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Abstract

Understanding land cover change is vital for sustainable management, particularly in diverse and ecologically significant landscapes
like the Pantabangan-Carranglan Watershed (PCW) in the Philippines. This study employed multi-seasonal Synthetic Aperture Radar
(SAR) and optical imagery from Sentinel satellites to enhance land cover classification and predict future changes in PCW. Data
preprocessing and combination were performed using the Sentinel Application Platform (SNAP) software, resulting in multi-season
datasets that accounted for the area’s distinct climatic patterns. Classification was conducted using the Random Forest algorithm,
generating land cover maps for 2017, 2020, and 2023, followed by change detection and prediction using Artificial Neural Network
(ANN) for years 2023 and 2026. Results indicated a general increase in forest cover, with notable gains observed from non-forest
vegetation and bare soil classes, suggesting ecological succession. Increases in forest cover of about 89 km?, 34 km?, and 28 km?
were observed for 2017-2020, 2020-2023, and 2023-2026 analysis, respectively. Generally, classification accuracy (total accuracy)
remained acceptable (77%-85%), and ANN-based predictions showed limitations which were affected by input data
misclassifications. In general, the multi-season/combined season model emerged as the most effective for change detection,
outperforming the mono-season approach with an average total accuracy of 83.73%. For the predicted future land cover based on the
best performing model, the total accuracy for 2023 was at 79%. Despite the challenges, the study underscores the potential of
integrating the Sentinel-1 and Sentinel-2 data for land cover monitoring, offering insights into landscape dynamics and conservation
strategies. Future work should focus on refining methodologies to improve differentiation between classes particularly bare soil and

built-up.

1. Introduction

Understanding land cover change is fundamental to achieve
sustainable  environmental —management, particularly in
heterogeneous landscapes that are sensitive to anthropogenic
and natural changes. Land cover transitions such as forest to
agriculture or agriculture to built-up can significantly affect
hydrology, carbon storage, and biodiversity (Foley et al., 2005).
These changes are often driven by population growth,
infrastructure development, and climate variability, which
necessitate detailed and temporally sensitive monitoring
systems (Assede et al., 2023; Roy et al., 2022).

Remote sensing developments, such as the availability of
Sentinel-1 (radar) and Sentinel-2 (optical) imagery, provide
researchers with powerful tools for conducting comprehensive
land cover analysis. Sentinel-1 offers cloud-penetrating
Synthetic Aperture Radar (SAR) technology. On the other hand,
Sentinel-2 satellite provides multispectral data with high
temporal and spatial resolution. These platforms offer
high-resolution data and complementary spectral and temporal
characteristics that make them suitable for detailed monitoring
and predictive modeling of land cover changes (Drusch et al.,
2012; ESA, 2021).

Sentinel-1 and Sentinel-2 have been widely used in land cover
classification. Solérzano et al. (2021) was able to take
advantage of Sentinel-1 and Sentinel-2 for land cover
classification of select municipalities in Southern Mexico. The
combination of multispectral and synthetic-aperture radar data
improved the classification and had an overall accuracy of 0.76.
Furthermore, satellite-based data fusion where multispectral
bands and indices were combined with radar polarization bands
were proven effective. Pott et al. (2021) were able to apply

satellite-based data fusion in field-scale crop monitoring to
monitor agricultural crops in Grande do Sul state, Brazil by
combining Sentinel-1, Sentinel-2, and Data Elevation Model
(DEM) data from Shuttle Radar Topographic Mission (SRTM).
In addition, the data fusion of seasonal images were also studied
to provide a more robust classification. In particular, Borges et
al. (2020) was able to combine Sentinel-1 SAR and Sentinel-2
optical data from multiple seasons throughout the year to create
different land cover models for a savannah ecosystem. They
came to the conclusion that the best outcomes were obtained
when dry and short dry seasons were combined.

