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Abstract

Agricultural drought has a considerable impact on agricultural productivity in the Philippines. This study evaluates the performance of
agricultural drought indices: Standardized Vegetation and Temperature Ratio (SVTRe) and Vegetation Health Index (VHIe) derived
from the Enhanced Vegetation Index (EVI) of the Moderate Resolution Imaging Spectroradiometer (MODIS) to assess drought
conditions across the Philippines from 2000 to 2024. Using run theory, we quantified drought frequency, duration, and intensity,
identifying drought-prone regions such as Cagayan Valley, Western Luzon, and Western Visayas. SVTRe recorded 15 to 20 incidents,
and was more sensitive to moderate droughts, while VHIe recorded 15 to 30 events, capturing more extreme conditions. Both indices
revealed consistent spatial and temporal drought patterns, with Mann-Kendall trend analysis indicating increased severity throughout
the study period. SVTRe demonstrated higher overall accuracy (58.25%), whereas VHlIe, achieved a higher hit rate (90.14%). Taken
together, these indices offer complementary tools towards improving drought monitoring and enhancing agricultural resilience in the

Philippines.

1. Introduction

Drought is a natural hazard characterized by prolonged periods
of below-average rainfall, which can severely affect agriculture,
ecosystems, industries, and economies (Perez et al., 2016). It is
typically categorized into four stages: meteorological,
hydrological, agricultural, and socio-economic. Agricultural
drought occurs when insufficient soil moisture damages crops,
causing reduced yield. The progression of drought begins with
meteorological drought, leading to agricultural drought as soil
moisture declines, followed by hydrological drought, affecting
water supply in various economic sectors and causing adverse
impacts such as food insecurity and economic losses. Hence,
monitoring agricultural drought is critical for minimizing its
impacts on crop productivity.

Various drought indices have been developed to monitoring
agricultural drought characteristics, progression, and impacts to
help prevent significant crop losses. Commonly used indices
include Palmer’s Drought Severity Index (PDSI; Palmer, 1965),
which measures long-term drought by analyzing precipitation,
soil moisture, and temperature; the Crop Moisture Index (CMI;
Palmer, 1968) which tracks short-term changes in soil moisture;
and the Standardized Precipitation Index (SPI) which provides
flexible precipitation anomaly assessments (McKee et al, 1993).
However, traditional data collection methods have limited spatial
and temporal coverage. This has led to the development of
satellite-derived indices such as Standardized Precipitation
Evapotranspiration Index (SPEI), Normalized Difference
Vegetation Index (NDVI), Enhanced Vegetation Index (EVI),
Vegetation Health Index (VHI), and Temperature-Vegetation
Difference Index (TVDI) to aid in assessing agricultural drought
and plant health.

In the Philippines, the Philippine Atmospheric, Geophysical, and
Astronomical Services Administration (PAGASA) utilizes
ground-based monitoring indices such as SPI and Percent

Normal Precipitation (PNP) for operational drought monitoring.
The Standardized Vegetation Temperature Ratio (SVTR) has
been effective for localized drought assessments, especially
during the 2015-2016 El Nifio (Macapagal, 2017; Perez, et al.,
2016). Recent efforts have introduced refined drought indices to
better capture vegetation stress and agricultural impacts. For
example, Rojas (2020) enhanced VHI integration into a
comprehensive Agricultural Stress Index (ASI) to evaluate dry
periods and the extent of arable land affected. Perez et al. (2022)
demonstrated that SVTR and VHI detected vegetation stress
affecting nearly 50% of the country during the 2019 El Nifio
event. Valete et al. (2022) proposed the Combined Drought Index
(CDI) which combines NDVI, Land Surface Temperature (LST),
and SPI to monitor the transition from meteorological to
agricultural drought.

