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Abstract

The application of artificial intelligence (AI) based models offers a potential improvement over conventional approaches to landslide
detection, which typically demand substantial resources and often require significant human expert involvement. Jadala (2019)
describes the U-Net model as a convolutional neural network that is extensively used for accurate pixel-level semantic segmentation
despite having only a limited dataset for training. This research explores the capability of the U-Net model for detecting the
landslides triggered by Tropical Storm Agaton in Abuyog, Leyte in April 2022, using Sentinel-2 imagery and validated landslide
inventories from Leyte, Davao de Oro, and Maguindanao del Norte. The model was trained using image patches that included
Sentinel-2 Red, Green, and Blue bands, the Normalized Difference Vegetation Index (NDVI), as well as topographic features such as
slope and elevation values acquired from an Interferometric Synthetic Aperture Radar (IFSAR) Digital Terrain Model (DTM). The
observed results highlight the model’s effectiveness in identifying landslide pixels, achieving a strong Fl-score of 72.97. This
performance was further supported by a precision of 79.54 and a recall of 67.46. Across all accuracy metrics, the U-Net model
likewise achieved higher performance as opposed to other machine learning approaches such as the Support Vector Machine (SVM)
and Random Forest (RF) classifiers, which were evaluated using the same dataset. Future studies should focus on incorporating
additional training data across regions with varying geological characteristics to further enhance the model’s accuracy.

1. Introduction

Landslides are destructive geological hazards that occur when
materials such as soil, rock, or debris lose stability and move
downward along a slope, primarily driven by gravitational
forces (Bezerra et al., 2025; Nguyen, et al., 2025; Dias et al.,
2023; Varnes, 1958). Such occurrences usually develop in
mountainous or steep terrains and are often triggered by
multiple factors, including intense rainfall, seismic activity,
volcanic eruptions, deforestation, and land-use alterations. Each
year, landslides cause widespread damage to communities
across the globe, resulting in thousands of deaths, significant
financial losses, and long-term impacts on safety and
development (Dente et al., 2023; He et al., 2024; Li et al, 2024).

In the Philippines, the detection and monitoring of landslides
have traditionally been conducted by human experts through
visual inspection, remote sensing analysis, and field validation.
This reliance on manual detection methods were seen as
resource intensive, time-consuming and may have biased
interpretations (Wang et al., 2020; Das et al., 2023). Several
approaches are also used for landslide hazard mapping,
including empirical and descriptive models employed by the
Mines and Geosciences Bureau (MGB) through field-based
assessments and checklists to produce maps (Manzano, 2014).
Another approach is the utilization of statistical models, which
rely on landslide inventories and environmental variables, but
may be biased depending on data availability. Physically-based
or deterministic models simulate slope stability using
topographic, geologic, and hydrologic data, requiring
high-resolution terrain and precise geotechnical inputs for
accuracy (Alejandrino et al., 2015).

Artificial intelligence (Al) methods, specifically deep learning
algorithms, present an auspicious alternative to traditional

methods by analyzing satellite images over wide areas and
identifying areas of interest more efficiently. Utilizing Al to
automate landslide mapping processes can significantly
minimize the manual effort involved in conventional detection
practices. (Das et al., 2023; Liu et al. 2023). The use of Al is
also an effective tool that can address issues on visual
inspections that heavily rely on people’s subjective judgement,
which can be viewed as an “inconsistent criteria for detecting
landslides” (He, et al., 2024). By training the model on labeled
datasets, it learns to recognize complex patterns and
characterized attributes associated with landslides, resulting in
more accurate predictions and improved performance as
additional data become available.