PCW represents a diverse and complex environment
characterized by a mix of agricultural, forested, and built-up
areas. This heterogeneity poses challenges for accurate land
cover classification and change detection using conventional
methods and global land cover products (Cai et al., 2019).
When applying global models to regional areas, particularly in
tropical regions where spectral variability within land cover
types is high, misclassification is common (Hansen et al., 2013).

Addressing these issues requires tailored methodologies that
integrate the unique capabilities of remote sensing platforms.
This study aims to use Sentinel-1 SAR and Sentinel-2 optical
data for improved land cover mapping based on the methods
proposed by Borges et al (2020) and applied specifically for
PCW. By leveraging multi-seasonal imagery, the study seeks to
enhance the accuracy and applicability of land cover
classification in the study area, contributing valuable insights to
environmental monitoring and management. Furthermore,
Muhammad et al. (2022) was able to predict future land cover
changes using an artificial neural network (ANN) algorithm that
could support decision-making for land management and
natural resource use.
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This paper aims to enhance the accuracy of land cover
classification in heterogeneous environments such as the PCW.
It also seeks to reduce the error rates typically encountered
when applying global land cover products to regional scales.
Additionally, the study strives to establish a user-friendly
methodology that can support land cover mapping efforts and
provide valuable inputs for land management practices in the
Philippines.

This study not only seeks to fill critical knowledge gaps
regarding land cover classification and analysis in PCW,
including the application of regionally tailored methods for
heterogeneous environments like the PCW and applicability of
remote sensing data integration from multiple sensors and
seasons, but also aims to provide practical tools and
methodologies for relevant stakeholders involved in watershed
management and environmental planning.

2.  Study Area

The PCW covers five municipalities across the provinces of
Aurora, Nueva Ecija, and Nueva Vizcaya and lies between
15°44’ and 16°88’ north latitude and 120°36” and 122°00° east
longitude as shown in Figure 1. PCW forms part of the larger
Upper Pampanga River Basin, which is essential to the
hydroelectric energy and irrigation infrastructure in Central
Luzon (Pulhin et al., 2006). Covering approximately 97,318
hectares, the PCW plays a crucial role in water supply,
biodiversity conservation, and agricultural productivity in the
region.

The PCW is characterized by its diverse land cover types and
distinct rainfall pattern (climate type III). This heterogeneity,
combined with the land use and topographic variation, presents
challenges for land cover mapping and monitoring, highlighting
the need for high-resolution, multi-temporal analysis to support
sustainable management and planning efforts.

2.1 Geographical and Climatic Features

The PCW falls under Philippine Climatic Type III, which is
marked by a relatively short dry season (usually from March to
May) and a long wet season (Pulhin et al., 2006). This bimodal
precipitation pattern, along with its elevation gradient and
proximity to the Sierra Madre mountain range, creates a wide
range of microclimates and ecological niches.

The topographic and climatic diversity results in a mosaic of
vegetation types that are highly dynamic throughout the year
which is ideal for multi-seasonal remote sensing analysis (Lasco
et al., 2008).

2.2 Land Use and Vegetation

The PCW landscape includes forested uplands, lowland
agricultural fields, grasslands, and patches of built-up or
developed areas. Forests in the watershed are mostly composed
of secondary growth and mixed broadleaf species, while
lowland areas support rice, corn, and vegetable farming.
Shifting cultivation and illegal logging have historically
threatened the ecological balance of the region (Lasco et al.,
2010). The complex mix of land uses and vegetation types
within a relatively compact area poses a challenge to
conventional land cover classification systems, which often rely
on generalized categories or single-season imagery.
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Figure 1. The Pantabangan-Carranglan Watershed.

2.3 Environmental Challenges

The watershed is experiencing significant environmental
challenges such as soil erosion, which is exacerbated by
deforestation, steep slopes, and intense rainfall events. The
RUSLE has been used in several studies to estimate erosion
rates in the watershed, showing significant spatial variability
depending on land cover and slope (Alejo et al., 2021). Erosion
not only degrades agricultural productivity but also leads to
sedimentation in the Pantabangan Dam, which threatens water
storage capacity and hydropower generation.