EVI measures vegetation greenness with improved sensitivity
over the NDVI in densely vegetated regions by reducing
atmospheric interference and reducing canopy background noise
(Didan and Muiloz, 2019). This enhanced sensitivity of EVI
allows for better assessment of vegetation health under drought
conditions and captures extreme drought events closely aligned
with meteorological drought indicators. Studies have shown that
EVI outperforms NDVI-based indices like VCI and VHI in
detecting severe droughts (Xie and Fan, 2021). Despite its
advantages, EVI remains underutilized in the Philippines for
agricultural drought monitoring. Traditional indices, while
common, show limitations in local drought monitoring due to
spatial constraints of ground-based methods. NDVI, while
widely used, struggles with short-term vegetation stress
detection, while EVI exhibits superior sensitivity (National
Aeronautics and Space Administration, n.d.).

This study aims to address this gap by developing and evaluating
the performance of EVI-derived drought indices—the
Standardized Vegetation and Temperature Ratio (SVTRe) and
Vegetation Health Index (VHle) for agricultural drought
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monitoring in the Philippines. Specifically, this study aims to
develop SVTRe and VHIe using EVI, characterize drought
occurrences with MODIS-derived data, investigate the spatial
and temporal progression of drought, and determine the
correlation between these drought indices and quarterly rice
yield.

2. Materials and Methods
2.1 Study Area

This study focused on the Philippines, a tropical archipelago in
Southeast Asia that is highly vulnerable to climate-related
hazards. Drought is one of the major hazards affecting the
country, resulting to significant damage to agriculture,
particularly rice production.

Rice is a staple crop and a key contributor to national food
security and agricultural output. Around 32% of the country's
terrain is devoted to farming, with rice and corn as the two most
widely cultivated crops (PSA, 2024). Rice covers approximately
30% of cultivated land and goes through a growth cycle
consisting of vegetative, reproductive, and ripening phases,
typically lasting 100 to more than 160 days, depending on the
variety. In 2023, national rice production totaled 7.24 million
metric tons, a slight increase from the previous year. The Ilocos
Region led in production, followed by Central Luzon and
Cagayan Valley. Although there was a 1.5% reduction in
harvested area, yield per hectare rose from 4.06 to 4.13 metric
tons, with Central Luzon having the highest yield at 4.96 metric
tons (PSA, 2024).

2.2 Datasets and pre-processing
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Figure 1. Process flowchart of the study.

In this subsection, we describe how we calculated SVTRe and
VHle, and then how these indices will be used to characterize
drought. Figure 1 shows the process flowchart, which starts with
data collection and continued with pre-processing to obtain
monthly satellite data and quarterly crop yield. We then
processed the data using the appropriate equations to obtain the
SVTRe, VHIe, and Rice standardized yield residual series (Rice

SYRS). Following that, various analyses were conducted to
achieve each of the study's specific objectives.

2.2.1  Satellite data

EVI and LST datasets were derived from MODIS land products
Version 6 Level 3 (https://modis.gsfc.nasa.gov/data/dataprod/).
MOD13C2 and MOD11C3 represent EVI and LST, respectively.
Both datasets contain monthly data with a spatial resolution of
0.05° or 5.6 km, covering from February 2000 to the present. For
this study, data were extracted for the Philippine domain from
February 2000 to February 2024.

2.2.2 ENSO data

The Oceanic Nifio Index (ONI) for the same period was obtained
from the NOAA Climate Prediction Center
(https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/
ensostuff/ONI_v5.php). ENSO has two phases: warm phase (El
Nifio) that causes delayed rainy season and triggers drought, and
cool phase (La Nifia) that brings more rain, especially in the
Western Pacific Region. The use of ONI in this study is
motivated by previous findings that droughts in the Philippines
are strongly linked with ENSO variability (Hilario et al., 2009).
2.2.3 Rice production, Harvest, and Damage Statistics
Rice production and harvested area statistics were obtained from
the Philippine Statistical Authority's (PSA) OpenSTAT platform
(https://openstat.psa.gov.ph/PXWeb/pxweb/en/DB/DB__ 2E  C
S/?tablelist=true&rxid=bdf9d8da-9611-4100-ae09-
18cb3eaeb313). These are quarterly data, aggregated at the
provincial level. For this analysis, data from the second quarter
of 2000 through the fourth quarter of 2023 were used to match
the coverage of SVITRe and VHle, which began in February
2000.

