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Abstract 

Understanding land cover change is vital for sustainable management, particularly in diverse and ecologically significant landscapes 
like the Pantabangan-Carranglan Watershed (PCW) in the Philippines. This study employed multi-seasonal Synthetic Aperture Radar 
(SAR) and optical imagery from Sentinel satellites to enhance land cover classification and predict future changes in PCW. Data 
preprocessing and combination were performed using the Sentinel Application Platform (SNAP) software, resulting in multi-season 
datasets that accounted for the area’s distinct climatic patterns. Classification was conducted using the Random Forest algorithm, 
generating land cover maps for 2017, 2020, and 2023, followed by change detection and prediction using Artificial Neural Network 
(ANN) for years 2023 and 2026. Results indicated a general increase in forest cover, with notable gains observed from non-forest 
vegetation and bare soil classes, suggesting ecological succession. Increases in forest cover of about 89 km2, 34 km2, and 28 km2 
were observed for 2017-2020, 2020-2023, and 2023-2026 analysis, respectively. Generally, classification accuracy (total accuracy) 
remained acceptable (77%-85%), and ANN-based predictions showed limitations which were affected by input data 
misclassifications. In general, the multi-season/combined season model emerged as the most effective for change detection, 
outperforming the mono-season approach with an average total accuracy of 83.73%. For the predicted future land cover based on the 
best performing model, the total accuracy for 2023 was at 79%.  Despite the challenges, the study underscores the potential of 
integrating the Sentinel-1 and Sentinel-2 data for land cover monitoring, offering insights into landscape dynamics and conservation 
strategies. Future work should focus on refining methodologies to improve differentiation between classes particularly bare soil and 
built-up. 

1. Introduction

Understanding land cover change is fundamental to achieve 
sustainable environmental management, particularly in 
heterogeneous landscapes that are sensitive to anthropogenic 
and natural changes. Land cover transitions such as forest to 
agriculture or agriculture to built-up can significantly affect 
hydrology, carbon storage, and biodiversity (Foley et al., 2005). 
These changes are often driven by population growth, 
infrastructure development, and climate variability, which 
necessitate detailed and temporally sensitive monitoring 
systems (Assede et al., 2023; Roy et al., 2022).​

Remote sensing developments, such as the availability of 
Sentinel-1 (radar) and Sentinel-2 (optical) imagery, provide 
researchers with powerful tools for conducting comprehensive 
land cover analysis. Sentinel-1 offers cloud-penetrating 
Synthetic Aperture Radar (SAR) technology. On the other hand, 
Sentinel-2 satellite provides multispectral data with high 
temporal and spatial resolution. These platforms offer 
high-resolution data and complementary spectral and temporal 
characteristics that make them suitable for detailed monitoring 
and predictive modeling of land cover changes (Drusch et al., 
2012; ESA, 2021). 

Sentinel-1 and Sentinel-2 have been widely used in land cover 
classification. Solórzano et al. (2021) was able to take 
advantage of Sentinel-1 and Sentinel-2 for land cover 
classification of select municipalities in Southern Mexico. The 
combination of multispectral and synthetic-aperture radar data 
improved the classification and had an overall accuracy of 0.76. 
Furthermore, satellite-based data fusion where multispectral 
bands and indices were combined with radar polarization bands 
were proven effective. Pott et al. (2021) were able to apply 

satellite-based data fusion in field-scale crop monitoring to 
monitor agricultural crops in Grande do Sul state, Brazil by 
combining Sentinel-1, Sentinel-2, and Data Elevation Model 
(DEM) data from Shuttle Radar Topographic Mission (SRTM). 
In addition, the data fusion of seasonal images were also studied 
to provide a more robust classification. In particular, Borges et 
al. (2020) was able to combine Sentinel-1 SAR and Sentinel-2 
optical data from multiple seasons throughout the year to create 
different land cover models for a savannah ecosystem. They 
came to the conclusion that the best outcomes were obtained 
when dry and short dry seasons were combined. 

