The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-5/W4-2025
Philippine Geomatics Symposium (PhilGEOS) 2025 "Enhancing Human Quality of Life through Geospatial Technologies",
24-25 November 2025, Quezon City, Philippines

Habitat Suitability Modeling of Seagrass on Santiago Island, Pangasinan Using Satellite
Imagery-Derived Environmental Parameters

Ginnel Andrei P. Amolato', James Angelo S. Cayasfon!, Edgar S. Dumalaog Jr. !, Jommer M. Medina'*
(gpamolato, jscayasfon, esdumalaog, jmmedina) @up.edu.ph

'Department of Geodetic Engineering, University of the Philippines, Diliman, Quezon City, Philippines
’Training Center for Applied Geodesy and Photogrammetry, University of the Philippines, Diliman, Quezon City, Philippines

Keywords: Seagrass Habitat Suitability, Split-window Method, Band Ratio Method, Cimandiri Salinity Algorithm

Abstract

This study utilizes remote sensing and geospatial techniques to model the habitat suitability of seagrass ecosystems on Santiago Island,
Pangasinan, Philippines. Sea surface temperature (SST), salinity, and bathymetry were derived from Landsat 8, Landsat 9, and Sentinel-
2 images using various techniques and were used as input for seagrass habitat suitability modeling. Results showed that seagrasses
thrive best at depths of 9-23 m, with suitability decreasing in shallower (0—1 m) and deeper waters (>30 m). Optimal salinity was
between 17.5-22.5 PSU (Practical Salinity Unit), while SST of 25.3°C or lower supports seagrass growth. The habitat suitability model
classified only 1.38% of the area as highly suitable and 20.57% as suitable, while 5.32% and 4.66% were less suitable and moderately
suitable, respectively, with the majority (68.06%) falling under the least and not suitable categories. Validation using reference points
and field data showed that the model shows moderate reliability. Accuracy reached 62.55% using 2013 seagrass occurrence data, and
63.45% using 2023 data. This improved to 76.71% and 67.75% when moderately suitable areas (suitability score of 50) were included.
Overall, the findings highlight the ecological importance of seagrass meadows and demonstrate that remote sensing offers a scalable,
cost-efficient approach for monitoring seagrass ecosystems, supporting conservation and policy development in the Philippines.

1. Introduction This study aims to model the habitat suitability of seagrasses on
Santiago Island, Bolinao, Pangasinan, by utilizing satellite

1.1 Background of the Study

Seagrasses are aquatic flowering plants that form vital
underwater meadows, supporting marine biodiversity, stabilizing
sediments, and providing an ecosystem to coastal communities
(FishCORAL Project - Region V, 2022). They are one of the
most productive ecosystems in the world due to their contribution
to marine life. However, the seagrass population is increasingly
threatened by human activities, such as coastal development and
pollution, which lead to habitat degradation.

According to Fortes (1991), seagrasses inhabit 70% of the
ASEAN region’s coastal zone, where recently there have been
issues of resource exploitation, raising concerns of sustainability
and recovery within this generation. The Philippines, being an
archipelagic country and known for its growing population, has
started urban developments near coastal areas, estuaries, and
shallow waters, the specific places where seagrasses can thrive.
This has led to seagrasses' habitat being intentionally removed or
destroyed.

As the problem arises, there is a need to identify suitable areas
where seagrasses can thrive. Santiago Island in Bolinao,
Pangasinan is known for its rich seagrass habitats, making it a
significant site for research and conservation. Bolinao was also
the first in the Philippines to conduct an ecological assessment
and transplant study regarding seagrasses, which paved the way
for studying the degraded coastal areas in different parts of the
Philippines, like in Palawan, Marinduque, Manila, and Bataan
(Fortes, 1984). Identifying the distribution of seagrasses
specifically in this area would help in identifying coastal zones
by classifying possible seagrass beds, thereby boosting
conservation efforts. These areas may serve as nurseries for
seagrasses, and examining the potential spawning sites can
enhance the accuracy and efficiency of ground-truthing
activities.

imagery-derived environmental parameters, particularly sea
surface temperature (SST), salinity, and bathymetry data. This
supports sustainable planning and management of seagrass
ecosystems and, by extension, of marine ecosystems in the
country.