The rice crop damage report from the Department of Agriculture
— Food and Agriculture Organization (DA-FAO) during 2018-
2019 El Nifio was used for accuracy assessment. Additionally, a
rice map from the Philippine Rice Information System (PRISM)
of the Philippine Rice Research Institute (DA-PhilRice) was used
to mask the satellite data, isolating the rice areas, to correlate with
the rice yield and evaluate the indices’ performance against rice
damage reports.

2.2.4 Data pre-processing

The downloaded MODIS EVI and LST values were pre-
processed by multiplying it with the appropriate scale factors:
0.001 for EVI and 0.02 for LST. LST values are also converted
from K to °C from the scaled LST. The outcome would be
monthly EVI and LST values, with EVI being unitless and LST
being in degrees Celsius. To match the satellite dataset to the
quarterly rice dataset’s temporal resolution, the values were
computed as three-month averages.

For the rice datasets, rice yield was computed using the crop yield
equation:

crop production

C jeld =
rop yie area harvested

(M

where  crop production = amount of rice paddy harvested
area harvested = area where the rice paddies are

harvested.
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2.3 Data processing

SVTRe was computed per pixel using pre-processed MODIS
EVI and LST, as defined by the equation:
R;— Ri
SVIRe=—— @
OR

where  R; = quotient of NDVI over LST for month i,

R; = mean of EVI-LST ratio for month ,
og = standard deviation of EVI-LST ratio for month i.

SVTRe values are classified based on severity: Normal, Mild,
Moderate, and Severe (Table 1), where drought occurrence using
SVTRe will start if SVTRe <-0.50.

SVTRe Values Drought Severity
=0.50 Normal
-1.00 to -0.51 Mild
-2.00to -1.01 Moderate
<2.00 Severe

Table 1. SVTRe drought severity classification. Adapted from
Macapagal (2017).

VHlIe was also derived from the pre-processed MODIS EVI and
LST data. The Vegetation Condition Index (VCI) and
Temperature Condition Index (TCI) were first calculated using
Equations 3 and 4 below.

EVI— EVIy;
VCI=100 x —————— 3)
EVlmax— EVinin
LST, — LST
TCI =100 x ——*——— 4)

LSTmax— LSTmin
where  VCI = vegetation condition index
TCI = temperature condition index
EVI = monthly enhanced vegetation value
EVInin = minimum EVI value from the series
EVInax = maximum EVI value from the series
LST = land surface temperature value
LSTmin = minimum LST from the series
LSTmax = maximum LST from the series

VHIe values ranged from 0 to 100, with lower values indicating
vegetation stress or drought conditions, and higher values
representing healthier vegetation.

VHIe = aVCI + (1-a)TCI )
where  VHIle = Vegetation Health Index using EVI as
vegetation index
a=0.5
VCI = vegetation condition index
TCI = temperature condition index

Similarly, VHIe values can be classified into five categories:
Normal, Mild, Moderate, Severe, and Extreme (Table 2), where
drought occurrence using VHIe will start if the values drop at
VHIe = 40. The drought severity classification for VHIe follows
the same drought severity classification for VHI.

The VHI threshold of 40 has been widely used in the literature to
indicate the onset of drought stress, where VHI < 40 denotes
drought conditions and values above this threshold indicate no

drought (Ghaleb, et al., 2015; Kogan, 2001; Kogan, 1995). This
criterion is based on empirical studies linking VHI values to
vegetation stress and agricultural yield reduction in various
climatic regions, including tropical and subtropical areas.

Drought Severity Values
Extreme <10
Severe <20
Moderate <30
Mild <40
Normal >40

Table 2. VHIe drought severity threshold. Adapted from
Ghaleb, et al. (2015).

For the crop yield, crop yield anomalies were first calculated to
determine the deviation from the long-term mean and then
standardized to generate the standardized yield residual series
(SYRS) following the method described by Waseem, et al., 2022
and Potopova , et al., 2015:

Y._
SYRS = ‘T” (6)

where  Yi =residual from the detrended yield for month i,
p = mean of residuals

o = standard deviation of the residuals.

