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Abstract 
 
The application of artificial intelligence (AI) based models offers a potential improvement over conventional approaches to landslide 
detection, which typically demand substantial resources and often require significant human expert involvement. Jadala (2019) 
describes the U-Net model as a convolutional neural network that is extensively used for accurate pixel-level semantic segmentation 
despite having only a limited dataset for training. This research explores the capability of the U-Net model for detecting the 
landslides triggered by Tropical Storm Agaton in Abuyog, Leyte in April 2022, using Sentinel-2 imagery and validated landslide 
inventories from Leyte, Davao de Oro, and Maguindanao del Norte. The model was trained using image patches that included 
Sentinel-2 Red, Green, and Blue bands, the Normalized Difference Vegetation Index (NDVI), as well as topographic features such as 
slope and elevation values acquired from an Interferometric Synthetic Aperture Radar (IFSAR) Digital Terrain Model (DTM). The 
observed results highlight the model’s effectiveness in identifying landslide pixels, achieving a strong F1-score of 72.97. This 
performance was further supported by a precision of 79.54 and a recall of 67.46. Across all accuracy metrics, the U-Net model 
likewise achieved higher performance as opposed to other machine learning approaches such as the Support Vector Machine (SVM) 
and Random Forest (RF) classifiers, which were evaluated using the same dataset. Future studies should focus on incorporating 
additional training data across regions with varying geological characteristics to further enhance the model’s accuracy. 
 
 

1.​ Introduction 

Landslides are destructive geological hazards that occur when  
materials such as soil, rock, or debris lose stability and move 
downward along a slope, primarily driven by gravitational 
forces (Bezerra et al., 2025; Nguyen, et al., 2025; Dias et al., 
2023; Varnes, 1958). Such occurrences usually develop in 
mountainous or steep terrains and are often triggered by 
multiple factors, including intense rainfall, seismic activity, 
volcanic eruptions, deforestation, and land-use alterations. Each 
year, landslides cause widespread damage to communities 
across the globe, resulting in thousands of deaths, significant 
financial losses, and long-term impacts on safety and 
development (Dente et al., 2023; He et al., 2024; Li et al, 2024). 
 
In the Philippines, the detection and monitoring of landslides 
have traditionally been conducted by human experts through 
visual inspection, remote sensing analysis, and field validation. 
This reliance on manual detection methods were seen as 
resource intensive, time-consuming and may have biased 
interpretations (Wang et al., 2020; Das et al., 2023). Several 
approaches are also used for landslide hazard mapping, 
including empirical and descriptive models employed by the 
Mines and Geosciences Bureau (MGB) through field-based 
assessments and checklists to produce maps (Manzano, 2014). 
Another approach is the utilization of statistical models, which 
rely on landslide inventories and environmental variables, but 
may be biased depending on data availability. Physically-based 
or deterministic models simulate slope stability using 
topographic, geologic, and hydrologic data, requiring 
high-resolution terrain and precise geotechnical inputs for 
accuracy (Alejandrino et al., 2015).  
 
Artificial intelligence (AI) methods, specifically deep learning 
algorithms, present an auspicious alternative to traditional 

methods by analyzing satellite images over wide areas and 
identifying areas of interest more efficiently. Utilizing AI to 
automate landslide mapping processes can significantly 
minimize the manual effort involved in conventional detection 
practices. (Das et al., 2023; Liu et al. 2023). The use of AI is 
also an effective tool that can address issues on visual 
inspections that heavily rely on people’s subjective judgement, 
which can be viewed as an “inconsistent criteria for detecting 
landslides” (He, et al., 2024). By training the model on labeled 
datasets, it learns to recognize complex patterns and 
characterized attributes associated with landslides, resulting in 
more accurate predictions and improved performance as 
additional data become available. 
 