According to Xiang (2025), the U-Net model is a kind of
convolutional neural network (CNN) structured to categorize
every pixel in an image based on the object or region it
represents and is particularly effective for tasks that require
precise pixel-level classification, such as landslide detection in
remote sensing data. It features a symmetric U-shaped structure
composed of an encoder (contracting path) that captures
contextual features through convolution and max pooling, and a
decoder (expanding path) that reconstructs spatial details using
upsampling and concatenation with corresponding encoder
features via skip connections. U-Net is well-suited for small
datasets because of its efficient use of feature information,
offering high segmentation accuracy with relatively low
computational complexity. Key advantages of the model
include its simplicity and strong performance in boundary
detection, and robustness in limited-data scenarios. However, it
also has limitations, such as difficulty in capturing multi-scale
features and challenges in distinguishing landslides from
complex backgrounds when used in its basic form (Dong et al.,
2022).
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In 2019, Ghorbanzadeh et al. conducted a study comparing
CNNs with traditional machine learning (ML) approaches,
including Support Vector Machines (SVM), Artificial Neural
Networks (ANN) and Random Forest (RF) for detecting
landslides. Their research used data from RapidEye satellite
imagery for two separate training dataset types (one is
Normalized Difference Vegetation Index (NDVI) using
Near-infrared (NIR), Blue, Green, and Red bands; the second
one with added topographic layers such as slope, aspect, and
curvature) and focused on a district in Nepal which was deemed
highly vulnerable to landslides due to its inherent geological
features and climate. It also highlighted the possible use of
CNNs for landslide detection and emphasized that the ideal
structure is not always straightforward. Nevertheless, the CNN
model using only spectral information with a 16x16 pixel input
window yielded the best results.

In a follow-up study, Ghorbanzadeh et al. (2021) assessed the
“cross-regional applicability of U-Net and ResU-Net models
for landslide detection” in sites across Taiwan, China, and
Japan. In this context, transferability refers to how well a model
trained in one region can be applied to another region without
retraining and still maintain good performance. The results
showed that although ResU-Net achieved higher overall
accuracy, U-Net demonstrated stronger transferability. The
impact of input sample size was also examined in this study,
showing that the U-Net model achieved higher mean F1-scores
when the input size was 128 x 128 pixels.

In 2022, Ghorbanzadeh et al. demonstrated the ability of U-Net
in delineating landslides. In this research, the Landslide4Sense
benchmark dataset, containing 3,799 image patches, was
utilized to train and assess different deep learning methods. The
dataset utilized the Near-Infrared (NIR), Red, Green, and Blue
bands from Sentinel-2 imagery, along with elevation values and
slope data acquired from a Digital Elevation Model (DEM).
Quantitative results showed that U-Net was the second-best
performing model, following ResU-Net, with a recall of 62.17,
precision of 79.91, and an F1-score of 69.94.

This paper provides a preliminary assessment of U-Net’s
capability in detecting landslide affected areas, utilizing bands
from Sentinel-2 imagery combined with elevation and slope
data acquired from an IFSAR Digital Terrain Model (DTM).
Specifically, the research aims to assess how effectively the
model identifies landslides in Abuyog, Leyte, and to compare
its performance with other ML techniques, such as SVM and
RF, to demonstrate the capability of Al models for more
efficient landslide detection in cases where validated data
remains limited. Ultimately, the goal of the study is to aid
agencies working on disaster risk reduction and management by
developing methods requiring less human supervision in
landslide detection.

2. Study Area

Leyte Island is highly susceptible to landslides because of its
topography, climatic conditions, and underlying geological
features such as the characteristics of its soil (Catane et al.,
2007; Guthrie et al., 2009). Located in the Eastern Visayas
region of the Philippines, the island is composed primarily of
volcanic and sedimentary rocks (Aurelio and Pefia 2010;
Sajona et al., 1997) deformed by structures associated with the
left-lateral strike-slip Philippine Fault Zone (e.g., Allen, 1962;
Dusquesnoy et al., 1994; Lagmay et al., 2003). The island’s
eastern region generally receives heavy rainfall between
October and March, whereas the western region experiences its

rainy season from June to December and remains dry during the
other months (Olaguera et al., 2025). From 2002 to 2014, a
total of 280 landslides were identified across Leyte, with most
incidents occurring in the elevated regions of the province (Eco
et al., 2015). This includes the renowned Guisaugon
rockfall-debris avalanche in 2006 (Catane et al., 2008). More
recently, the National Disaster Risk Reduction and
Management Council (NDRRMC, 2021; 2022) reported 10
landslide incidents in Leyte Island during the onslaught of
Super Typhoon Odette (Rai) and 17 more were associated with
Tropical Storm Agaton (Megi). Local field assessment of the
regional office of the MGB (2022) noted 33 landslides and
tension cracks in the Municipality of Abuyog while around 750
landslides and/or erosion sites were identified from satellite
imagery after Tropical Storm Agaton (Minimo et al., 2023).
The map shown in Figure 1 displays Abuyog, Leyte, detailing
the area affected by the Tropical Storm Agaton landslides and
where the U-Net model will be applied for detection.