2.4 Data Analysis

To characterize drought occurrences using SVTRe and VHle,
drought events were identified when their values are below the
threshold values of -0.50 for SVTRe and 40 for VHIe. Each
drought episode was described using run theory (Yevjevich,
1967) metrics according to duration (DD), defined as the number
of months the index remained below the threshold; severity (DS)
calculated as the cumulative index deficit; and intensity (DI), the
ratio of severity to duration. To determine the spatial extent of
the drought, the proportion of impacted areas was computed.

Spatial and temporal progression of drought was conducted to
investigate the patterns during the weak (2018-2019), moderate
(2009-2010), and strong (2014-2016) El Nifio events. We then
evaluated the drought events during El Nifio events by
conducting correlation analysis for SVTRe and VHlIe for the
period February 2000 to February 2024. The Mann-Kendall test
was performed to detect temporal trends. Pearson correlation
analysis was performed to examine the relationship between the
drought indices, and other parameters such as SYRS for rice, and
ONI. These analyses provided insights into the ENSO-driven
drought dynamics across the country.

To evaluate the reliability of SVTRe and VHIe in detecting
agricultural drought, we evaluated these indices against rice
damage reports from DA-FAO during the 2018-2019 weak El
Niilo event. We define drought event periods where the values of
the calculated indices were less than index thresholds for at least
two months (-0.5 for SVTRe and 40 for VHIe). Both datasets
were transformed into binary classifications (drought or no
drought), where 440 of the 1,267 towns identified with farm rice
reported damage from the drought. Model performance was
evaluated using accuracy metrics, including accuracy, precision,
recall, and specificity. By confirming the indices' usefulness in
identifying the effects of drought, this validation helped to
develop systems for drought prediction and response.
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3. Results
3.1 Drought Characterization using SVTRe and VHle

Both indices identified drought-prone areas, including Cagayan
Valley, western Luzon, Western Visayas, and western Mindanao.
Figure 2 showed that SVTRe identified 15 to 20 drought events
(Figure 2a), with VHIe identifying 15 to 30 (Figure 2b).
Moreover, VHIe detected more extreme drought events, while
SVTRe showed a more balanced detection of moderate droughts.

Drought duration analysis shows regions classified under Type I
climate (e.g., Western Luzon, Visayas, Zamboanga Peninsula),
experienced mean drought durations of 9 to 14 months or longer.
These regions are more susceptible due to factors like El Niflo,
rain-shadow effects, and weak monsoonal influences. In contrast,
eastern areas like Eastern Visayas and Bicol experienced shorter
droughts due to exposure to moist trade winds and typhoons.
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Figure 2. Spatial distribution of the number of drought events
based on (a) SVTRe and (b) VHIe.

When looking further in terms of percent area damage shown in
Figure 3, both SVTRe and VHle showed similar trends in
percentage areas affected by agricultural drought, highlighting
their potential for rapid and initial assessment of the extent of
damage during drought. Furthermore, when evaluating the spatial

coverage affected based on severity, SVTRe has more percentage
area affected due to moderate drought. On the other hand, VHIe
has more percentage area affected due to extreme drought. These
results suggest that the indices were able to identify the affected
area, but with difference in severity of the drought. Hence, further
field validation is recommended for verification on the severity
of the drought in the affected areas.
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Figure 3. Total percentage area affected per drought severity
using (a) SVTRe and (b) VHIe.

3.2 Spatial and temporal distribution of drought

The spatial and temporal progression of agricultural drought was
analyzed using both indices during the strong El Nifio event from
November 2014 to April 2016.

SVTRe during 2015-2016 strong El Nifio
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Figure 4. Spatial extent and progression of drought based on
SVTRe. As both SVTRe and VHIe showed similar patterns,
only SVTRe is displayed in this paper.

Severe drought conditions were highlighted in red and wetter-
than-normal conditions in blue (Figure 4). Mild drought occurred
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initially, but conditions intensified in mid-2015 (panels 6 to 8 in
Figure 4), particularly in central and southern regions. By late
2015 (panels 12 to 15 of Figure 4), severe drought was
widespread in Mindanao and western Visayas, reaching its height
from March to April 2016, coinciding with the peak phase of the
2015-2016 El Nifio, showing significant vegetation stress. After
the event ended in May 2016, some recovery was noted.