2. Methodology

2.1 Study Area
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Figure 1. Area of Interest (Santiago Island, Pangasinan)

Figure 1 displays the study site which is in Santiago Island,
Bolinao, located within the Lingayen Gulf, Philippines, and is
known for its rich marine life, including significant seagrass
beds. According to Fortes M.D. (1995), Bolinao contains the
largest seagrass bed in northern Philippines, covering
approximately 22,500 hectares. Furthermore, the site includes the
Bolinao Seagrass Reserve (BSR), established in 2007 as the first
reserve of its kind in Southeast Asia, encompassing around 20
hectares (Coastal Conservation and Education Foundation,
2011).
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These seagrass beds serve as nurseries for fish, contribute to
sediment stabilization, prevent coastal erosion, and support local
fisheries and tourism, yet they are increasingly threatened by
human activities like coastal development, pollution, and climate
change.

2.2 Datasets Used

The data used in this study were obtained from multiple satellite
image collection platforms, specifically Google Earth Engine,
USGS Earth Explorer, and the Copernicus Open Access Hub.
Bathymetry and salinity data were processed from Sentinel-2
Level-2A imagery, which offers a spatial resolution of 10 meters.
Sea surface temperature (SST) data were derived from Landsat 8
and Landsat 9 TIRS Level-2 Collection 1 imagery, which
provides a spatial resolution of 30 meters. The acquisition date of
February 2023 was chosen to minimize cloud cover and ensure
relatively stable sea conditions typical of the dry season.
According to the Philippine Atmospheric, Geophysical and
Astronomical Services Administration (PAGASA), the country
experiences a dry season from December to May.

Validation of the processed datasets was conducted using
seagrass distribution data from previous studies. These included
the seagrass distribution data in Bolinao, Pangasinan, obtained
from Tamondong (2013) and Camba et al. (2023). These datasets
were used to assess the accuracy of the satellite-derived variables
and enhance the reliability of the habitat suitability modeling.

2.3 Processing of Remote Sensing-Derived Parameters

2.3.1 Sea Surface Temperature (SST): One of the algorithms
used to derive sea-surface temperature is the Split-Window
Algorithm (SWA). Armono et al. (2017) stated that SWA is an
algorithm capable of extracting sea surface temperature (SST) by
calculating brightness temperature (BT) values using Bands 10
and 11 of Landsat 8. SWA makes use of Planck’s Theorem. Chen
et al. (2020) stated that Planck’s law enables a direct relationship
between radiance and temperature, facilitating the solution of the
radiation transfer equation (RTE) set. Calculating the brightness
temperature is dependent on the RTE and Planck’s Law.

The Split Window Algorithm estimates land surface temperature
by using two adjacent thermal infrared bands to minimize
atmospheric effects, particularly water vapor, and improve
temperature accuracy (Wang et al., 2019). The split-window
algorithm was applied to calculate the SST from Landsat 8 and
Landsat 9 TIRS C2 L1 imagery using thermal infrared bands
(Band 10 and Band 11). The process involved converting the
digital numbers of Bands 10 and 11 to brightness temperature.

The split-window method incorporated specific equations to
derive surface temperature, ensuring more precise SST estimates
for the study area. Equation (1) displays the formula used to
obtain the spectral radiant value, which is used for Equation 2.
Equations 2 and 3 show the formulas used in computing the sea
surface temperature. Equation (2) applies a natural logarithm
function to refine temperature estimation based on radiance data.
Finally, the brightness temperatures calculated from Equation (2)
using TIRS Band 10 (BT ) and Band 11 (BT:) are converted
to sea surface temperature (7’s) in degrees Celsius using Equation

(3).
LA = MA * Qcal + A 1

Where, LA = spectral radiant value

M), = adiance multiplicative scaling factor

Qcal = level 1 pixel value
AZ = radiance additive scaling factor

K2

T =—%— @

T m@
Where, T = brightness temperature in kelvin
K1 = temperature constant in kelvin
K2 = temperature constant in kelvin
LA= spectral radiant value

Ts = BTw + (2.946 * (BT — BTu))
—0.038 3)
Where, Ts = sea surface temperature in celsius
BT 10 = brightness temperature value of band 10 in
celsius
BT = brightness temperature value of band 11in
celsius

2.3.2 Salinity: Salinity data were derived from Sentinel-2 L2A
imagery, which provides atmospherically corrected reflectance
values. The Cimandiri Salinity Algorithm (Mukhtar et. al, 2021)
was applied using Band 2, Band 3, and Band 4 to calculate
salinity values based on water surface reflectance using
Equation (4). After deriving salinity values, a land masking was
done to exclude non-water areas, resulting in a refined dataset
that highlights salinity variations across the sea portion of the
study area.