Figure 1. Location of Abuyog, Leyte
(Basemap adopted from ESRI)

3. Materials and Methods
3.1 Data Used

The training dataset consists of image patches with stacked
spectral and topographic bands, along with their corresponding
mask patches. Each image patch contains six bands: Red,
Green, Blue, NIR, NDVI, Elevation, and Slope. Corresponding
Sentinel-2 Level 2A data for each region were downloaded and
the three primary visible bands, along with NIR, were extracted
using Google Earth Engine (Jalan et al., 2025). Elevation values
were derived from an IFSAR DTM grid with a S-meter spatial
resolution obtained from the National Mapping and Resource
Information Authority (NAMRIA, 2013; in Rabonza, et al.
2015). The slope values in degrees were calculated in ArcGIS
software. To ensure consistency, all bands were resampled to a
spatial resolution of 10 meters (Qu et al., 2025).
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Figure 2. General workflow for landslide detection using U-Net.

Across the three regions with validated landslide data, the
training dataset consisted of 76 image patches, each measuring
128x128 pixels and covering landslide-affected areas.

Mask data were then generated from shapefiles of rainfall
induced landslides from different regions in the Philippines,
including Leyte, Maguindanao, and Davao, as shown in Figures
3, 4, and 5. In 2022, the University of the Philippines
Resilience Institute (UPRI) reported that the five-day rainfall
caused by a low pressure area and followed by the landfall of
Tropical Storm Agaton (Megi) caused multiple landslides
between April 1-16 in the island of Leyte (Minimo et al.,
2023). Later that same year, Severe Tropical Storm Paeng
(Nalgae) triggered destructive debris flows in Datu Odin
Sinsuat, Maguindanao del Norte, on October 27 (Ybaiiez,
2023). More recently, the UPRI reported that continuous
rainfall in Davao de Oro led to the reactivation of the 2007
landslide area near a mining community in Zone 1, Barangay
Masara, in the Municipality of Maco on February 6, 2024
(UPRI, 2024). All of these were validated through on-site
assessments, reports and visual inspection of experts using
Google Earth and Planet satellite images (Mendoza, 2024;
MGB, 2022; Minimo et. al., 2023; NDRRMC, 2022; Ybanez,
2023). The corresponding Sentinel-2 Level-2A images closest
to the event dates and with the least cloud cover were acquired

on April 22, 2022 (for Abuyog, Leyte), November 7, 2022 (for B et Laricstdes

Maguindanao del Norte), and February 10, 2024 (for Davao de &

Oro). The mask files were created by clipping the landslide Figure 4. Validated Landslides in Datu Odin Sinsuat,
shapefiles to each image patch and converting them into raster Maguindanao del Norte.

format, assigning a value of 1 to landslide pixels, and 0 to
non-landslide areas (Zhu et al., 2025).

To address the shortage of validated landslide data, the training
samples were increased through data augmentation methods.
Volkova et al. (2024) emphasized that data augmentation is
essential for improving model performance and stability,
especially in situations with limited datasets. By generating
additional and more diverse instances from existing data,
augmentation helps expand the scope of the dataset, mitigate
overfitting, and improve the robustness of models. Here, we

augmented data by performing horizontal and vertical flips as S e

well as 90° rotations to the image patches using Python. These

transformations increased the dataset size by a factor of four, Figure 5. Validated Landslide area in
resulting in a total of 306 training samples. Brgy. Masara, Maco, Davao de Oro.
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3.2 Model Configuration and Training

Using TensorFlow/Keras, the U-Net was constructed with an
encoder—decoder configuration that includes skip connections
across equivalent layers. The encoder section contained four
convolutional blocks with 16, 32, 64, and 128 filters, each
formed by two 3x3 convolution layers with ReLU activation
(Jalan et al., 2024) and He-normal initialization, followed by
dropout layers and 2x2 max pooling for downsampling.

The bottleneck layer contained 256 filters and a higher dropout
rate of 0.3 was applied to minimize overfitting. The decoder or
expansive path mirrored the encoder using transposed
convolutions for upsampling, concatenation with encoder
feature maps, and subsequent convolutional layers with ReLU
activation. A concluding “1x1 convolution layer with a sigmoid
activation function” (Goswami, et al., 2025) produced the
binary segmentation map distinguishing landslide from
non-landslide areas. For model training, a binary cross-entropy
loss function was used together with the Adam optimizer
(Ogunpola et al., 2024). In assessing performance, the study
used established indicators such as precision, recall, and
F1-score (Eang and Lee, 2024). According to the definition of
Hussain (2025), precision measures the proportion of all
polygons identified as landslides by the model that were
actually validated to be landslide polygons. It focuses on
correctness of the landslide detections. Recall quantifies the
completeness of the results, showing the percentage of all
actual landslide occurrences that the model correctly identified.
F1-score harmonizes recall and precision, providing a single
indicator of the model’s detection performance (Li et al., 2025).

