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Abstract

High-value crops like onion are vulnerable to price fluctuations for several reasons, including production shortage, infestation, infla-
tion, importation-related issues, and climate impacts, resulting in high risk for local farmers. Accurate mapping and monitoring can be
invaluable in managing these price fluctuations and ensuring long-term stable supply chains, as they enable detailed crop monitoring
and yield estimation for onions. In this work, we utilized Sentinel-2 multispectral imagery for onion mapping, applying machine
learning algorithms (MLAs) such as Extreme Gradient Boosting Machine (XGBoost), Light Gradient Boosting Machine (LightGBM),
and CatBoost Classifier. The input data for the analysis included the 10 RGB, VRE, NIR, and SWIR bands of Sentinel-2 as well as 25
biophysical indices and terrain variables. These indices encompass key indicators for monitoring crop health and suitability like overall
vegetation health, chlorophyll content, nitrogen content, soil moisture, soil salinity, soil clay content, Leaf Area Index (LAI), etc. The
results showed that among the MLAs tested, CatBoost achieved the highest accuracy (90.0 %), followed by LightGBM (86.7 %), and
XGBoost (84.7 %). Among the bands and indices used, the Clay Minerals Ratio (CMR) and Modified Photochemical Reflectance
Index (PRI) were consistently identified as the most important features, strongly suggesting that onions are distinguished based on a

combination of soil properties and canopy pigment traits.
1. Introduction

Onion (A/lium cepa L.) is among the most cultivated crops in the
world (Opara, 2003), with global production reaching more than
70 million tons, mostly produced by China and India (Pareek et
al., 2017). In the Philippines, onion production grew more than
twofold to 283,000 metric tons between 2011 and 2022. How-
ever, the crop remains highly vulnerable to price volatility,
mainly because of several reasons including production short-
falls, extreme weather events, pest infestations, inflation, impor-
tation issues, and climate change impacts (Hutchinson, 2023).
Monitoring onion cultivation areas is therefore critical to support
government interventions aimed at stabilizing the market and en-
suring a reliable supply which is a persistent challenge in the
country.

Conventional field surveys remain the primary method for mon-
itoring of onion farming areas and production in the Philippines
(Philippine Statistics Authority, n.d.). However, these surveys
are time-consuming, labor-intensive, prone to sampling bias, and
are often subject to logistical constraints (Liu et al., 2018). Re-
mote sensing (RS) provides a scalable approach to crop identifi-
cation and monitoring, minimizing dependence on field-based
surveys (Doraiswamy et al., 2005). In fact, RS serves as an effi-
cient tool for improving soil and crop productivity (Kingra et al.,
2016).

RS is an effective tool for monitoring cropping practices (Bégué
et al., 2018). Numerous works used RS for crop-type mapping
and yield prediction (Joshi et al., 2023; Karthikeyan et al., 2020;
Moran et al., 1997; Navid & Vieira, 2019). Although garlic, a
similar-looking crop, has been accurately identified and mapped
using combined Sentinel-1 and Sentinel-2 in a previous work (Y.
Chen et al., 2022), onion mapping using RS remains limited de-
spite its very huge potential. Nevertheless, in a previous work by
Diwa et al. (2024), hyperspectral imagery from the PRISMA sat-
ellite was used to map onion fields in Bongabon, Nueva Ecija -

the onion capital of the Philippines - achieving a 79 % accuracy
using linear spectral unmixing (LSU). Hyperspectral imagery are
generally more advantageous for differentiating crop types than
multispectral images because of its high spectral resolution (Mar-
iotto et al., 2013), enabling the differentiation of onion from other
landcover types. However, the study also revealed two major lim-
itations: the difficulty to obtain cloud-free hyperspectral images
during the crucial onion growth period and the relatively coarse
spatial resolution (30 m), which is insufficient for mapping of
smallholder and fragmented farm parcels, a significant concern
given that 38 % of farms in the Philippines are smaller than 0.5
hectares (ha) (SEARCA, n.d.).