Additionally, land conversion for agricultural expansion and
infrastructure projects has fragmented forest habitats, affecting
biodiversity and increasing vulnerability to extreme weather
events. These pressures underline the need for updated, accurate
land cover maps that reflect on-the-ground conditions and
support better land use policies.

2.4 Reforestation and Conservation Efforts

Efforts to rehabilitate and conserve PCW include reforestation
projects aimed at enhancing native species' suitability and
improving the success rates of such initiatives. These projects
are crucial for preserving ecological balance and ensuring the
long-term sustainability of the watershed. (Dolores et al., 2019).

The diverse landscape of PCW, vital role in agriculture, rich
biodiversity, and the environmental challenges it faces make it a
focal point for studies on land cover change, conservation, and
sustainable management practices.

3.  Methodology

The study employed Sentinel-1 Synthetic Aperture Radar
(SAR) and Sentinel-2 optical data, which were acquired across
three distinct seasons—multi-seasonal, short-dry, and wet—to
optimize land cover mapping within PCW. Preprocessing of
Sentinel-1 data, including radiometric calibration and terrain
correction was conducted using the SNAP software, resulting in
the extraction of two (2) bands per season (VV and VH bands)
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and the generation of Grey-Level Co-Occurrence Matrix
(GLCM) metrics. For Sentinel-2, ten (10) bands were extracted
(B2, B3, B4, B5, B6, B7, B8, B8A, B11, and B12), which were
in 10m and 20m resolutions. Normalized Difference Vegetation
Index (NDVI) were also generated for each of the Sentinel-2
dataset. The preprocessing for Sentinel-2 included the
resampling of 20m bands to 10m, mosaicking, and cloud
masking. Using the monthly Sentinel data, averages for
short-dry season and wet season were used as datasets for the
land cover classification for each season, respectively. For the
annual/combined (multi-season) dataset, the datasets for
short-dry and wet seasons were taken. The identical bands from
each dataset were averaged to form a new set of stacked images
for the multi-season dataset, resulting in a similar number of
bands across all datasets. This approach accounted for the study
area's Type 3 climate, characterized by a short dry season
lasting three to four months (March-May) and an extended wet
season (June-February). Sentinel-2 data underwent comparable
preprocessing in SNAP to ensure compatibility. The images
were finalized through the integration of bands (both originally
extracted and generated) via layerstacking for the three models
(short-dry, wet, and annual/combined). These images were
subsequently prepared for land cover classification.

Land cover classification involved the generation of three final
composite images by stacking both Sentinel satellite data for
years 2017, 2020, and 2023. Training data representing various
land cover types—such as bare soil, built-up areas, vegetation,
forest, and water—were utilized for classification using the
Random Forest algorithm. Initially, 2015 land cover data from
Sentinel-2 were considered for comparison with the 2015 and
2020 datasets from the NAMRIA. However, due to the
unavailability of Sentinel-2 data prior to 2017, the yearly global
land cover data from ESRI, also based on Sentinel-2, were
selected as the alternative reference dataset for years 2017,
2020, and 2023.

The land cover data for 2017 and 2020 were subsequently used
to predict future land cover for 2023, with validation planned
against actual 2023 observations. Projections for 2023 and 2026
were also generated, representing three-year intervals,
respectively. Change detection analysis was conducted on all
land cover datasets to quantify temporal and spatial
transformations.

Future simulations employed the Artificial Neural Network
(ANN) multi-layer perception which was implemented via
MOLUSCE plugin for QGIS. The ANN model required only
the initial and final land cover datasets as inputs. Thus, the 2017
and 2020 generated land covers were used as inputs for 2023
prediction and the 2020 and 2023 generated land covers were
used for 2026 prediction. The Data Elevation Model (ASTER)
and the slope of the study area were also used as ancillary data
for the future simulation. The neural network training was done
using the plugin set with the default values, followed by the
cellular automata simulation. The methodological framework
for the study, including data preprocessing, combination,
classification, prediction and simulation, is illustrated in Figure
2.