Training was executed over 100 epochs, employing an iteration
size of 4 samples. A model checkpoint callback was used to
save the model weights from the epoch that achieved the
highest validation F1-score, ensuring optimal performance.

33 Comparative Models

Aside from Al-based models, classifiers such as RF and SVM
can also be applied to classify pixels from satellite imagery.
Dias et al. (2021) and Wang et al. (2021) defined RF as a
classification method that builds many decision trees by
splitting data into homogeneous groups through binary rules.
Each tree produces a class label, and the final decision is made
through majority voting across all trees, while SVM trains on
sample data to construct a model that classifies instances into
their respective classes. In a two-class problem with linearly
separable data, it chooses among the possible linear decision
boundaries the one that minimizes generalization error, making
the classification more reliable. Both classifiers are applied in
several studies for the identification of landslides (Wang et al.,
2021).

Dias et al. (2021) evaluated the RF, SVM, and Maximum
Likelihood algorithms to determine their effectiveness in
landslide detection within Itadca, Sdo Paulo, Brazil. The
analysis utilized 5-meter RapidEye-5 multispectral data and
elevation derived from the Shuttle Radar Topography Mission
(SRTM) (Dias et al.,, 2021). Findings indicated that SVM
outperformed the other classifiers, particularly when slope data
were integrated, highlighting its suitability for identifying
shallow landslides.

For comparison with the U-Net model in this study, RF and
SVM classifiers were also implemented using the Python
scikit-learn library (Nibedita et al., 2025). The RF model was

established with 300 estimators and to enhance stability and
fairness, class weights were balanced, and a constant random
seed was employed to ensure all trials were repeatable. The
prepared dataset served as input for model training and testing.
The model’s performance was assessed using Fl-score,
precision, and recall (Beg et al., 2024), supplemented by a
confusion matrix to identify and examine specific
misclassifications. To generate spatial predictions, the six input
bands were extracted from each Sentinel-2 tile on a per-pixel
basis, reshaped into a two-dimensional feature matrix, and
classified using the trained RF model. The SVM model was
trained on a balanced sample with up to 15,000 landslide pixels
and twice as many non-landslide pixels, due to higher
computational requirements. The classifier was implemented as
a pipeline that first standardized the features and then applied
an SVM with a radial basis function, which enables nonlinear
separation of classes, and balanced class weights to address
data imbalance. To produce probabilistic outputs, the trained
model was further calibrated using a CalibratedClassifierCV
with sigmoid scaling on half of the test set.

4. Results and Discussion

Training the U-Net model on both the prepared and
data-augmented images resulted in robust performance metrics,
including an F1-score reaching 72.97, a recall rate of 67.46, and
a precision value of 79.54. Figure 6 presents the prediction of
the model for a single training image patch with its
corresponding RGB composite and landslide mask file. The
predicted landslide features demonstrate strong correspondence
with the actual pixels presented in the mask image. Minor
discrepancies are primarily confined to the boundaries or edges
of the features.

Figure 6. Output of the U-Net Model:
(a) RGB composite of the training image, (b) landslide
prediction of the model, and (c) the actual landslides in a
portion of Abuyog, Leyte.

Figure 7 shows the detected landslide (shaded in red) in the test
image patch that is not part of the training dataset. For
cross-validation purposes, the accuracy metrics in this
leave-one-out scene was noted. Against the training data, the
generated model resulted in an F1-Score of 73.64, recall of
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62.85, and precision of 89.90, showing that the model was able
to generalize effectively to unseen areas and maintain
consistent detection performance even when applied outside the
training samples.