Y = 29983 + 165.047 x B2 — 260.227 * B3
+2.609 x B4 “)
Where, Y= sea surface salinity
B2 = Blue Band
B3 = Green Band
B4 =Red Band

The unit of measurement for salinity used in this study was
Practical Salinity Unit (PSU). PSU is defined as one gram of salt
per 1000 grams of water (PO.DAAC, 2022).

2.3.3 Bathymetry: The same Sentinel-2 L2A imagery was used
to generate the bathymetry of the surrounding waters of Santiago
Island. Pre-processing steps, such as cloud masking and median
composite techniques, were used to remove cloud cover and
enhance data quality. The Normalized Difference Water Index
(NDWTI) shown in Equation (5) was calculated for land masking.
This index highlights the difference in reflectance between the
green and near-infrared (NIR) bands, where water strongly
reflects green light and absorbs NIR light. Pixels with NDWI
values greater than 0.1 were classified as water, while those with
values equal to or below 0.1 were classified as land. This land
masking step was then followed by sunglint correction to remove
bright reflections that could interfere with depth measurements.

NDWI = Green band — NIR band (5)

Green band + NIR band

log( 1000 * Bandpye ) _

0(log( 1000+ Bandgreen) T ©)

Bathymetry

Where, m, and m; = calibration coefficients for local water
conditions

Additionally, the Band Ratio Method using the Stumpf model
(Stumpf et. al, 2003) shown in Equation (6) was applied to
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estimate water depth using mo and m; as calibration coefficients
that adjust the model to local water conditions and the
logarithmic ratio of blue and green bands.

2.4 Suitability Analysis

The suitability analysis workflow for seagrass habitat, shown in
Figure 2, integrated the Landsat-derived SST and Sentinel-2-
derived salinity and bathymetry data, which were all resampled
to 30 m for consistency. The input data were reclassified into
suitability classes with corresponding scores based on ecological
thresholds, with specific scores assigned to different ranges of
SST (Table 1), salinity (Table 2), and bathymetry (Table 3) based
on the work of Ozkiper et al. (2024).

Landsat 8-9 Sentinel-2 L2A
OLI/TIRS C2 L1 Image

Convert Digital Number (DN) to Cimandiri Salinity Algorithm
Spectral Radiance (Supriatna et.al, 2016}

1 I
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[ Land Masking Correction NDWI
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Split Window satellite-Derived Below Surface satellite-Derived
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Figure 2. Suitability Analysis Workflow
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Suitability

Variable Classes Scores
Class

<25.3 Very suitable 100

Sea Surface 25.3-26.8 Suitable 80
Temperature Moderately

(SST) 26.8-28 suitable 60

(in °C) 28-28.4 Less suitable 30

>28.4 Least suitable 10

Table 1. Suitability classes and scores for SST

Variable Classes Suitability Scores
Class

<12.5 Least suitable 10
12.5-17.5 Suitable 80
Salinity 17.5-22.5 Vl\zrgdilrlgtz?;e 100
(in PSU) 22.5-27.5 Suitable 60
27.5-32.5 Less Suitable 30
>32.5 Least Suitable 10

Table 2. Suitability classes and Scores for the salinity

Suitability

Variable Classes Scores
Class
0-1 Less suitable 30
1-9 Suitable 80
9-23 Very suitable 100
Depth 23-30 Suitable 80
(in meters) 30-40 Modprately 60
suitable
40-50 Less suitable 30
>50 Least suitable 10

Table 3. Suitability scores for bathymetry

Criteria weights used by Ozkiper et al. (2024) were also applied
in this study. The weights were adapted since the environmental
factors used in this study, namely SST, salinity, and bathymetry,
are fundamental drivers of seagrass distribution worldwide,
extending beyond any single region. Although local ecological
variations occur, they are consistently recognized as key factors
in seagrass habitat studies across diverse geographic contexts.