PCW represents a diverse and complex environment 
characterized by a mix of agricultural, forested, and built-up 
areas. This heterogeneity poses challenges for accurate land 
cover classification and change detection using conventional 
methods and global land cover products (Cai et al., 2019). 
When applying global models to regional areas, particularly in 
tropical regions where spectral variability within land cover 
types is high, misclassification is common (Hansen et al., 2013). 

Addressing these issues requires tailored methodologies that 
integrate the unique capabilities of remote sensing platforms. 
This study aims to use Sentinel-1 SAR and Sentinel-2 optical 
data for improved land cover mapping based on the methods 
proposed by Borges et al (2020) and applied specifically for 
PCW. By leveraging multi-seasonal imagery, the study seeks to 
enhance the accuracy and applicability of land cover 
classification in the study area, contributing valuable insights to 
environmental monitoring and management. Furthermore, 
Muhammad et al. (2022) was able to predict future land cover 
changes using an artificial neural network (ANN) algorithm that 
could support decision-making for land management and 
natural resource use. 
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This paper aims to enhance the accuracy of land cover 
classification in heterogeneous environments such as the PCW. 
It also seeks to reduce the error rates typically encountered 
when applying global land cover products to regional scales. 
Additionally, the study strives to establish a user-friendly 
methodology that can support land cover mapping efforts and 
provide valuable inputs for land management practices in the 
Philippines. 

This study not only seeks to fill critical knowledge gaps 
regarding land cover classification and analysis in PCW, 
including the application of regionally tailored methods for 
heterogeneous environments like the PCW and applicability of 
remote sensing data integration from multiple sensors and 
seasons, but also aims to provide practical tools and 
methodologies for relevant stakeholders involved in watershed 
management and environmental planning.  

2.​  Study Area 

The PCW covers five municipalities across the provinces of 
Aurora, Nueva Ecija, and Nueva Vizcaya and lies between 
15°44’ and 16°88’ north latitude and 120°36’ and 122°00’ east 
longitude as shown in Figure 1. PCW forms part of the larger 
Upper Pampanga River Basin, which is essential to the 
hydroelectric energy and irrigation infrastructure in Central 
Luzon (Pulhin et al., 2006). Covering approximately 97,318 
hectares, the PCW plays a crucial role in water supply, 
biodiversity conservation, and agricultural productivity in the 
region. 

The PCW is characterized by its diverse land cover types and 
distinct rainfall pattern (climate type III). This heterogeneity, 
combined with the land use and topographic variation, presents 
challenges for land cover mapping and monitoring, highlighting 
the need for high-resolution, multi-temporal analysis to support 
sustainable management and planning efforts. 

2.1​ Geographical and Climatic Features 

The PCW falls under Philippine Climatic Type III, which is 
marked by a relatively short dry season (usually from March to 
May) and a long wet season (Pulhin et al., 2006). This bimodal 
precipitation pattern, along with its elevation gradient and 
proximity to the Sierra Madre mountain range, creates a wide 
range of microclimates and ecological niches.  

The topographic and climatic diversity results in a mosaic of 
vegetation types that are highly dynamic throughout the year 
which is ideal for multi-seasonal remote sensing analysis (Lasco 
et al., 2008). 

2.2​ Land Use and Vegetation 

The PCW landscape includes forested uplands, lowland 
agricultural fields, grasslands, and patches of built-up or 
developed areas. Forests in the watershed are mostly composed 
of secondary growth and mixed broadleaf species, while 
lowland areas support rice, corn, and vegetable farming. 
Shifting cultivation and illegal logging have historically 
threatened the ecological balance of the region (Lasco et al., 
2010). The complex mix of land uses and vegetation types 
within a relatively compact area poses a challenge to 
conventional land cover classification systems, which often rely 
on generalized categories or single-season imagery. 