3.1 Data

3.1.1 Sentinel-2: It comprises two satellites, Sentinel-2A
and Sentinel-2B, which were launched in June 2015 and March
2017, respectively (ESA, 2021). Sentinel-2 data, preprocessing
steps included downsampling all bands to a spatial resolution of
10 meters, excluding the 60-meter atmospheric correction

bands. The visible, near-infrared (NIR), red, and shortwave
infrared (SWIR) bands, along with the normalized difference
vegetation index (NDVI), were combined to produce 11 bands
per season. Data acquisition involved acquiring two tiles for
each time period from the Copernicus API hub to
comprehensively cover the study area, resulting in the
processing of 62 tiles in total.

3.1.2 Sentinel-1: The Sentinel-1, developed under the
ESA Copernicus Programme, is an Earth observation mission.
Comprising Sentinel-1A and 1B, the mission’s satellites were
launched in April 2014 and April 2016, respectively (ESA,
2021). Sentinel-1 is equipped with a C-band SAR, which
operates independently of cloud cover and weather conditions.
This capability has proven effective in mapping land cover
characteristics, particularly in complex environments (Schulz et
al., 2021). Sentinel-1 imagery is publicly available and
accessible via the Copernicus API Hub. Its preprocessing
involved the extraction of Grey-Level Co-Occurrence Matrix
(GLCM) parameters from the VV and VH polarization bands.
These metrics included the 25th, 50th, and 90th percentiles, as
well as the standard deviation, resulting in four derived values
per band and a total of eight metrics per season.
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3.2  Image Classification

3.2.1 Training Samples and Classification: Training
samples were manually for each image composite. The training
samples were scattered across the study area to ensure the
representation of pixels for the whole area, with a minimum of
10,000 pixels per class. The training samples were used as input
for the random forest classifier in Sentinel Application Platform
(SNAP). A total of nine (9) classified images were generated
(one for each season of the year and the combination). The land
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cover classification includes five (5) cover types as shown in
Table 1.

Land Cover Class Description
Built-up Areas covered by man-made
structures such as buildings, roads,

and other infrastructure.

Bare Soil Exposed ground with little to no
vegetation, including fallow land.

Forest Dense areas dominated by woody
perennials such as trees and
undergrowth.

Vegetation Land covered by grass, shrubs,
crops, or other low-lying plant life,
excluding dense forests.

Water Bodies of water such as rivers, lakes,
ponds, or reservoirs.

Table 1. Land Cover Classes and Their Descriptions

3.23 Result Validation: The study area was sampled using
randomly generated validation points. A total of 250 validation
points were assigned, with 50 points allocated per class. For the
accuracy assessment, 250 validation points were randomly
distributed across the study area. This sample size aligns with
recommendations in the remote sensing literature, which
suggest that approximately 200-300 points (with at least 50
points per class) are sufficient for statistically reliable accuracy
estimates while balancing feasibility and computational
efficiency (Congalton & Green, 2008; Olofsson et al., 2014).
Moreover, Philippines’ similar studies on land cover change
have employed comparable sample sizes to ensure
representativeness without being excessively resource-intensive
(Olfato-Parojinog et al., 2023). The accuracy assessment was
then performed by manually labelling the correct land cover
class of the generated points in reference to Google Earth
imagery and Sentinel-2 dataset based on the authors’
interpretation and judgement.

4. Results and Discussions
4.1 Accuracy Assessment Results

A total of nine (9) classified images were generated from the
Sentinel images (Three for each season model — Short-dry, Wet,
and Multi-Season) as shown in Figure 3. The resulting images
have null values due to the lack of coverage for cloud-free
pixels on Sentinel-2 data. Thus, in the accuracy assessment of
the land cover change analysis, these areas were not included.
Table 2 summarizes the overall classification accuracy of the
images.