Ozkiper et al. (2024) grouped the parameters used in their study
under three broader categories—climate, water quality, and
geomorphology—each assigned an equal overall weight in the
suitability analysis. Within each variable, however, the
individual parameters were given different weights. Specifically,
SST fell under the climate variable with a weight of 0.15, salinity
was categorized under water quality with a weight of 0.24, and
depth was classified under geomorphology with a weight of 0.54.
As this study considered only three key factors, the individual
parameter weights were determined using the following
equations:

pw; = 33 * (pw,) @)
_ _pwi
pwr = X pw; ®)

Where, pw, = parameter cluster’s weight (Ozkiper et al, 2024)
pw; = weight of the parameter itself (Ozkiper et al,
2024)

pwy = final weight of the parameter in this study

These reclassified datasets were combined using a weighted
overlay to generate the seagrass habitat suitability map, which
highlighted areas with varying levels of seagrass habitat
suitability. The final weights used are shown in Table 4. These
weights and classification thresholds served as the basis for
generating the final habitat suitability map through a weighted
overlay, highlighting areas with varying levels of potential
seagrass presence.

Variable Weight
Sea Surface 016
Temperature (SST) )
Salinity 0.26
Bathymetry 0.58

Table 4. Final Weights for the Parameters

Finally, the seagrass habitat suitability map was produced
following six suitability classes, as shown in Table 5.

Suitability Range Classification
0-10 Not Suitable
10-30 Least Suitable
30-50 Less Suitable
50-70 Moderately Suitable
70-90 Suitable
90-100 Highly Suitable

Table 5. Seagrass Habitat Suitability Classification (Adapted
from Ozkiper et al., 2024).

2.5 Validation

To validate the seagrass habitat suitability map, seagrass
occurrence datasets from 2013 and 2023 (shown in Figure 3)
were converted into points, and the suitability scores were
extracted at these locations. The model's accuracy was then
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assessed by calculating the proportion of seagrass occurrence
points that fell within areas classified as moderately suitable to
suitable (suitability scores of 70-100). This can be
mathematically expressed as:

Y. (70 < Suitability Score Value < 100)
Total Seagrass data points

)

Accuracy =

Dense and Less Dense Seagrass Occurence
I Sarioe bt ey o o 915

o omas 2 amo . Miriia

Figure 3. 2013 and 2023 Seagrass Occurrence in Santiago
Island, Pangasinan.

2.6 Sensitivity Analysis

A one-at-a-time approach to sensitivity analysis was conducted
to evaluate how variations in the input parameters influenced the
extent of different levels of habitat suitability. This method
assesses the model's stability and identifies which factors exert
the greatest influence on the resulting map (Saltelli et. al, 2004).

In this study, the weights of sea surface temperature (SST),
salinity, and bathymetry were systematically adjusted by 5%
increments up to +25% from their baseline values. For each
adjustment, a new suitability map was generated, and pixel
counts per suitability class were recorded. The percentage change
in classification, relative to the baseline scenario (original
weights), was then computed to quantify the sensitivity of each
parameter.

3. Results and Discussion
3.1 Remote Sensing-derived Parameters

As shown in Figure 4, the SST map shows relatively uniform
temperature conditions across the study area, with minimal
variation between neighboring zones. A large portion of the area,
about 86.88%, is classified as moderately suitable, covering most
of the central sections around Santiago Island. Smaller portions
are classified as less suitable (4.68%) and least suitable (2.12%),
found mainly in scattered patches closer to nearshore areas where
localized temperature fluctuations may occur.

3.1.1 Sea Surface Temperature (SST): Areas classified as
suitable (6.32%), where sea surface temperatures are 25.3 °C or
lower, are mainly concentrated along the northern and
northeastern portions of Santiago Island, particularly near reef
edges and deeper sections where slightly cooler waters are
present. These zones provide the most favorable temperature
conditions for seagrass growth, while the dominance of
moderately suitable areas highlights the overall stability of SST
across much of the study site.

Sea surface temperature is an important factor in promoting the
growth of seagrass. In a study by Kinne (2021), it was
determined that plant physiological performance was reduced by
an average of 39% by temperature change, and per 1°C
experimental ocean warming, a reduction in seagrass
performance of 11% was observed. This suggests that warmer
oceans are detrimental to seagrasses.
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Figure 4. Seagrass Suitability in Varying Sea Surface
Temperature (SST) Data