 
Figure 1. The Pantabangan-Carranglan Watershed.  

2.3​ Environmental Challenges 

The watershed is experiencing significant environmental 
challenges such as soil erosion, which is exacerbated by 
deforestation, steep slopes, and intense rainfall events. The 
RUSLE has been used in several studies to estimate erosion 
rates in the watershed, showing significant spatial variability 
depending on land cover and slope (Alejo et al., 2021). Erosion 
not only degrades agricultural productivity but also leads to 
sedimentation in the Pantabangan Dam, which threatens water 
storage capacity and hydropower generation. 

Additionally, land conversion for agricultural expansion and 
infrastructure projects has fragmented forest habitats, affecting 
biodiversity and increasing vulnerability to extreme weather 
events. These pressures underline the need for updated, accurate 
land cover maps that reflect on-the-ground conditions and 
support better land use policies. 

2.4​ Reforestation and Conservation Efforts 

Efforts to rehabilitate and conserve PCW include reforestation 
projects aimed at enhancing native species' suitability and 
improving the success rates of such initiatives. These projects 
are crucial for preserving ecological balance and ensuring the 
long-term sustainability of the watershed. (Dolores et al., 2019). 

The diverse landscape of PCW, vital role in agriculture, rich 
biodiversity, and the environmental challenges it faces make it a 
focal point for studies on land cover change, conservation, and 
sustainable management practices. 

3.​  Methodology 

The study employed Sentinel-1 Synthetic Aperture Radar 
(SAR) and Sentinel-2 optical data, which were acquired across 
three distinct seasons—multi-seasonal, short-dry, and wet—to 
optimize land cover mapping within PCW. Preprocessing of 
Sentinel-1 data, including radiometric calibration and terrain 
correction was conducted using the SNAP software, resulting in 
the extraction of two (2) bands per season (VV and VH bands) 
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and the generation of Grey-Level Co-Occurrence Matrix 
(GLCM) metrics. For Sentinel-2, ten (10) bands were extracted 
(B2, B3, B4, B5, B6, B7, B8, B8A, B11, and B12), which were 
in 10m and 20m resolutions. Normalized Difference Vegetation 
Index (NDVI) were also generated for each of the Sentinel-2 
dataset. The preprocessing for Sentinel-2 included the 
resampling of 20m bands to 10m, mosaicking, and cloud 
masking. Using the monthly Sentinel data, averages for 
short-dry season and wet season were used as datasets for the 
land cover classification for each season, respectively. For the 
annual/combined (multi-season) dataset, the datasets for 
short-dry and wet seasons were taken. The identical bands from 
each dataset were averaged to form a new set of stacked images 
for the multi-season dataset, resulting in a similar number of 
bands across all datasets. This approach accounted for the study 
area's Type 3 climate, characterized by a short dry season 
lasting three to four months (March-May) and an extended wet 
season (June-February). Sentinel-2 data underwent comparable 
preprocessing in SNAP to ensure compatibility. The images 
were finalized through the integration of bands (both originally 
extracted and generated) via layerstacking for the three models 
(short-dry, wet, and annual/combined). These images were 
subsequently prepared for land cover classification. 

Land cover classification involved the generation of three final 
composite images by stacking both Sentinel satellite data for 
years 2017, 2020, and 2023. Training data representing various 
land cover types—such as bare soil, built-up areas, vegetation, 
forest, and water—were utilized for classification using the 
Random Forest algorithm. Initially, 2015 land cover data from 
Sentinel-2 were considered for comparison with the 2015 and 
2020 datasets from the NAMRIA. However, due to the 
unavailability of Sentinel-2 data prior to 2017, the yearly global 
land cover data from ESRI, also based on Sentinel-2, were 
selected as the alternative reference dataset for years 2017, 
2020, and 2023. 