Figure 3 shows that the classified images overestimate built-up
areas (much of bare soil were classified as built up). Built up
areas in the study area are only minimal but are visually evident
in the resulting land cover images, which may be caused by the
almost similar spectral signature of the bare soil and built up
and the differences in brightness within the original image
composites.

The total accuracy of the classified images ranges from 78.13%
to 83.73%. Generally, the total accuracy of the multi-season
model was greater than the short-dry and wet models. Similar to
the results of Borges et al. (2020) for savannah, using a
multi-season model in a tropical watershed does yield better

results. Moreover, the kappa statistics of the classified images
only range from 71% to 81% which are better than random
chance.

Year Multi-Season Short-Dry Wet
2017 85.20 % 82.80 % 79.55 %
2020 82.00 % 79.20 % 77.20 %
2023 84.00 % 80.80 % 77.64 %
Average 83.73% 80.93% 78.13%
Table 2. Summary of total accuracy.
Combined  Short-dry Wet
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Figure 3. Land Cover Classification

4.2  Land Cover Change Analysis

As the best-performing approach, the multi-season/combined
season model was used to examine land cover change,
specifically targeting alterations in forest cover. The gains and
losses were also analyzed, taking into account the classes that
were converted to and from forests. The land cover classes
considered for the analysis were mainly bare soil and
vegetation, as shown in Table 3. Lastly, forest cover change
prediction was made for 2026 using the ANN-generated land
cover classification images as shown in Figure 4.

From 2017 to 2023, there was a significant net increase in forest
cover within the PCW. Most of the increase comes from the
vegetation class, which suggests ecological succession. This can
also be attributed to the reforestation efforts in the area (Dolores
et al., 2019). The net increase was observed to be about 89 and
34 km? for 2017-2020 and 2020-2023 changes, respectively.
There is an observed forest cover loss which is mainly
converted from forests to vegetation.

4.3  Land Cover Change Prediction
Using the generated images as inputs, predicted land cover for

2023 and 2026 were generated as presented in Figure 4. In
comparison to the best performing classified model (short-dry
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season model), the 2023 predicted land cover has a total
accuracy of about 79%. The resulting images especially for
2023 prediction has an overestimation of the built-up areas,
which is more than the generated 2023 land cover. This may
have been affected by the quality of the input images from the
years 2017 and 2020 based on the validation made (Table 2),
which have similar inaccuracies. Another simulation was run to
generate the LULC map for 2026. Results showed an increase
in forest cover of about 28 km? which mainly comes from
vegetation and bare soil (Table 3).

2023 2026

Figure 4. Land Cover Prediction

GAINS 2017-2020 | 2020-2023 | 2023-2026
from Bare Soil | 3,465,900 | 3,286,200 3,424,900
from Vegetation |106,419,100| 61,213,600 | 60,724,700
Total 109,885,000 64,499,800 | 69,149,600
LOSSES 2017-2020 | 2020-2023 | 2023-2026
to Bare Soil 1,943,100 | 1,012,900 1,023,100
to Vegetation 18,875,300 | 29,091,700 | 39,258,100
Total 20,818,400 | 30,104,600 | 40,281,200
NET 89,066,600 | 34,395200 | 28,868,400

