 3 showed the value of  the different performance metrics 
to both indices on rice.  
 

Performance Metrics (%) SVTRe VHIe 

Accuracy 58.25 36.15 

Precision 27.10 29.25 

Hit Rate (Sensitivity) 29.01 90.14 

Miss Rate 70.98 9.86 

False Alarm Rate 30.37 84.87 

True Negative Rate 
(Specificity) 

69.63 15.13 

Table 3. Performance score metrics from the use of confusion 
matrix in relation to the agricultural drought indices on rice. 

 
The result from Table 3 showed that SVTRe demonstrated a 
higher accuracy of 58.25% compared to VHIe's 36.15%, 
primarily due to more true negatives (TN) and fewer true 
positives (TP). In regions like Northeastern Luzon and Western 
Visayas during the weak El Niño, there were more false negatives 
(FN), indicating SVTRe's inability to capture drought-affected 
areas accurately. This may be attributed to drought severity 
remaining above the detection threshold for many months.  
 
Although SVTRe is more accurate in identifying non-drought 
conditions, its lower hit rate suggests a need for enhancement in 
detecting actual drought events, particularly in moderately 
affected regions. Conversely, VHIe had lower accuracy due to 
fewer TP and significantly fewer TN, yet a higher hit rate of 
90.14% was observed. This implies VHIe was effective in 
identifying true drought occurrences, evidenced by more TP 
relative to FN. However, the higher number of false positives led 
to increased false alarm rates (FAR), with some areas incorrectly 
categorized as drought-affected despite no reported rice damage. 
This may result from pre-peak rice harvests in drought areas, 
leading to increased temperature readings in VHIe. Thus, while 
VHIe is advantageous for early drought detection, the elevated 
FAR indicates a requirement for refinement to enhance precision 
and reduce unnecessary alerts for effective mitigation efforts.  
 
Low precision from both indices is likely due to insufficient 
differentiation between irrigated and rain-fed rice fields, 
alongside limited calibration of parameters such as constant (α) 
in VHIe. The confusion matrix was applied regionally across 
Luzon, Visayas, and Mindanao, with consistent results indicating 
that SVTRe outperformed VHIe in terms of accuracy. Both 
indices exhibited relatively low precision; however, VHIe 
showed a higher hit rate and a lower miss rate. In contrast, 
SVTRe demonstrated a high true negative rate. 

 
4. Discussion 

Drought-prone areas identified by both indices are primarily 
croplands that rely on irrigation or rainfall, rendering them 
susceptible to agricultural drought (Perez, et al., 2016). VHIe 
indicated more frequent droughts, whereas SVTRe provided 
accurate geographical mapping of impacted areas. Areas with 

(a) 

(b) 
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high drought duration were mostly under Type I of Modified 
Corona’s Climate Classification, notably in western parts like 
Ilocos and Zamboanga, which rely heavily on agriculture. They 
are known to be climatologically drier or more exposed to 
drought-inducing weather phenomena, such as the El Niño, 
which disrupts rainfall patterns and intensifies dry spells. 
Additionally, the rain-shadow effect caused by mountain ranges 
may contribute to localized drying (Bagtasa, 2020), further 
influencing drought duration. Southern Mindanao has varied 
exposure due to intertropical convergence and weak monsoon 
flows, but eastern coastal areas receive more moisture, resulting 
in shorter droughts (Olaguera and Manalo, 2024). Both indices 
revealed comparable patterns, but their severity levels differed, 
highlighting the necessity for field validation and focused 
agricultural planning to successfully manage drought impacts. 
 
Both indices had the same spatial extent throughout the El Niño 
events, including the strong (November 2014 – April 2016), 
moderate (August 2009 – March 2010), and weak (October 2018 
– June 2019). The similarities in terms of spatial extent may be 
attributed to the same variable used in calculating the indices. 
However, they differed with the severity of the drought in the 
affected area. This is because of the standardization done when 
computing the SVTRe, whereas the VCI and TCI for VHIe was 
based on the difference between the maximum and minimum 
EVI and LST, making the ratio in the Eq. 4 and Eq. 5 for 
distinction when it comes to being extremely low and high. 
Another factor could be attributed to their own drought severity 
range. Thus, the result suggested that EVI-derived indices are 
found to be sufficient in mapping drought spatially, assisting 
local governments in planning preventive measures to mitigate 
crop damage, especially for rice. 
 