The land cover data for 2017 and 2020 were subsequently used 
to predict future land cover for 2023, with validation planned 
against actual 2023 observations. Projections for 2023 and 2026 
were also generated, representing three-year intervals, 
respectively. Change detection analysis was conducted on all 
land cover datasets to quantify temporal and spatial 
transformations. 

Future simulations employed the Artificial Neural Network 
(ANN) multi-layer perception which was implemented via 
MOLUSCE plugin for QGIS. The ANN model required only 
the initial and final land cover datasets as inputs. Thus, the 2017 
and 2020 generated land covers were used as inputs for 2023 
prediction and the 2020 and 2023 generated land covers were 
used for 2026 prediction. The Data Elevation Model (ASTER) 
and the slope of the study area were also used as ancillary data 
for the future simulation. The neural network training was done 
using the plugin set with the default values, followed by the 
cellular automata simulation. The methodological framework 
for the study, including data preprocessing, combination, 
classification, prediction and simulation, is illustrated in Figure 
2. 
 
3.1​ Data  
 
3.1.1​ Sentinel-2: It comprises two satellites, Sentinel-2A 
and Sentinel-2B, which were launched in June 2015 and March 
2017, respectively (ESA, 2021). Sentinel-2 data, preprocessing 
steps included downsampling all bands to a spatial resolution of 
10 meters, excluding the 60-meter atmospheric correction 

bands. The visible, near-infrared (NIR), red, and shortwave 
infrared (SWIR) bands, along with the normalized difference 
vegetation index (NDVI), were combined to produce 11 bands 
per season. Data acquisition involved acquiring two tiles for 
each time period from the Copernicus API hub to 
comprehensively cover the study area, resulting in the 
processing of 62 tiles in total. 
 
3.1.2​ Sentinel-1: The Sentinel-1,  developed under the 
ESA Copernicus Programme, is an Earth observation mission.  
Comprising Sentinel-1A and 1B, the mission’s satellites were 
launched in April 2014 and April 2016, respectively (ESA, 
2021). Sentinel-1 is equipped with a C-band SAR, which 
operates independently of cloud cover and weather conditions. 
This capability has proven effective in mapping land cover 
characteristics, particularly in complex environments (Schulz et 
al., 2021). Sentinel-1 imagery is publicly available and 
accessible via the Copernicus API Hub. Its preprocessing 
involved the extraction of Grey-Level Co-Occurrence Matrix 
(GLCM) parameters from the VV and VH polarization bands. 
These metrics included the 25th, 50th, and 90th percentiles, as 
well as the standard deviation, resulting in four derived values 
per band and a total of eight metrics per season.  
 

 
Figure 2. Data processing 

 
3.2​ Image Classification 
 
3.2.1​ Training Samples and Classification:  Training 
samples were manually for each image composite. The training 
samples were scattered across the study area to ensure the 
representation of pixels for the whole area, with a minimum of 
10,000 pixels per class. The training samples were used as input 
for the random forest classifier in Sentinel Application Platform 
(SNAP). A total of nine (9) classified images were generated 
(one for each season of the year and the combination). The land 
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cover classification includes five (5) cover types as shown in 
Table 1. 
 

 Land Cover Class Description 
Built-up Areas covered by man-made 

structures such as buildings, roads, 
and other infrastructure. 

Bare Soil Exposed ground with little to no 
vegetation, including fallow land. 

Forest Dense areas dominated by woody 
perennials such as trees and 
undergrowth. 

Vegetation Land covered by grass, shrubs, 
crops, or other low-lying plant life, 
excluding dense forests. 

Water Bodies of water such as rivers, lakes, 
ponds, or reservoirs. 