3.1.2 Salinity: According to Zhang et al. (2022), the suitability
of seagrass growth, based on salinity data, is highest within the
range of 17.5-22.5 PSU, where conditions are classified as very
suitable. Suitability decreases as salinity values deviate from this
range. Waters with salinity between 12.5-17.5 PSU are still
suitable, while 22.5-27.5 PSU is considered moderately suitable.
Beyond this, salinity values of 27.5-32.5 PSU are less suitable,
and waters with salinity below 12.5 PSU or above 32.5 PSU are
classified as least suitable. Figure 5 shows that highly suitable
areas are located farther from the land, whereas areas near the
shore are only within the suitable to moderately suitable range.
Seagrasses are known to thrive in brackish waters, or in waters
that are saltier than freshwater but not as salty as saltwater.
Hence, seagrasses tend to grow in bays, estuaries, and coastal
waters where brackish waters are prevalent (Australian Institute
of Marine Sciences, n.d.). Also, regions with high evaporation
rates exhibit elevated surface salinities, while areas with
significant precipitation experience reduced surface salinities.
Nearshore regions located close to large freshwater sources often
have lower salinities due to dilution. This effect is particularly
pronounced in areas where the geography of the land isolates the
freshwater-receiving part of the ocean from the open sea (Byrne
and Mackenzie, 2024).
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Figure 5. Seagrass Suitability in Varying Sea Salinity Data

3.1.3 Bathymetry: Figure 6 shows that seagrasses are not
suitable in areas far from the land, while suitable to very suitable
in areas near the land. In depths of no more than 1 meter, seagrass
suitability decreases significantly due to potential disturbances
from tides and temperature fluctuations. However, at slightly
deeper zones of 1 to 9 meters, the conditions improve, making it
a more suitable habitat. Beyond 23 meters, the suitability of
seagrass progressively declines. At depths of 23 to 30 meters, the
conditions remain moderately favorable, but further reductions in
light availability start to affect growth. From 30 to 40 meters,
suitability becomes moderate. Furthermore, at greater depths of
40 to 50 meters, suitability drops further as light penetration
becomes insufficient for photosynthesis. In waters deeper than 50
meters, seagrass is the least suitable due to severely limited light
and nutrient availability.

The bathymetric map obtained above demonstrates clear trends
based on water depth and proximity to land. As per Ozkiper et al.
(2024), seagrasses are most suitable to very suitable at depths
ranging from 9 to 23 meters, where the conditions are ideal for
their growth. This range likely offers optimal light penetration,
stable temperatures, and nutrient availability. Seagrasses depend
on photosynthesis for growth, requiring adequate sunlight,
carbon dioxide, and nutrients to develop dense, healthy
underwater meadows. However, since sunlight only penetrates
from above, its availability decreases with increasing depth
(SeaStore, 2024).
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Figure 6. Seagrass Suitability in Varying Bathymetric Data

3.2 Seagrass Suitability Analysis
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Figure 7. Final Seagrass Habitat Suitability Map

Figure 7 presents the seagrass habitat suitability map derived
from the integration of the three satellite-derived parameters,
SST, salinity, and bathymetry. The suitability scores range from
9.40 to 96.80. The final suitability map indicates that the majority
of the area, at around 68.06% of the studied area, fell under the
Not and Least Suitable categories. While 5.32% and 4.66% of the
study area fell under Less Suitable and Moderately Suitable,
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respectively. 20.57% of the studied area was determined to be
Suitable. Finally, only 1.38% was found to be Highly Suitable.

The final suitability map differed from the individually identified
suitable areas based on SST, salinity, and bathymetry, as it
captured the combined effects of all three environmental
parameters rather than the influence of each factor in isolation.
Given that bathymetry carried the greatest weight in the analysis,
the majority of the highly suitable areas were concentrated at
depths of 9-23 meters, highlighting this range as the most
favorable for seagrass growth.

These findings are consistent with seagrass species previously
documented in the Bolinao area. Fortes et al. (2012) reported
Enhalus acoroides, Thalassia hemprichii, Cymodocea serrulata,
Cymodocea rotundata, Syringodium isoetifolium, Halophila
ovalis, and Halodule uninervis, which overlap with the suitable
sites identified in this study. This indicates that the modeled
habitat suitability aligns with actual species distributions,
highlighting the influence of depth and other environmental
factors.

3.3 Sensitivity Analysis

Sensitivity analysis was conducted to evaluate how variations in
SST, salinity, and bathymetry (at +5% increments up to +25%
from baseline values) affect habitat suitability classification.
Tables 6-8 summarize the percent change in area per suitability
class for each scenario.