According to Xiang (2025), the U-Net model is a kind of 
convolutional neural network (CNN) structured to categorize 
every pixel in an image based on the object or region it 
represents and is particularly effective for tasks that require 
precise pixel-level classification, such as landslide detection in 
remote sensing data. It features a symmetric U-shaped structure 
composed of an encoder (contracting path) that captures 
contextual features through convolution and max pooling, and a 
decoder (expanding path) that reconstructs spatial details using 
upsampling and concatenation with corresponding encoder 
features via skip connections. U-Net is well-suited for small 
datasets because of  its efficient use of feature information, 
offering high segmentation accuracy with relatively low 
computational complexity. Key advantages of the model 
include its simplicity and strong performance in boundary 
detection, and robustness in limited-data scenarios. However, it 
also has limitations, such as difficulty in capturing multi-scale 
features and challenges in distinguishing landslides from 
complex backgrounds when used in its basic form (Dong et al., 
2022). 
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In 2019, Ghorbanzadeh et al. conducted a study comparing 
CNNs with traditional machine learning (ML) approaches, 
including Support Vector Machines (SVM), Artificial Neural 
Networks (ANN) and Random Forest (RF) for detecting 
landslides. Their research used data from RapidEye satellite 
imagery for two separate training dataset types (one is 
Normalized Difference Vegetation Index (NDVI) using 
Near-infrared (NIR), Blue, Green, and Red bands; the second 
one with added topographic layers such as slope, aspect, and 
curvature) and focused on a district in Nepal which was deemed 
highly vulnerable to landslides due to its inherent geological 
features and climate. It also highlighted the possible use of 
CNNs for landslide detection and emphasized that the ideal 
structure is not always straightforward. Nevertheless, the CNN 
model using only spectral information with a 16x16 pixel input 
window yielded the best results. 
 
In a follow-up study, Ghorbanzadeh et al. (2021) assessed the 
“cross-regional applicability of U-Net and ResU-Net models 
for landslide detection” in sites across Taiwan, China, and 
Japan. In this context, transferability refers to how well a model 
trained in one region can be applied to another region without 
retraining and still maintain good performance. The results 
showed that although ResU-Net achieved higher overall 
accuracy, U-Net demonstrated stronger transferability. The 
impact of input sample size was also examined in this study, 
showing that the U-Net model achieved higher mean F1-scores 
when the input size was 128 × 128 pixels.  
 
In 2022, Ghorbanzadeh et al. demonstrated the ability of U-Net 
in delineating landslides. In this research, the Landslide4Sense 
benchmark dataset, containing 3,799 image patches, was 
utilized to train and assess different deep learning methods. The 
dataset utilized the Near-Infrared (NIR), Red, Green, and Blue 
bands from Sentinel-2 imagery, along with elevation values and 
slope data acquired from a Digital Elevation Model (DEM). 
Quantitative results showed that U-Net was the second-best 
performing model, following ResU-Net, with a recall of 62.17, 
precision of 79.91, and an F1-score of 69.94. 
 
This paper provides a preliminary assessment of U-Net’s 
capability in detecting landslide affected areas, utilizing bands 
from Sentinel-2 imagery combined with elevation and slope 
data acquired from an IFSAR Digital Terrain Model (DTM). 
Specifically, the research aims to assess how effectively the 
model identifies landslides in Abuyog, Leyte, and to compare 
its performance with other ML techniques, such as SVM and 
RF, to demonstrate the capability of AI models for more 
efficient landslide detection in cases where validated data 
remains limited. Ultimately, the goal of the study is to aid 
agencies working on disaster risk reduction and management by 
developing methods requiring less human supervision in 
landslide detection. 
 

2.​ Study Area 

Leyte Island is highly susceptible to landslides because of its 
topography, climatic conditions, and underlying geological 
features such as the characteristics of its soil (Catane et al., 
2007; Guthrie et al., 2009). Located in the Eastern Visayas 
region of the Philippines, the island is composed primarily of 
volcanic and sedimentary rocks (Aurelio and Peña  2010; 
Sajona et al., 1997) deformed by structures associated with the 
left-lateral strike-slip Philippine Fault Zone (e.g., Allen, 1962; 
Dusquesnoy et al., 1994; Lagmay et al., 2003). The island’s 
eastern region generally receives heavy rainfall between 
October and March, whereas the western region experiences its 

rainy season from June to December and remains dry during the 
other months (Olaguera et al., 2025). From 2002 to 2014, a 
total of 280 landslides were identified across Leyte, with most 
incidents occurring in the elevated regions of the province (Eco 
et al., 2015). This includes the renowned Guisaugon 
rockfall-debris avalanche in 2006 (Catane et al., 2008). More 
recently, the National Disaster Risk Reduction and 
Management Council (NDRRMC, 2021; 2022) reported 10 
landslide incidents in Leyte Island during the onslaught of 
Super Typhoon Odette (Rai) and 17 more were associated with 
Tropical Storm Agaton (Megi). Local field assessment of the 
regional office of the MGB (2022) noted 33 landslides and 
tension cracks in the Municipality of Abuyog while around 750 
landslides and/or erosion sites were identified from satellite 
imagery after Tropical Storm Agaton (Minimo et al., 2023). 
The map shown in Figure 1 displays Abuyog, Leyte, detailing 
the area affected by the Tropical Storm Agaton landslides and 
where the U-Net model will be applied for detection. 
 