Table 1. Land Cover Classes and Their Descriptions 
 
3.2.3​ Result Validation: The study area was sampled using 
randomly generated validation points. A total of 250 validation 
points were assigned, with 50 points allocated per class. For the 
accuracy assessment, 250 validation points were randomly 
distributed across the study area. This sample size aligns with 
recommendations in the remote sensing literature, which 
suggest that approximately 200–300 points (with at least 50 
points per class) are sufficient for statistically reliable accuracy 
estimates while balancing feasibility and computational 
efficiency (Congalton & Green, 2008; Olofsson et al., 2014). 
Moreover, Philippines’ similar studies on land cover change 
have employed comparable sample sizes to ensure 
representativeness without being excessively resource-intensive 
(Olfato-Parojinog et al., 2023). The accuracy assessment was 
then performed by manually labelling the  correct land cover 
class of the generated points in reference to Google Earth 
imagery and Sentinel-2 dataset based on the authors’ 
interpretation and judgement. 
 

4.​  Results and Discussions 
 
4.1​ Accuracy Assessment Results 
 
A total of nine (9) classified images were generated from the 
Sentinel images (Three for each season model – Short-dry, Wet, 
and Multi-Season) as shown in Figure 3. The resulting images 
have null values due to the lack of coverage for cloud-free 
pixels on Sentinel-2 data. Thus, in the accuracy assessment of 
the land cover change analysis, these areas were not included. 
Table 2 summarizes the overall classification accuracy of the 
images. 
 
Figure 3 shows that the classified images overestimate built-up 
areas (much of bare soil were classified as built up). Built up 
areas in the study area are only minimal but are visually evident 
in the resulting land cover images, which may be caused by the 
almost similar spectral signature of the bare soil and built up 
and the differences in brightness within the original image 
composites. 
 
The total accuracy of the classified images ranges from 78.13% 
to 83.73%. Generally, the total accuracy of the multi-season 
model was greater than the short-dry and wet models. Similar to 
the results of Borges et al. (2020) for savannah, using a 
multi-season model in a tropical watershed does yield better 

results. Moreover, the kappa statistics of the classified images 
only range from 71% to 81% which are better than random 
chance. 
 

 Year Multi-Season Short-Dry Wet 
2017 85.20 % 82.80 % 79.55 % 
2020 82.00 % 79.20 % 77.20 % 
2023 84.00 % 80.80 % 77.64 % 

Average 83.73% 80.93% 78.13% 
Table 2. Summary of total accuracy. 

 

 
Figure 3. Land Cover Classification 

 
4.2​ Land Cover Change Analysis 
 
As the best-performing approach, the multi-season/combined 
season model was used to examine land cover change, 
specifically targeting alterations in forest cover. The gains and 
losses were also analyzed, taking into account the classes that 
were converted to and from forests. The land cover classes 
considered for the analysis were mainly bare soil and 
vegetation, as shown in Table 3. Lastly, forest cover change 
prediction was made for 2026 using the ANN-generated land 
cover classification images as shown in Figure 4. 
 
From 2017 to 2023, there was a significant net increase in forest 
cover within the PCW. Most of the increase comes from the 
vegetation class, which suggests ecological succession. This can 
also be attributed to the reforestation efforts in the area (Dolores 
et al., 2019). The net increase was observed to be about 89 and 
34 km2 for 2017-2020 and 2020-2023 changes, respectively. 
There is an observed forest cover loss which is mainly 
converted from forests to vegetation. 
 
4.3​ Land Cover Change Prediction 
 
Using the generated images as inputs, predicted land cover for 
2023 and 2026 were generated as presented in Figure 4. In 
comparison to the best performing classified model (short-dry 
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season model), the 2023 predicted land cover has a total 
accuracy of about 79%. The resulting images especially for 
2023 prediction has an overestimation of the built-up areas, 
which is more than the generated 2023 land cover. This may 
have been affected by the quality of the input images from the 
years 2017 and 2020 based on the validation made (Table 2), 
which have similar inaccuracies. Another simulation was run to 
generate the LULC map for 2026. Results showed an increase 
in forest cover of about 28 km2, which mainly comes from 
vegetation and bare soil (Table 3). 
 