Table 3. Results of forest cover change analysis (in m?) for the
short-dry model

5. Conclusions and Recommendations

This study has conducted a multi-seasonal land cover change
analysis and prediction in the PCW using Sentinel-1 and
Sentinel-2 imagery. Results revealed important insights and
indicated a general increase in forest cover (about 89 km?, 34
km? and 28 km? for 2017-2020, 2020-2023, and 2023-2026
analysis, respectively). The use of multi-seasonal satellite
imagery has resulted in higher accuracies for land cover
classification in PCW, a tropical watershed, in comparison to
the monoseasonal models, indicating that the objective of
enhancing classification accuracy in such a heterogeneous
environment was achieved. However, improvements can still be
made. The complexities of the PCW's varied landscapes, which
include both forested and non-forested areas, may require more
advanced techniques or improved feature extraction to better
differentiate land cover classes, especially between bare soil and
built-up areas where most misclassifications occurred. In
particular, accuracy can be enhanced by integrating additional
spectral indices including NDVI for vegetation, NDWI or
Normalized Difference Water Index for water bodies, and
built-up indices, which have been shown to improve class
separability (Tucker, 1979; McFeeters, 1996; Xie et al., 2008).
On the other hand, Bare Soil Index (BSI) and Normalized
Difference Bare Soil Index (BSI) can improve the classification

between bare soil and built-up (Ying et al., 2022). Using
multi-temporal imagery can also capture seasonal differences
more effectively, while combining Sentinel-1 SAR with
Sentinel-2 optical data provides complementary structural and
spectral information for improved classification (Torres et al.,
2012; Li et al., 2020). On the methodological side, advanced
approaches such as Support Vector Machines (SVM) or
object-based image analysis (OBIA) have been demonstrated to
perform better than pixel-based classifiers in heterogeneous
environments (Blaschke, 2010; Mountrakis et al., 2011).

Moreover, the analysis also showed that the land cover models,
when applied to regional scales, produced acceptable error rates
(77% to 85% total accuracy in comparison to the expected
80%), which demonstrated its ability to generalize global land
cover products effectively for local or regional applications.
This indicates that while the model encountered some difficulty
in adapting global datasets to regional settings, the methods are
reliable enough and that can further be improved in future
studies. Lastly, although the proposed methodology remains
user-friendly, it still needs further refinement to improve its
efficiency, particularly in land cover monitoring and
management in the Philippines using numerous datasets.

Finally, the objectives of the study were achieved. Additional
modifications are required to improve classification between
some classes but it provides a solid foundation for using the
data of Sentinel-1 and Sentinel-2 for land cover change analysis,
especially when focusing on forest cover change. Sentinel-1 has
alleviated the negative effects of some thin clouds and other
effects of atmosphere present in the Sentinel-2 dataset, while the
combination of information from different seasons captures the
changing patterns of vegetation (woody and non-woody).
Enhanced model accuracy, reduced error rates, and a more
robust user-friendly approach will be essential to meet the goals
of accurate land cover mapping and supporting effective
watershed management in the Pantabangan-Carranglan region.

References

Alejo Jr., R. T., Bato, V. A., Medina, S. M., Sobremisana, M. J.,
2024. Spacio-temporal estimation of soil erosion by revised
universal soil loss equation model in Pantabangan-Carranglan
watershed, Philippines. Journal of Ecological Engineering,
25(11), 1-14. doi.org/10.12911/22998993/191029

Assede, E. S., Orou, H., Biaou, S. S., Geldenhuys, C. J.,
Ahononga, F. C., Chirwa, P. W., 2023. Understanding drivers of
land use and land cover change in Africa: A Review. Current
Landscape Ecology Reports, 8(2), 62-72.
doi.org/10.1007/s40823-023-00087-w

Blaschke, T. 2010. Object based image analysis for remote
sensing. ISPRS Journal of Photogrammetry and Remote
Sensing, 65(1), 2-16. doi.org/10.1016/j.isprsjprs.2009.06.004
Borges, J., Higginbottom, T. P., Symeonakis, E., Jones, M.
2020. Sentinel-1 and sentinel-2 data for Savannah land cover
mapping: Optimising the combination of sensors and seasons.
Remote Sensing, 12(23), 3862. doi.org/10.3390/rs12233862

Cai, X., Zhang, L., Yang, D., Pang, Z. 2019. Challenges of
applying global land cover products in regional applications: A
case study from heterogeneous landscapes. ISPRS Journal of
Photogrammetry and Remote Sensing, 149, 198-210.
doi.org/10.1016/].isprsjprs.2019.01.010

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIlI-5-W4-2025-3-2026 | © Author(s) 2026. CC BY 4.0 License. 7



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-5/W4-2025
Philippine Geomatics Symposium (PhilGEOS) 2025 "Enhancing Human Quality of Life through Geospatial Technologies",
24-25 November 2025, Quezon City, Philippines

Congalton, R. G., Green, K. 2008. Assessing the Accuracy of
Remotely Sensed Data: Principles and Practices (2nd ed.). CRC
Press, Boca Raton.