Scena | Not Least | Less | Mode | Suita | Highl
rio Suita | Suita | Suita rate ble y
ble ble ble Suita (%) | Suita
(%) (%) (%) ble ble
(%) (%)
-0.25 0.00 0.34 -3.88 0.00 -0.93 | 13.89

-0.20 0.00 0.34 -3.88 0.00 0.00 0.00

-0.15 0.00 0.34 -3.88 0.00 0.00 0.00

-0.10 0.00 0.03 0.00 0.00 0.00 0.00

-0.05 0.00 0.34 -3.88 0.00 0.00 0.00

+0.05 | 0.00 0.03 0.00 2.50 | -0.07 | -7.41
+0.10 | 0.00 0.03 0.00 2.50 | -0.07 [ -7.41
+0.15 | 0.00 -0.83 | 11.04 | 2.50 | -0.07 | -7.41
+0.20 | 0.00 -0.83 | 11.04 | 2.50 | -0.07 | -7.41
+0.25 | 0.00 -0.83 | 11.04 | 2.50 | -0.07 | -7.41

Table 6. Sensitivity Analysis Results for SST

For SST, the suitability distribution showed moderate sensitivity.
The most noticeable shifts were in the “Less Suitable” and “Very
Suitable” classes, but changes generally remained within +15%
of baseline values. This suggests that SST variability influences
habitat suitability but does not substantially alter overall patterns.

Scena | Not Least | Less | Mode | Suita | Highl
rio Suita | Suita | Suita rate ble y
ble ble ble Suita (%) | Suita
(%) (%) (%) ble ble
(%) (%)
-0.25 0.00 0.44 -4.08 3.10 [ -0.49 | -7.41
-0.20 0.00 0.40 -3.60 3.10 | -0.49 [ -7.41
-0.15 0.00 0.40 -3.60 3.10 | -0.49 [ -7.41
-0.10 0.00 0.40 -4.46 4.08 -0.49 | -7.41

-0.05 0.00 0.34 -3.88 0.00 0.00 0.00
+0.05 | 0.00 -0.07 1.33 0.00 0.00 0.00
+0.10 | 0.00 -0.07 1.33 0.00 0.00 0.00
+0.15 | 0.00 -0.95 | 12.60 [ 0.00 0.00 0.00
+0.20 | 0.00 -0.95 | 12.60 [ 0.01 0.00 0.00
+0.25 | 0.00 -0.95 | 12.13 0.12 0.09 0.00

Table 7. Sensitivity Analysis Results for Salinity

For salinity, only minor changes were observed across all
increments. The extent of suitable areas remained relatively
stable, with shifts typically below +5%. This indicates that
habitat suitability is relatively insensitive to salinity fluctuations
compared to the other parameters.

Scena | Not Least | Less | Mode | Suita | Highl
rio Suita | Suita | Suita rate ble y

ble ble ble Suita (%) Suita

(%) (%) (%) ble ble

(%) (%)
-0.25 |-100.00 | -22.61 | 234.88 | 201.62 | -28.91 | -36.82
-0.20 |-100.00 | -22.61 | 239.72 | 194.79 | -28.61 | -36.82
-0.15 |-100.00 | -22.54 | 238.77 | 194.78 | -28.61 | -36.82
-0.10 0.00 -0.95 | 12.60 2.51 -0.07 | -7.41
-0.05 0.00 -0.93 | 12.37 2.50 -0.07 | -7.41
+0.05 | 0.00 0.34 -3.65 1.58 -0.42 | 0.00
+0.10 | 0.00 0.44 -4.95 | -1541 | 1.64 | 26.84
+0.15 [3280.70] 1.05 | -27.36 | -23.27 | 1.64 | 26.84
+0.20 [3280.70] 1.43 | -23.16 | -32.50 | -0.52 | 55.46
+0.25 | 141191] -69.08 | -23.16 | -40.83 | 1.04 | 60.34

Table 8. Sensitivity Analysis Results for Bathymetry

Overall, bathymetry was the main factor influencing habitat
suitability, causing the largest changes in the results. SST had a
moderate effect, leading to noticeable but smaller shifts, while
salinity showed only small changes, meaning the model was less
affected by it.

3.4 Validation Using Seagrass Occurrence Data

To validate the seagrass habitat suitability map, the obtained
suitable areas were compared with existing seagrass occurrence
data. In the study by Ozkiper et al. (2024), only areas categorized
as suitable or highly suitable were considered. When compared
with the 2013 seagrass point data, 62.55% of the field-validated
seagrasses coincided with the suitable locations identified in this
study.