3.3 Spatial distribution of drought trends using SVTRe
and VHIe

To assess long-term trends in agricultural drought, the Mann-
Kendall trend test was applied to the SVTRe and VHIe time
series from 2000 to 2024. Autocorrelation was first applied using
the Durbin-Watson statistics to ensure validity in regions where
autocorrelation was detected, the time series were first detrended
using linear and polynomial regression models before applying
the Mann-Kendal test. This preprocessing ensured that observed
trends were not artifacts of serial correlation.
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Figure 5. Correlation between (a) SVTRe and ONI, and (b)
VHIe and ONIL.

The results showed that key-drought-prone areas, particularly
Northern Luzon and parts of the western region of the country,

experienced slight but statistically significant declines in index
values, suggesting drought severity over time during the study
period. Sen's slope values are relatively low (-0.084 for SVTRe
and -0.087 for VHIe), which implied gradual increase of drought
intensity over the past 24 years. Although the results showed that
this change is not abrupt, it highlights that conditions for these
regions are increasingly drought prone.

3.4 Relationship between drought indices and ENSO

We explored the correlation between ONI and agricultural
drought indices which relates the intensity of droughts with the
El Nino Southern Oscillation (ENSO) phases. The results in
Figure 5 showed positive results indicating that the drought
regions did have some correlation, albeit moderate negative
correlations, with the drought indices and ONI (drought
correlation index lower than -0.35). SVTRe showed having 82%
and 5% of the spatial extent being weak and moderate negative
correlations respectively. VHIe showed weaker correlations with
84% and 0.2% of the spatial extent being considered weak and
moderate negative correlations respectively. Lag relationship
may be further explored using lag correlation analysis.
Nonetheless, results show the potential of drought indices to
delineate regions where significant drought impacts are expected
during the El Niflo phases

When looking at the correlation per month as seen in Figure 6,
the months of January to April showed to have the most areas
with moderate to high negative correlation for both SVTRe and
VHIe. Interestingly, the mentioned months were within the dry
season of the country (November to May) according to DOST-
PAGASA (n.d.). Thus, the months of January to April would be
considered critical periods for drought impact during El Nifio,
especially to the areas vulnerable to drought.
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Figure 6. Spatial extent and progression of drought based on
SVTRe. As both SVTRe and VHIe showed similar patterns,
only SVTRe is displayed in this paper.

3.5 Relationship between drought indices with rice yield

The study analyzed the correlation between quarterly rice yield
per province and average vegetation temperature (VT) indices.
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Figure 7 showed a weak to moderate yet significant positive
correlation in drought-affected areas, indicating that higher VT
values correlate with higher rice yields and vice versa. Moderate
correlations emerged in Northern Luzon, the western regions, and
western Mindanao, with maximum correlations of 0.427 for
SVTRe and 0.457 for VHIe.

SVTRe and Rice SYRS Correlation
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Figure 7. Correlation between standardized yield residual series
for rice and VT indices for SVTRe (a) and VHIe (b).

Many provinces exhibiting moderate positive correlations with
rice yield were statistically significant (p < 0.05), suggesting a
weak to moderate causal relationship between EVI-based VT
indices and rice yield. The analysis showed SVTRe had more
significant correlations with rice yield in Mindanao while VHIe
showed more significance in Luzon. Despite these correlations,
the indices alone may not fully account for yield variability, as
other factors like climate extremes and irrigation practices also
play a crucial role. Additionally, spatial variability in farming
systems and the timing of satellite observations could weaken
this relationship. The study recommends integrating
meteorological data and ground-based observations to enhance
the predictive accuracy of these indices for rice yield forecasting
and suggests further research on their applicability to other crops
in the country.

3.6 Accuracy assessment of the drought indices during
2018-2019 Weak El Niiio

The performance evaluation of the EVI-derived indices during
the 2018-2019 Weak El Nifio was done using the reported
affected rice area data as a reference. The confusion matrix was
used to determine the number of places affected by the drought.
Table 3 showed the value of the different performance metrics
to both indices on rice.