 
Figure 1.  Location of Abuyog, Leyte 

 (Basemap adopted from ESRI) 
 

3.​ Materials and Methods 

3.1​ Data Used 

The training dataset consists of image patches with stacked 
spectral and topographic bands, along with their corresponding 
mask patches. Each image patch contains six bands: Red, 
Green, Blue, NIR, NDVI, Elevation, and Slope. Corresponding 
Sentinel-2 Level 2A data for each region were downloaded and 
the three primary visible bands, along with NIR, were extracted 
using Google Earth Engine (Jalan et al., 2025). Elevation values 
were derived from an IFSAR DTM grid with a 5-meter spatial 
resolution obtained from the National Mapping and Resource 
Information Authority (NAMRIA, 2013; in Rabonza, et al. 
2015). The slope values in degrees were calculated in ArcGIS 
software. To ensure consistency, all bands were resampled to a 
spatial resolution of 10 meters (Qu et al., 2025). 
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Figure 2. General workflow for landslide detection using U-Net. 

 
Across the three regions with validated landslide data, the 
training dataset consisted of 76 image patches, each measuring 
128x128 pixels and covering landslide-affected areas. 
 
Mask data were then generated from shapefiles of rainfall 
induced landslides from different regions in the Philippines, 
including Leyte, Maguindanao, and Davao, as shown in Figures 
3, 4, and 5. In 2022, the University of the Philippines 
Resilience Institute (UPRI) reported that the five-day rainfall 
caused by a low pressure area and followed by the landfall of 
Tropical Storm Agaton (Megi) caused multiple landslides 
between April 1–16 in the island of Leyte (Minimo et al., 
2023). Later that same year, Severe Tropical Storm Paeng 
(Nalgae) triggered destructive debris flows in Datu Odin 
Sinsuat, Maguindanao del Norte, on October 27 (Ybañez, 
2023). More recently, the UPRI reported that continuous 
rainfall in Davao de Oro led to the reactivation of the 2007 
landslide area near a mining community in Zone 1, Barangay 
Masara, in the Municipality of Maco on February 6, 2024 
(UPRI, 2024). All of these were validated through on-site 
assessments, reports and visual inspection of experts using 
Google Earth and Planet satellite images (Mendoza, 2024; 
MGB, 2022; Minimo et. al., 2023; NDRRMC, 2022; Ybanez, 
2023). The corresponding Sentinel-2 Level-2A images closest 
to the event dates and with the least cloud cover were acquired 
on April 22, 2022 (for Abuyog, Leyte), November 7, 2022 (for 
Maguindanao del Norte), and February 10, 2024 (for Davao de 
Oro). The mask files were created by clipping the landslide 
shapefiles to each image patch and converting them into raster 
format, assigning a value of 1 to landslide pixels, and 0 to 
non-landslide areas (Zhu et al., 2025). 
 
To address the shortage of validated landslide data, the training 
samples were increased through data augmentation methods. 
Volkova et al. (2024) emphasized that data augmentation is 
essential for improving model performance and stability, 
especially in situations with limited datasets. By generating 
additional and more diverse instances from existing data, 
augmentation helps expand the scope of the dataset, mitigate 
overfitting, and improve the robustness of models. Here, we 
augmented data by performing horizontal and vertical flips as 
well as 90° rotations to the image patches using Python. These 
transformations increased the dataset size by a factor of four, 
resulting in a total of 306 training samples. 
 
 
 

 
Figure 3. Validated Landslides in Abuyog, Leyte. 

 

 
Figure 4. Validated Landslides in Datu Odin Sinsuat, 

Maguindanao del Norte. 
 

 
Figure 5. Validated Landslide area in  
Brgy. Masara, Maco, Davao de Oro. 
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3.2​ Model Configuration and Training 

Using TensorFlow/Keras, the U-Net was constructed with an 
encoder–decoder configuration that includes skip connections 
across equivalent layers. The encoder section contained four 
convolutional blocks with 16, 32, 64, and 128 filters, each 
formed by two 3×3 convolution layers with ReLU activation 
(Jalan et al., 2024) and He-normal initialization, followed by 
dropout layers and 2×2 max pooling for downsampling. 
 