When compared with the 2023 seagrass point data, the validation
match was 63.45%. Including moderately suitable areas
increased the accuracy to 76.71%. Similarly, comparing it with
the 2013 seagrass point data, it resulted in a 67.75% match, which
also rose to 76.71% when moderately suitable areas were also
considered.

The validation results were anticipated, given the number of
environmental parameters considered. Camba and Ignacio (2023)
generated a site suitability map for the same area using more
environmental parameters, such as Chlorophyll a, among others.
Additionally, changes over the 10-year period between the 2013
seagrass point data and the current map, such as the formation of
sandbars and other environmental changes, may have affected the
alignment between point data and suitable areas. Nevertheless,
the results obtained reflect the moderate performance of the
implemented approach in this study.
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4. Conclusions and Recommendations

This study utilized habitat suitability modeling to assess seagrass
distribution in Santiago Island, Bolinao, Pangasinan, by using
satellite imagery-derived SST, salinity, and bathymetry. These
environmental parameters were successfully derived from
satellite images through well-established processes and
algorithms in remote sensing, as well as GIS-based techniques,
demonstrating the capability of geomatics approaches in
supporting seagrass conservation efforts. Overall, 26.61% of the
study area was classified as suitable for seagrass habitat
(including Moderately Suitable, Suitable, and Highly Suitable
classes), while 73.39% ranged from Less Suitable to Not
Suitable. Validation of the suitability map with in situ seagrass
occurrence data showed a moderately adequate accuracy of
62.55% to 76.71% despite having only three environmental
parameters considered in this study.

In order to enhance the habitat suitability model, it is
recommended to incorporate additional environmental
parameters, such as light attenuation, turbidity, substrate type,
water currents, and water dissolved oxygen. Additionally,
incorporating higher-resolution in situ datasets for validating the
environmental parameters derived from satellite imagery may
further enhance model accuracy. Moreover, applying the model
to longer temporal datasets can help identify trends that may be
used to develop prediction models to describe seagrass habitat
scenarios.

The results of this study can support conservation initiatives
aimed at protecting seagrass species. The obtained suitable zones
may serve as priority sites for establishing seagrass conservation
zones. Local government units can focus on the identified
suitable sites and designate them as protected areas to prevent
further seagrass loss. Strengthened fishing regulations may also
be enforced in areas identified as suitable for seagrass to help
mitigate potential damage and ensure the protection of these
benthic habitats.

Finally, the methodology employed in this study, while tailored
to assessing seagrass habitat suitability in Bolinao, can be
modified for application in other regions or marine environments.
The core framework, which utilizes remote sensing-derived
environmental parameters and GIS-based suitability analysis,
remains transferable. It is recommended that environmental
variables such as sea surface temperature, salinity, and
bathymetry, as well as their respective weights, be adjusted in
order to align with the optimal conditions of the target site.
Likewise, the spatial and temporal resolution of the satellite
imagery should be selected based on the geographic scale,
environmental variability, and data availability in the new
context. By implementing these adaptations, the methodological
framework can be effectively extended to diverse marine
ecosystems and other regions across the country, thereby
supporting broader ecological monitoring and conservation
planning.

References

Armono, H. D., Cahyono, A. B., Pribadi, C. B., Saptarini, D.,
2017. Estimation of Sea Surface Temperature (SST) using split
window methods for monitoring industrial activity in coastal
area.  Applied  Mechanics  and  Materials,  90-95.
doi.org/10.4028/www.scientific.net/ AMM.862.90

Australian Institute of Marine Science (AIMS), n.d. Seagrasses.
aims.gov.au (15 December 2024)

Byrne, R. H., Mackenzie, F. T., 2024. Salinity distribution.
Encyclopedia Britannica. (15 December 2024)

Camba, M. M., Ignacio, J. R., Tamondong, A., Blanco, A., 2023.
Seagrass habitat sustainability modeling for Bolinao-Anda,
Pangasinan using maximum entropy and random forest.

Chen, C., Chu, Y., Fu, J., Guo, B., Zheng, H., 2020. A split-
window method to retrieve sea surface temperature from Landsat
8 thermal infrared remote sensing data in offshore waters.
Estuarine, Coastal and Shelf Science, 236.
doi.org/10.1016/j.ecss.2020.106626

Coastal Conservation Education Foundation, 2011. Coastal
databases: Information for coastal management. coast.ph. (22
August 2025)

FishCORAL Project — Region V, 2022. Field guide on seagrass.
Bureau of Fisheries and Aquatic Resources (BFAR). (15
December 2024)

Fortes, M. D., 1991. State of seagrass ecosystems and resources
in the Philippines. semanticscholar.org (13 August 2025)

Fortes, M. D., 1995. Bolinao Seagrass Demonstration Site
(BSDS): Food security through capacity building in seagrass
ecosystem management.