Performance Metrics (%) SVTRe VHlIe
Accuracy 58.25 36.15
Precision 27.10 29.25
Hit Rate (Sensitivity) 29.01 90.14
Miss Rate 70.98 9.86
False Alarm Rate 30.37 84.87
True Negative Rate 69.63 15.13

(Specificity)
Table 3. Performance score metrics from the use of confusion
matrix in relation to the agricultural drought indices on rice.

The result from Table 3 showed that SVTRe demonstrated a
higher accuracy of 58.25% compared to VHIe's 36.15%,
primarily due to more true negatives (TN) and fewer true
positives (TP). In regions like Northeastern Luzon and Western
Visayas during the weak El Nifio, there were more false negatives
(FN), indicating SVTRe's inability to capture drought-affected
areas accurately. This may be attributed to drought severity
remaining above the detection threshold for many months.

Although SVTRe is more accurate in identifying non-drought
conditions, its lower hit rate suggests a need for enhancement in
detecting actual drought events, particularly in moderately
affected regions. Conversely, VHIe had lower accuracy due to
fewer TP and significantly fewer TN, yet a higher hit rate of
90.14% was observed. This implies VHle was effective in
identifying true drought occurrences, evidenced by more TP
relative to FN. However, the higher number of false positives led
to increased false alarm rates (FAR), with some areas incorrectly
categorized as drought-affected despite no reported rice damage.
This may result from pre-peak rice harvests in drought areas,
leading to increased temperature readings in VHIe. Thus, while
VHIe is advantageous for early drought detection, the elevated
FAR indicates a requirement for refinement to enhance precision
and reduce unnecessary alerts for effective mitigation efforts.

Low precision from both indices is likely due to insufficient
differentiation between irrigated and rain-fed rice fields,
alongside limited calibration of parameters such as constant (o)
in VHle. The confusion matrix was applied regionally across
Luzon, Visayas, and Mindanao, with consistent results indicating
that SVTRe outperformed VHIe in terms of accuracy. Both
indices exhibited relatively low precision; however, VHIe
showed a higher hit rate and a lower miss rate. In contrast,
SVTRe demonstrated a high true negative rate.

4. Discussion

Drought-prone areas identified by both indices are primarily
croplands that rely on irrigation or rainfall, rendering them
susceptible to agricultural drought (Perez, et al., 2016). VHIe
indicated more frequent droughts, whereas SVTRe provided
accurate geographical mapping of impacted areas. Areas with
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high drought duration were mostly under Type I of Modified
Corona’s Climate Classification, notably in western parts like
Ilocos and Zamboanga, which rely heavily on agriculture. They
are known to be climatologically drier or more exposed to
drought-inducing weather phenomena, such as the El Niflo,
which disrupts rainfall patterns and intensifies dry spells.
Additionally, the rain-shadow effect caused by mountain ranges
may contribute to localized drying (Bagtasa, 2020), further
influencing drought duration. Southern Mindanao has varied
exposure due to intertropical convergence and weak monsoon
flows, but eastern coastal areas receive more moisture, resulting
in shorter droughts (Olaguera and Manalo, 2024). Both indices
revealed comparable patterns, but their severity levels differed,
highlighting the necessity for field validation and focused
agricultural planning to successfully manage drought impacts.

Both indices had the same spatial extent throughout the El Nifio
events, including the strong (November 2014 — April 2016),
moderate (August 2009 — March 2010), and weak (October 2018
— June 2019). The similarities in terms of spatial extent may be
attributed to the same variable used in calculating the indices.
However, they differed with the severity of the drought in the
affected area. This is because of the standardization done when
computing the SVTRe, whereas the VCI and TCI for VHIe was
based on the difference between the maximum and minimum
EVI and LST, making the ratio in the Eq. 4 and Eq. 5 for
distinction when it comes to being extremely low and high.
Another factor could be attributed to their own drought severity
range. Thus, the result suggested that EVI-derived indices are
found to be sufficient in mapping drought spatially, assisting
local governments in planning preventive measures to mitigate
crop damage, especially for rice.