This study addresses these limitations by leveraging open-source
Sentinel-2 imagery (S2), which offers more frequent revisit time
(i.e., 5 days at the equator) and higher spatial resolution (10-20
m). Like the PRISMA, S2 also captures data in the visible, near-
infrared, and shortwave infrared ranges of the electromagnetic
spectrum, albeit in broader spectral bands (Diwa et al., 2024,
Kaplan, 2018). The S2 bands combined with twenty-two (22) bi-
ophysical and three (3) terrain variables based on critical condi-
tions for onion growth provide a robust dataset for applying clas-
sical machine learning algorithms (MLAs) for onion mapping.
These indices encompass key indicators for monitoring crop
health and suitability such as overall vegetation health, chloro-
phyll content, nitrogen content, soil moisture, soil salinity, soil
clay content, Leaf Area Index (LAI), etc.

Premised upon the main goal of developing an operational work-
flow for onion mapping, this work evaluates the performance of
various gradient boosting MLAs (i.e. CatBoost, Light Gradient
Boosting Machine, and Extreme Gradient Boosting Machine) in
accurately mapping onion fields in Bongabon, Nueva Ecija, us-
ing S2 imagery. This study underscores the potential of blending
S2 multispectral data with MLAs and auxiliary growth variables
for onion mapping. The findings contribute to the goal of
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Figure 1. Location map of the study area and ground data points of onion and non-onion collected in Nueva Ecija, Philippines

achieving more accurate onion mapping, providing a scalable ap-
proach to monitor onion production and mitigate market volatil-

ity.

Figure 2. RGB composite (Bands 4-3-2) of Sentinel-2 image for the
study area captured on February 6, 2024

2. Materials And Methods
2.1 Location of Study Area and Ground Data Collection

The study was conducted in neighbouring municipalities of
Bongabon, Rizal, General Mamerto Natividad, Laur, and Palayan
City in the province of Nueva Ecija, approximately 144 km north
of Manila, the capital of the Philippines (Figure 1). Often referred
to as the “Onion capital of the Philippines”, Bongabon is the lead-
ing producer of onion in the country and in Southeast Asia with
approximately 27 km? of arable land for onion production
(Gavino & Tiw-an, 2020). The onion cultivated in the study area
has a growing period of 90 — 110 days (3 — 4 months) and is nor-
mally planted from September to January and harvested from De-
cember to April. Aside from onion, rice and other seasonal crops
(e.g., corn) are also cultivated in Bongabon.

Three field campaigns were conducted to gather ground truth
data of onion cultivation sites using the ODK collect app
(Bokonda et al., 2019). The first two field visits which took place
on December 12-14, 2023 and January 17, 2024 were carried out
to collect onion ground locations (including drone images in Jan-
uary 2024). To note, the onions were at vegetative and bulbing
states during the December 2023 and January 2024 field visits,
respectively. During the third visit on April 15-17, 2024, local
farmers were shown a February 2024 Sentinel-2 mosaic of the
study area. Using reference points provided to guide them, the
farmers identified the locations of onion and rice planting areas
directly on the map. The onion and non-onion data points from
the field visits are also shown in Figure 1.
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2.2 Satellite Image and Pre-processing

To perform onion mapping, we utilized S2 Level 2A image ac-
quired on 6 February 2024 covering the study area (Figure 2),
selected based on the phenological stage of onion growth (i.e.,
bulbing to maturity) when spectral contrast is maximized. Since
S2 Level-2A data are pre-corrected for atmospheric and geomet-
ric effects, the image downloaded from the Copernicus Browser
required no additional preprocessing before analysis. Ten (10)
spectral bands were used as follows: RGB (Bands 2, 3, and 4),
Vegetation Red Edge (VRE; Bands 5, 6, 7, and 8A), Near-Infra-
red (NIR; Band 8), and Shortwave Infrared (SWIR; Bands 11 and
12).

In addition to the spectral bands, twenty-two (22) derived indices
were calculated using both GEE and Sentinel Application Plat-
form (SNAP). These indices were selected based on agronomic
studies highlighting optimal onion growth conditions (Boyhan &
Kelley, 2007), particularly: (1) well-drained soils, (2) low sulfur
content, (3) adequate nitrogen and phosphorus levels, and (4)
moisture content. Table 1 summarizes the biophysical indices
used in this study as well as their formulas and relevance for on-
ion mapping.