The bottleneck layer contained 256 filters and a higher dropout 
rate of 0.3 was applied to minimize overfitting. The decoder or 
expansive path mirrored the encoder using transposed 
convolutions for upsampling, concatenation with encoder 
feature maps, and subsequent convolutional layers with ReLU 
activation. A concluding “1×1 convolution layer with a sigmoid 
activation function” (Goswami, et al., 2025) produced the 
binary segmentation map distinguishing landslide from 
non-landslide areas. For model training, a binary cross-entropy 
loss function was used together with the Adam optimizer 
(Ogunpola et al., 2024). In assessing performance, the study 
used established indicators such as precision, recall, and 
F1-score (Eang and Lee, 2024). According to the definition of 
Hussain (2025), precision measures the proportion of all 
polygons identified as landslides by the model that were 
actually validated to be landslide polygons. It focuses on 
correctness of the landslide detections. Recall quantifies the 
completeness of the results, showing the percentage of all 
actual landslide occurrences that the model correctly identified. 
F1-score harmonizes recall and precision, providing a single 
indicator of the model’s detection performance (Li et al., 2025). 
 
Training was executed over 100 epochs, employing an iteration 
size of 4 samples. A model checkpoint callback was used to 
save the model weights from the epoch that achieved the 
highest validation F1-score, ensuring optimal performance. 
 
3.3​ Comparative Models 

Aside from AI-based models, classifiers such as RF and SVM 
can also be applied to classify pixels from satellite imagery. 
Dias et al. (2021) and Wang et al. (2021) defined RF as a 
classification method that builds many decision trees by 
splitting data into homogeneous groups through binary rules. 
Each tree produces a class label, and the final decision is made 
through majority voting across all trees, while SVM trains on 
sample data to construct a model that classifies instances into 
their respective classes. In a two-class problem with linearly 
separable data, it chooses among the possible linear decision 
boundaries the one that minimizes generalization error, making 
the classification more reliable. Both classifiers are applied in 
several studies for the identification of landslides (Wang et al., 
2021). 
 
Dias et al. (2021) evaluated the RF, SVM, and Maximum 
Likelihood algorithms to determine their effectiveness in 
landslide detection within Itaóca, São Paulo, Brazil. The 
analysis utilized 5-meter RapidEye-5 multispectral data and 
elevation derived from the Shuttle Radar Topography Mission 
(SRTM) (Dias et al., 2021). Findings indicated that SVM 
outperformed the other classifiers, particularly when slope data 
were integrated, highlighting its suitability for identifying 
shallow landslides. 
 
For comparison with the U-Net model in this study, RF and 
SVM classifiers were also implemented using the Python 
scikit-learn library (Nibedita et al., 2025). The RF model was 

established with 300 estimators and to enhance stability and 
fairness, class weights were balanced, and a constant random 
seed was employed to ensure all trials were repeatable. The 
prepared dataset served as input for model training and testing. 
The model’s performance was assessed using F1-score, 
precision, and recall (Beg et al., 2024), supplemented by a 
confusion matrix to identify and examine specific 
misclassifications. To generate spatial predictions, the six input 
bands were extracted from each Sentinel-2 tile on a per-pixel 
basis, reshaped into a two-dimensional feature matrix, and 
classified using the trained RF model. The SVM model was 
trained on a balanced sample with up to 15,000 landslide pixels 
and twice as many non-landslide pixels, due to higher 
computational requirements. The classifier was implemented as 
a pipeline that first standardized the features and then applied 
an SVM with a radial basis function, which enables nonlinear 
separation of classes, and balanced class weights to address 
data imbalance. To produce probabilistic outputs, the trained 
model was further calibrated using a CalibratedClassifierCV 
with sigmoid scaling on half of the test set. 
 

4.​ Results and Discussion 

Training the U-Net model on both the prepared and 
data-augmented images resulted in robust performance metrics, 
including an F1-score reaching 72.97, a recall rate of 67.46, and 
a precision value of 79.54. Figure 6 presents the prediction of 
the model for a single training image patch with its 
corresponding RGB composite and landslide mask file. The 
predicted landslide features demonstrate strong correspondence 
with the actual pixels presented in the mask image. Minor 
discrepancies are primarily confined to the boundaries or edges 
of the features. 

 

 
    (a) 

 
​  (b)​​ ​            (c) 

Figure 6. Output of the U-Net Model:  
(a) RGB composite of the training image, (b) landslide 

prediction of the model, and (c) the actual landslides in a 
portion of Abuyog, Leyte. 

 
Figure 7 shows the detected landslide (shaded in red) in the test 
image patch that is not part of the training dataset. For 
cross-validation purposes, the accuracy metrics in this 
leave-one-out scene was noted. Against the training data, the 
generated model resulted in an F1-Score of 73.64, recall of 
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62.85, and precision of 89.90, showing that the model was able 
to generalize effectively to unseen areas and maintain 
consistent detection performance even when applied outside the 
training samples. 
 