Fortes, M. D., Ooi, J. L. S, Tan, Y. M., Prathep, A., Bujang, J.
S., Yaakub, S. M., 2018. Seagrass in Southeast Asia: A review of
status and knowledge gaps, and a road map for conservation.
Botanica Marina, 61(3), 269-288. doi.org/10.1515/bot-2018-
0008

Fortes, M., Go, G. A., Bolisay, K., Nakaoka, M., Uy, W., Lopez,
M., Leopardas, V., Leriorato, J., Hinoguin, A. D., Watai, M.,
Honda, K., Edralin, M., 2012. Seagrass response to mariculture-
induced physico-chemical gradients in Bolinao, northwestern
Philippines. Proceedings of the 12th International Coral Reef
Symposium, 9-13.

Kiinne, J., 2021. A meta-analysis of temperature treatment effects
on global seagrass performance. (Bachelor’s thesis, GEOMAR
Ocean Research Institute).

Mukhtar, M. K., Supriatna, S., Dwi Mandini Manessa, M., 2021.
The validation of water quality parameter algorithm using
Landsat 8 and Sentinel-2 image in Palabuhanratu Bay. IOP
Conference Series: Earth and Environmental Science.
doi.org/10.1088/1755-1315/846/1/012022

Ozkiper, O., Allegri, E., Bianconi, A., Vuong Pham, H., Furlan,
E., Simide, R., van der Geest, M., Critto, A., 2024. A GIS-MCDA
approach to map environmental suitability of Posidonia oceanica
meadows as blue nature-based solutions in the Mediterranean
eco-region. Science of The Total Environment, 955.
doi.org/10.1016/j.scitotenv.2024.176803

PO.DAAC, 2022. Physical Oceanography Distributed Active
Archive Center (PO.DAAC). podaac.jpl.nasa.gov

Saltelli, A., Tarantola, S., Campolongo, F., Ratto, M., 2004.
Sensitivity analysis in practice: A guide to assessing scientific
models. doi.org/10.1002/0470870958

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIlI-5-W4-2025-31-2026 | © Author(s) 2026. CC BY 4.0 License. 37


https://www.aims.gov.au/
http://www.coast.ph/

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-5/W4-2025
Philippine Geomatics Symposium (PhilGEOS) 2025 "Enhancing Human Quality of Life through Geospatial Technologies",
24-25 November 2025, Quezon City, Philippines

SeaStore, 2024. Seagrass: Basic facts. seegraswiesen.de (16
December 2024)

Stumpf, R. P., Holderied, K., Sinclair, M., 2003. Determination
of water depth with high-resolution satellite imagery over
variable bottom types. Limnology and Oceanography, 48(1),
547-556. doi.org/10.4319/10.2003.48.1 part 2.0547

Tamondong, A. M., Blanco, A. C., Fortes, M. D., Nadaoka, K.,
2013. Mapping of seagrass and other benthic habitats in Bolinao,
Pangasinan using Worldview-2 satellite image. 2013 IEEE
International Geoscience and Remote Sensing Symposium
(IGARSS), Melbourne, VIC, Australia, 1579-1582.
doi.org/10.1109/IGARSS.2013.6723091

Wang, M., He, G., Zhang, Z., Wang, G., Wang, Z., Yin, R., Cui,
S., Wu, Z., Cao, X., 2019. A radiance-based split-window
algorithm for land surface temperature retrieval: Theory and
application to MODIS data. International Journal of Applied
Earth  Observation and Geoinformation, 76, 204-217.
doi.org/10.1016/j.jag.2018.11.015

Zhang, Y.-H., Yu, B., Liu, Y.-C., Ma, W, Li, W.-T., Zhang, P.-
D., 2022. The influence of decreased salinity levels on the
survival, growth and physiology of eelgrass Zostera marina.
Marine Environmental Research, 182.
doi.org/10.1016/j.marenvres.2022.105787

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIlI-5-W4-2025-31-2026 | © Author(s) 2026. CC BY 4.0 License.


https://www.seegraswiesen.de/en/seagrass-facts/