A low, but significant decrease in values of both indices 
throughout the study period indicated a gradual increase of 
severity. This gradual increase in severity might be attributed to 
the changing land cover, where some areas were converted for 
residential/commercial use, resulting to possible increase in LST. 
And with the increase of LST, it will cause stress to the crops, 
especially rice during vegetative stage. These findings are 
important in the context of early warning systems and drought 
mitigation strategies as they can provide an opportunity for 
policymakers and farmers to prepare for worsening conditions 
and take measures to protect agricultural output.  
 
One of the challenges encountered was the rice yield and map 
data used in this study where it did not differentiate the rain-fed 
and irrigated type due to unavailability of their spatial maps for 
spatial analysis. The correlation between drought indices and 
ENSO provided an insight on the influence of ENSO as cited by 
Hilario, et al (2009), however, it was not done per ENSO phase. 
Hence, a need for further investigation on these relationships per 
ENSO phase as well as applying the lag correlation analysis. The 
correlation between drought indices and rice yield was done in a 
quarterly time series. However, each area has different planting 
seasons for rice, which could be another reason for weak to 
moderate correlations. Hence, a separate study on a smaller scale 
(regional, provincial, or municipal) using high-resolution 
satellite data is recommended. While SVTRe has higher accuracy 
than VHIe, its low hit rate and high miss rate during 2019 Weak 
El Niño suggested that SVTRe is more sensitive to non-drought 
areas. VHIe, on the other hand, could be used as early warning 
due to its high hit rate. Thus, accuracy assessment using these 
indices during moderate and strong El Niño events is 
recommended to identify their over-all performance.  
 

Despite the challenges and limitations arose from this study, 
SVTRe and VHIe were able to perform in identifying drought-
affected areas, though they differ with the severity of drought. 
Moreover, the spatial and temporal progression of drought using 
these indices provided to be useful in assessing the impact of 
drought. Furthermore, its moderate correlation to the ENSO and 
rice yield would help in predicting possible damages during 
drought events. While comparing EVI-derived indices with other 
local indices is not within the scope of this study, the results show 
that these indices are sufficient for drought assessment and can 
serve as an alternative way of measuring drought. This would 
help local government units (LGU) in providing the farmers the 
necessary preventive measure to avoid further loss. Lastly, this 
will provide the policy makers evidence for their policy decision-
making, strengthening the urgent need for disaster preparedness. 
 

5. Conclusion 

In this study we evaluated agricultural drought indices using 
Enhanced Vegetation Index (EVI) for rice in the Philippines. We 
found that drought occurrences are prevalent in Cagayan Valley 
and the western regions, with SVTRe indicating 15 to 20 events 
and VHIe showing 15 to 30 events during the 24-year period of 
study. Both indices showed similar patterns during El Niño, with 
SVTRe identifying more moderate drought and VHIe indicating 
severe drought. A low to moderate negative correlation between 
indices and ONI was noted, intensifying from January to April 
during dry seasons. A decreasing trend in drought indices was 
observed in Northern Luzon and Western Visayas. Weak to 
moderate positive correlations were found in rice field provinces, 
with maximum correlations of 0.427 for SVTRe and 0.457 for 
VHIe against quarterly rice yield. During the 2018-2019 Weak 
El Niño, SVTRe showed higher accuracy (58.25%) than VHIe 
(36.15%) due to capturing more non-drought areas. VHIe, on the 
other hand, is recommended for identifying drought areas due to 
its high hit rate, capturing more affected areas with a higher false 
alarm rate. 
 
Agricultural drought indices developed from EVI, have been 
shown to identify drought-affected areas; however, further 
research will be required to understand vegetation response using 
EVI. Moreover, further refinement of indices’ time series using 
smoothing techniques may be applied. While both indices show 
similar geographical drought patterns during El Niño episodes, 
discrepancies in intensity and duration highlight the need for 
more detailed studies at regional or provincial levels to accurately 
estimate damage. Although there are low to moderate negative 
correlations with the Oceanic Niño Index (ONI), many 
correlations are statistically significant, making them useful for 
early El Niño evaluations and requiring further research by event. 
Using long-term satellite data to study seasonal crop yields, 
particularly rice, and applying the indices to different crops and 
other El Niño events (weak and moderate) can enhance accuracy 
and widen their agricultural applicability. Lastly, a comparative 
analysis between these indices with the other local indices is 
recommended for further research. 
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