The model appears to successfully detect both the massive and 
small soil-rich landslide deposits in Barangays Bahay and Pilar 
(Figure 7). However, it fails to recognize the veneer deposits of 
one of the two debris flows in Pilar (Figure 8). In the field, 
these deposits were thin layers of sediments left on the ridges 
where a debris flow ran over. These were recognized to have 
more of the gray (tuffaceous) components compared to the 
brown and clay-rich second debris flow deposit which was 
concentrated in the valley. This may indicate that the model 
needs to have more training data from volcanic ash or 
lithic-rich landslide deposits (e.g., lahar flows and debris 
flows). 
 

 
Figure 7. Detected landslide in a test image patch covering 
Barangays Bahay and Pilar (Base Image from Sentinel-2). 

 

 
Figure 8. A frame from the April 14, 2022 drone footage of the 

landslide area in Barangay Pilar, Abuyog 
 (label modified from Minimo, et al., 2023;  

footage from GPM TV Philippines via Youtube). 
 

Accuracy Metrics U-Net RF SVM 

F1-Score 72.98 62.97 60.97 

Precision 79.54 60.43 67.86 

Recall 67.47 65.73 55.36 

Table 1. Comparative performance of  
U-Net, RF, and SVM in detecting landslides. 

 
Table 1 shows the evaluation of the performance between the 
U-Net model with image classifiers such as RF and SVM, using 
standard classification performance metrics. The RF classifier 
yielded an F1-Score of 62.97, with corresponding precision of 
60.43 and recall of 65.73. Conversely, SVM produced an 
F1-Score of 60.97, achieving 67.86 precision but only 55.36 

recall. Clearly, the U-Net model achieved higher values across 
all metrics. This difference can be attributed to the nature of 
U-Net as a deep learning semantic segmentation model 
(Hussaine et al., 2025) capable of capturing both fine-scale 
texture details and broader spatial context directly from an 
image, unlike RF and SVM which classify each pixel 
independently based on spectral features. Landslides often 
exhibit irregular shapes and heterogeneous spectral signatures, 
which makes pixel-based classifiers prone to misclassification, 
especially along boundaries or in areas with similar land cover 
types. Since U-Net utilizes both the spectral and spatial 
structure of the terrain, it reduces noise, produces more 
consistent results, and delineates the extent of landslides more 
accurately. 
 

5.​ Conclusion 

This research demonstrated the applicability of U-Net for 
identifying landslides in Abuyog, Leyte using Sentinel-2 
imagery, specifically utilizing the Red, Green, and Blue bands, 
NIR, NDVI, and elevation and slope values from the DEM as 
training data, despite the limited availability of validated 
landslide datasets. The model showed strong performance, 
obtaining an F1-score of 72.97 and a precision rate of 79.54, 
and recall of 67.46 during training, and comparable results 
when applied to an unseen test image patch where it resulted in 
an F1-score of 73.64, 62.85 and 89.90 for recall and precision, 
respectively. The relatively high precision indicates that the 
U-Net model was effective at minimizing the incorrect 
classification of non-landslide areas as landslides (false 
positives), such that most of the pixels it classified as landslides 
were indeed correct. However, the lower recall suggests that the 
model missed a number of actual landslide pixels out of all 
landslide pixels in the validation data, particularly in areas with 
subtle or less distinct spectral and spatial characteristics.  
Accordingly, the model successfully delineated both the 
massive and small soil-rich landslide deposits but showed 
limitations in detecting thin veneer or lithic-rich deposits, such 
as those from volcanic and debris flow events.  
 
In comparison with conventional classifiers such as RF and 
SVM, the U-Net model performed better than both methods 
across all accuracy metrics. This advantage is a result of 
U-Net's ability to simultaneously learn spectral information and 
spatial context, enabling it to reduce classification noise, 
delineate irregular boundaries, and capture the heterogeneous 
characteristics of landslide deposits more accurately than 
pixel-based classifiers. 
 
Overall, the results showed that U-Net is a reliable and effective 
approach for landslide detection using remotely sensed data. 
Future research should aim to incorporate additional landslide 
data from diverse Philippine regions to expand the training 
data. This expansion is crucial for enhancing the ability of the 
model to detect various landslide types and compositions,  
supporting its effective application across areas with varying 
geological characteristics. 
 
This study can be valuable in formulating programs for more 
effective disaster risk reduction strategies. Through the use of 
AI-based landslide detection models, local government units, 
agencies and organizations relevant to DRRM can efficiently 
extract landslide data from satellite imagery to support 
community planning activities including land use management 
and infrastructure development. It can also contribute to rapid 
assessments, including areas that may not be readily accessible 
to emergency responders after large scale hazard events. 
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