A low, but significant decrease in values of both indices
throughout the study period indicated a gradual increase of
severity. This gradual increase in severity might be attributed to
the changing land cover, where some areas were converted for
residential/commercial use, resulting to possible increase in LST.
And with the increase of LST, it will cause stress to the crops,
especially rice during vegetative stage. These findings are
important in the context of early warning systems and drought
mitigation strategies as they can provide an opportunity for
policymakers and farmers to prepare for worsening conditions
and take measures to protect agricultural output.

One of the challenges encountered was the rice yield and map
data used in this study where it did not differentiate the rain-fed
and irrigated type due to unavailability of their spatial maps for
spatial analysis. The correlation between drought indices and
ENSO provided an insight on the influence of ENSO as cited by
Hilario, et al (2009), however, it was not done per ENSO phase.
Hence, a need for further investigation on these relationships per
ENSO phase as well as applying the lag correlation analysis. The
correlation between drought indices and rice yield was done in a
quarterly time series. However, each area has different planting
seasons for rice, which could be another reason for weak to
moderate correlations. Hence, a separate study on a smaller scale
(regional, provincial, or municipal) using high-resolution
satellite data is recommended. While SVTRe has higher accuracy
than VHle, its low hit rate and high miss rate during 2019 Weak
El Nifio suggested that SVTRe is more sensitive to non-drought
areas. VHle, on the other hand, could be used as early warning
due to its high hit rate. Thus, accuracy assessment using these
indices during moderate and strong El Nifio events is
recommended to identify their over-all performance.

Despite the challenges and limitations arose from this study,
SVTRe and VHIe were able to perform in identifying drought-
affected areas, though they differ with the severity of drought.
Moreover, the spatial and temporal progression of drought using
these indices provided to be useful in assessing the impact of
drought. Furthermore, its moderate correlation to the ENSO and
rice yield would help in predicting possible damages during
drought events. While comparing EVI-derived indices with other
local indices is not within the scope of this study, the results show
that these indices are sufficient for drought assessment and can
serve as an alternative way of measuring drought. This would
help local government units (LGU) in providing the farmers the
necessary preventive measure to avoid further loss. Lastly, this
will provide the policy makers evidence for their policy decision-
making, strengthening the urgent need for disaster preparedness.

5. Conclusion

In this study we evaluated agricultural drought indices using
Enhanced Vegetation Index (EVI) for rice in the Philippines. We
found that drought occurrences are prevalent in Cagayan Valley
and the western regions, with SVTRe indicating 15 to 20 events
and VHIe showing 15 to 30 events during the 24-year period of
study. Both indices showed similar patterns during El Nifio, with
SVTRe identifying more moderate drought and VHIe indicating
severe drought. A low to moderate negative correlation between
indices and ONI was noted, intensifying from January to April
during dry seasons. A decreasing trend in drought indices was
observed in Northern Luzon and Western Visayas. Weak to
moderate positive correlations were found in rice field provinces,
with maximum correlations of 0.427 for SVTRe and 0.457 for
VHIe against quarterly rice yield. During the 2018-2019 Weak
El Niflo, SVTRe showed higher accuracy (58.25%) than VHIe
(36.15%) due to capturing more non-drought areas. VHle, on the
other hand, is recommended for identifying drought areas due to
its high hit rate, capturing more affected areas with a higher false
alarm rate.

Agricultural drought indices developed from EVI, have been
shown to identify drought-affected areas; however, further
research will be required to understand vegetation response using
EVI. Moreover, further refinement of indices’ time series using
smoothing techniques may be applied. While both indices show
similar geographical drought patterns during El Nifio episodes,
discrepancies in intensity and duration highlight the need for
more detailed studies at regional or provincial levels to accurately
estimate damage. Although there are low to moderate negative
correlations with the Oceanic Nifio Index (ONI), many
correlations are statistically significant, making them useful for
early El Nifo evaluations and requiring further research by event.
Using long-term satellite data to study seasonal crop yields,
particularly rice, and applying the indices to different crops and
other El Nifio events (weak and moderate) can enhance accuracy
and widen their agricultural applicability. Lastly, a comparative
analysis between these indices with the other local indices is
recommended for further research.
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