Dolores, J.R., Galang, M.A., Dida, J.V., 2019. Species-site
suitability assessment for reforestation in the
Pantabangan-Carranglan Watershed. Philippine Journal of
Science, 149(3), 529-537. doi.org/10.56899/149.03.07

Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernandez, V.,
Gascon, F., Hoersch, B., Isola, C., Laberinti, P., Martimort, P.,
Meygret, A., Spoto, F., Sy, O., Marchese, F., Bargellini, P.,
2012. Sentinel-2: ESA’s optical high-resolution mission for
GMES Operational Services. Remote Sensing of Environment,
120, 25-36. doi.org/10.1016/j.rse.2011.11.026

European Space Agency (ESA), 2021. Sentinel-1 and Sentinel-2
mission overview.
esa.int/Applications/Observing_the Earth/Copernicus/Sentinel-
1

European Space Agency (ESA), n.d.. Sentinel Application
Platform (SNAP). earth.esa.int/eogateway/tools/snap

Foley, J. A., DeFries, R., Asner, G. P., Barford, C., Bonan, G.,
Carpenter, S. R., Chapin, F. S., Coe, M. T., Daily, G. C., Gibbs,
H. K., Helkowski, J. H., Holloway, T., Howard, E. A., Kucharik,
C. J., Monfreda, C., Patz, J. A., Prentice, I. C., Ramankutty, N.,
Snyder, P. K., 2005. Global consequences of land use. Science,
309(5734), 570-574. doi.org/10.1126/science. 1111772

Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M.,
Turubanova, S. A., Tyukavina, A., Thau, D., Stehman, S. V.,
Goetz, S. J., Loveland, T. R., Kommareddy, A., Egorov, A.,

Chini, L., Justice, C. O., Townshend, J. R., 2013.
High-resolution global maps of 2Ist-century forest cover
change. Science, 342(6160), 850-853.

doi.org/10.1126/science.1244693

Lasco R. D., Cruz R. V. O., Pulhin J. M., Pulhin F. B., 2010.
Assessing  climate  change impacts, vulnerability —and
adaptation: The case of the Pantabangan-Carranglan
Watershed. World Agroforestry Centre and College of Forestry
and Natural Resources, Los Bafios, Laguna, Philippines.

Lasco, R. D., Pulhin, F. B., Cruz, R. V. O., Pulhin, J. M., Roy,
S., Sanchez, P., 2008. Forest responses to changing rainfall in
the Philippines. In: Leary, N., Conde, C., Kulkarni, J., Nyong,
A., Pulhin, J. (Eds.), Climate Change and Vulnerability.
Earthscan, London, pp. 49—66.

McFeeters, S. K. 1996. The use of the Normalized Difference
Water Index (NDWI) in the delineation of open water features.
International Journal of Remote Sensing, 17(7), 1425-1432.
doi.org/10.1080/01431169608948714

Mountrakis, G., Im, J., Ogole, C. 2011. Support vector
machines in remote sensing: A review. ISPRS Journal of
Photogrammetry and Remote Sensing, 66(3), 247-259.
doi.org/10.1016/j.isprsjprs.2010.11.001

Muhammad, R., Zhang, W., Abbas, Z., Guo, F., Gwiazdzinski,
L., 2022. Spatiotemporal change analysis and prediction of
future land use and land cover changes using QGIS MOLUSCE
plugin and Remote Sensing Big Data: A case study of Linyi,