 
Figure 4. Land Cover Prediction 

 
GAINS 2017-2020 2020-2023 2023-2026 
from Bare Soil 3,465,900 3,286,200 8,424,900 
from Vegetation 106,419,100 61,213,600 60,724,700 
Total 109,885,000 64,499,800 69,149,600 
LOSSES 2017-2020 2020-2023 2023-2026 
to Bare Soil 1,943,100 1,012,900 1,023,100 
to Vegetation 18,875,300 29,091,700 39,258,100 
Total 20,818,400 30,104,600 40,281,200 
NET 89,066,600 34,395,200 28,868,400 
Table 3. Results of forest cover change analysis (in m2) for the 

short-dry model 
 

5.​  Conclusions and Recommendations  
 
This study has conducted a multi-seasonal land cover change 
analysis and prediction in the PCW using Sentinel-1 and 
Sentinel-2 imagery.  Results revealed important insights and 
indicated a general increase in forest cover (about 89 km2, 34 
km2, and 28 km2 for 2017-2020, 2020-2023, and 2023-2026 
analysis, respectively). The use of multi-seasonal satellite 
imagery has resulted in higher accuracies for land cover 
classification in PCW, a tropical watershed, in comparison to 
the monoseasonal models, indicating that the objective of 
enhancing classification accuracy in such a heterogeneous 
environment was achieved. However, improvements can still be 
made. The complexities of the PCW's varied landscapes, which 
include both forested and non-forested areas, may require more 
advanced techniques or improved feature extraction to better 
differentiate land cover classes, especially between bare soil and 
built-up areas where most misclassifications occurred. In 
particular, accuracy can be enhanced by integrating additional 
spectral indices including NDVI for vegetation, NDWI or 
Normalized Difference Water Index for water bodies, and 
built-up indices, which have been shown to improve class 
separability (Tucker, 1979; McFeeters, 1996; Xie et al., 2008). 
On the other hand, Bare Soil Index (BSI) and Normalized 
Difference Bare Soil Index (BSI) can improve the classification 

between bare soil and built-up (Ying et al., 2022). Using 
multi-temporal imagery can also capture seasonal differences 
more effectively, while combining Sentinel-1 SAR with 
Sentinel-2 optical data provides complementary structural and 
spectral information for improved classification (Torres et al., 
2012; Li et al., 2020). On the methodological side, advanced 
approaches such as Support Vector Machines (SVM) or 
object-based image analysis (OBIA) have been demonstrated to 
perform better than pixel-based classifiers in heterogeneous 
environments (Blaschke, 2010; Mountrakis et al., 2011). 
 
Moreover, the analysis also showed that the land cover models, 
when applied to regional scales, produced acceptable error rates 
(77% to 85% total accuracy in comparison to the expected 
80%), which demonstrated its ability to generalize global land 
cover products effectively for local or regional applications. 
This indicates that while the model encountered some difficulty 
in adapting global datasets to regional settings, the methods are 
reliable enough and that can further be improved in future 
studies. Lastly, although the proposed methodology remains 
user-friendly, it still needs further refinement to improve its 
efficiency, particularly in land cover monitoring and 
management in the Philippines using numerous datasets. 
 
Finally, the objectives of the study were achieved. Additional 
modifications are required to improve classification between 
some classes but it provides a solid foundation for using the 
data of Sentinel-1 and Sentinel-2 for land cover change analysis, 
especially when focusing on forest cover change. Sentinel-1 has 
alleviated the negative effects of some thin clouds and other 
effects of atmosphere present in the Sentinel-2 dataset, while the 
combination of information from different seasons captures the 
changing patterns of vegetation (woody and non-woody). 
Enhanced model accuracy, reduced error rates, and a more 
robust user-friendly approach will be essential to meet the goals 
of accurate land cover mapping and supporting effective 
watershed management in the Pantabangan-Carranglan region. 
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