The model appears to successfully detect both the massive and
small soil-rich landslide deposits in Barangays Bahay and Pilar
(Figure 7). However, it fails to recognize the veneer deposits of
one of the two debris flows in Pilar (Figure 8). In the field,
these deposits were thin layers of sediments left on the ridges
where a debris flow ran over. These were recognized to have
more of the gray (tuffaceous) components compared to the
brown and clay-rich second debris flow deposit which was
concentrated in the valley. This may indicate that the model
needs to have more training data from volcanic ash or
lithic-rich landslide deposits (e.g., lahar flows and debris
flows).

Input Image (RGB) Predicted Landslide (Red Overlay)

Figure 7. Detected landslide in a test image patch covering
Barangays Bahay and Pilar (Base Image from Sentinel-2).
Tmﬁmvwwyomu' .mmm?vﬁ4ﬁ2yunn3sw : o

 April 14, 2022 drone footage

posted by Gmws Tuffaceous
b
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Figure 8. A frame from the April 14, 2022 drone footage of the
landslide area in Barangay Pilar, Abuyog

(label modified from Minimo, et al., 2023;

footage from GPM TV Philippines via Youtube).

Accuracy Metrics U-Net RF SVM
F1-Score 72.98 62.97 60.97
Precision 79.54 60.43 67.86

Recall 67.47 65.73 55.36

Table 1. Comparative performance of
U-Net, RF, and SVM in detecting landslides.

Table 1 shows the evaluation of the performance between the
U-Net model with image classifiers such as RF and SVM, using
standard classification performance metrics. The RF classifier
yielded an F1-Score of 62.97, with corresponding precision of
60.43 and recall of 65.73. Conversely, SVM produced an
F1-Score of 60.97, achieving 67.86 precision but only 55.36

recall. Clearly, the U-Net model achieved higher values across
all metrics. This difference can be attributed to the nature of
U-Net as a deep learning semantic segmentation model
(Hussaine et al., 2025) capable of capturing both fine-scale
texture details and broader spatial context directly from an
image, unlike RF and SVM which classify each pixel
independently based on spectral features. Landslides often
exhibit irregular shapes and heterogeneous spectral signatures,
which makes pixel-based classifiers prone to misclassification,
especially along boundaries or in areas with similar land cover
types. Since U-Net utilizes both the spectral and spatial
structure of the terrain, it reduces noise, produces more
consistent results, and delineates the extent of landslides more
accurately.

5. Conclusion

This research demonstrated the applicability of U-Net for
identifying landslides in Abuyog, Leyte using Sentinel-2
imagery, specifically utilizing the Red, Green, and Blue bands,
NIR, NDVI, and elevation and slope values from the DEM as
training data, despite the limited availability of validated
landslide datasets. The model showed strong performance,
obtaining an Fl-score of 72.97 and a precision rate of 79.54,
and recall of 67.46 during training, and comparable results
when applied to an unseen test image patch where it resulted in
an Fl-score of 73.64, 62.85 and 89.90 for recall and precision,
respectively. The relatively high precision indicates that the
U-Net model was effective at minimizing the incorrect
classification of non-landslide areas as landslides (false
positives), such that most of the pixels it classified as landslides
were indeed correct. However, the lower recall suggests that the
model missed a number of actual landslide pixels out of all
landslide pixels in the validation data, particularly in areas with
subtle or less distinct spectral and spatial characteristics.
Accordingly, the model successfully delineated both the
massive and small soil-rich landslide deposits but showed
limitations in detecting thin veneer or lithic-rich deposits, such
as those from volcanic and debris flow events.

In comparison with conventional classifiers such as RF and
SVM, the U-Net model performed better than both methods
across all accuracy metrics. This advantage is a result of
U-Net's ability to simultaneously learn spectral information and
spatial context, enabling it to reduce classification noise,
delineate irregular boundaries, and capture the heterogeneous
characteristics of landslide deposits more accurately than
pixel-based classifiers.

Overall, the results showed that U-Net is a reliable and effective
approach for landslide detection using remotely sensed data.
Future research should aim to incorporate additional landslide
data from diverse Philippine regions to expand the training
data. This expansion is crucial for enhancing the ability of the
model to detect various landslide types and compositions,
supporting its effective application across areas with varying
geological characteristics.

This study can be valuable in formulating programs for more
effective disaster risk reduction strategies. Through the use of
Al-based landslide detection models, local government units,
agencies and organizations relevant to DRRM can efficiently
extract landslide data from satellite imagery to support
community planning activities including land use management
and infrastructure development. It can also contribute to rapid
assessments, including areas that may not be readily accessible
to emergency responders after large scale hazard events.
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