China. Land, 11(3), 419. doi.org/10.3390/1and11030419

Olfato-Parojinog, M. M., Sanchez, A. M., Blanco, A. C. 2023.
Land use/land cover changes (LULCC) using remote sensing
analyses in Rizal, Philippines. GeoJournal, 88(1-2), 1-14.
doi.org/10.1007/5s10708-023-10959-7

Olofsson, P, Foody, G. M., Herold, M., Stehman, S. V.,
Woodcock, C. E., Wulder, M. A. 2014. Good practices for
estimating area and assessing accuracy of Land Change. Remote
Sensing of Environment, 148, 42-57.
doi.org/10.1016/j.rse.2014.02.015

Olofsson, P., Foody, G. M., Stehman, S. V., Woodcock, C. E.
2014. Making better use of accuracy data in land change
studies: Estimating accuracy and area and quantifying
uncertainty using stratified estimation. Remote Sensing of
Environment, 129, 122—131. doi.org/10.1016/j.rse.2012.10.031

Pott, L. P., Amado, T. J., Schwalbert, R. A., Corassa, G. M.,
Ciampitti, 1. A., 2021. Satellite-based data fusion crop type
classification and mapping in Rio Grande do Sul, Brazil. ISPRS
Journal of Photogrammetry and Remote Sensing, 176, 196-210.
doi.org/10.1016/j.isprsjprs.2021.04.015

Pulhin, J. M., Peras, R. J. J., Cruz, R. V. O., Pulhin, F. B., Lasco,
R. D., 2006. Vulnerability of communities to climate variability
and extremes: The Pantabangan-Carranglan watershed in the
Philippines.  Environmental =~ Hazards, —6(4), 229-250.
doi.org/10.1016/j.envhaz.2006.06.003

Roy, P. S., Ramachandran, R. M., Paul, O., Thakur, P. K.,
Ravan, S., Behera, M. D., Sarangi, C., Kanawade, V. P., 2022.
Anthropogenic land use and land cover changes—a review on
its environmental consequences and climate change. Journal of’
the Indian Society of Remote Sensing, 50(8), 1615-1640.
doi.org/10.1007/512524-022-01569-w

Schulz, D., Yin, H., Tischbein, B., Verleysdonk, S., Adamou,
R., Kumar, N., 2021. Land use mapping using Sentinel-1 and
Sentinel-2 time series in a heterogeneous landscape in Niger,
Sahel. ISPRS Journal of Photogrammetry and Remote Sensing,
182, 251-267. doi.org/10.1016/j.isprsjprs.2021.10.003

Solérzano, J. V., Mas, J. F., Gao, Y., Gallardo-Cruz, J. A., 2021.
Land use land cover classification with U-Net: Advantages of
combining sentinel-1 and sentinel-2 imagery. Remote Sensing,
13(18), 3600. doi.org/10.3390/rs13183600

Tucker, C. J. 1979. Red and photographic infrared linear
combinations for monitoring vegetation. Remote Sensing of
Environment, 8(2), 127-150.
doi.org/10.1016/0034-4257(79)90013-0

Xie, Y., Sha, Z., Yu, M. 2008. Remote sensing imagery in
vegetation mapping: A review. Journal of Plant Ecology, 1(1),
9-23. doi.org/10.1093/jpe/rtm005

Liu, Y, Meng, Q., Zhang, L., Wu, C. 2022. NDBSI: A
normalized difference bare soil index for remote sensing to
improve bare soil mapping accuracy in urban and rural areas.
CATENA, 214, 106265. doi.org/10.1016/j.catena.2022.106265

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIlI-5-W4-2025-3-2026 | © Author(s) 2026. CC BY 4.0 License. 8


https://earth.esa.int/eogateway/tools/snap

	Multi-Season Land Cover Change Modeling of Pantabangan-Carranglan Watershed Using Sentinel-1 and Sentinel-2 Imagery 