The S2 downloaded from the Copernicus Browser was used to
calculate the Leaf Area Index (LAI), Fraction of Vegetation
Cover (fCover), Fraction of Absorbed PAR (fAPAR), Canopy
Water Content (CW), and Canopy Chlorophyll Content (CCC) in
SNAP. All the S2 bands were first resampled to 10 meters prior
to calculation of these indices. The seventeen (17) other biophys-
ical indices were calculated in GEE.

Terrain variables were also incorporated in the analysis, as onions
typically grow only in flat areas. This helps minimize potential
misclassification of onions with grasses or low-lying shrubs in
steeper terrains. Terrain variables such as the slope, roughness,
and Topographic Position Index (TPI) were calculated in QGIS
v3.34.2 using Interferometric Synthetic Aperture Radar (IfSAR)

Dataset (Google Earth Engine)

Remove bad observations (cloud and cloud
shadow)

l

: | Biophysical and Terrain variables ‘ H

Digital Elevation Model (DEM) with a spatial resolution of 5 m.
The spectral bands, biophysical indices, and terrain variables
were stacked into one image file and then crop masked using the
annual and perennial crop layers of the 2020 land cover map of
National Mapping and Resource Information Authority
(NAMRIA) (Geoportal PH,n.d.). A flow chart showing the steps
for preprocessing and succeeding classification techniques used
in this study is shown in Figure 3.

2.3 Machine Learning Algorithms

Three gradient boosting machine learning algorithms (MLAs)
such as Light Gradient Boosting Machine (LigthGBM), Categor-
ical Boosting Classifier (CatBoost), and Extreme Gradient
Boosting Machine (XGBoost) were evaluated to classify onion
and non-onion areas. Briefly, these three MLAs share key char-
acteristics that make them particularly advantageous for onion
mapping using S2, such as (1) high predictive performance even
with complex, nonlinear relationships, (2) less sensitive to multi-
collinearity, and (3) strong performance on small to moderate-
sized datasets, among others.

To improve the weak learner classifiers, gradient boosting algo-
rithms iteratively train a series of individual classifiers, with each
stage aimed at correcting the errors of the previous ones (Ka-
vzoglu & Colkesen, 2013; Mahesh & Soundrapandiyan, 2024;
Waske & Braun, 2009). Among the widely used implementa-
tions, LightGBM, CatBoost, and XGBoost are gradient boosting
frameworks built on decision trees but differ in how the trees are
constructed. LightGBM adopts the leaf-wise strategy to grow the
trees by splitting the leaf with the largest loss reduction first
which often results in deeper and more complex trees (Ustuner &
Balik Sanli, 2019). CatBoost uses the symmetric tree growth
strategy by ensuring balanced trees at each level (Hancock &
Khoshgoftaar, 2020). In contrast, XGBoost uses the level-wise
tree growth strategy by expanding all leaves at the same depth
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Figure 3. Methodological flow diagram for mapping onion fields using machine leafning.
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Index Formula Relevance for Onion Mapping

Vegetation Health and Biomass

Mormalized Difference Vegetation Index [NDVI) NDVI = (NIR — Red) Indicates general plant vigor and greenness,
(NIR + Red)

Enhanced Vegetation Index [EVI) EVI=125% (NIR — Red) Improves vegetaticn monitering by reducing soil

Green Mormalized Difference Vegetation Index
(GNDVI)
Leaf Area Index (LAI)

Fraction of Vegetation Cover (fCover)

Fraction of Absorbed PAR (fAPAR)

(NIR + 6Red — 7.5Blue + 1)

(NIR — Green)

(NIR + Green)

Empirically derived frem reflectance or radiative transfer
models

GNDVI =

LA,
fCover = ———
LAl

Derived from canopy reflectance

background noise

Sensitive to chlorophyll; useful for assessing nitrogen-
related growth.

Measures canopy density, useful for estimating growth
stage and biomass.

Shows propertien of ground covered by vegetation;
assesses uniformity of growth

Evaluates how efficiently plants use light for
photosynthesis.

Moisture and Water Stress

Mormalized Difference Water Index [NDWI) *
Muisture Stress Index (MS1)*
Normalized Difference Infrared Index (NDII) ©

Canocpy Water Content (CW)

(Green — NIR)

(Green + NIR)

SWIR1

NIR

(NIR — SWIR1)

(NIR + SWIRL)

Derived from radiative transfer model (i.e., PROSAIL) and
incorporated by Artificial Neural Network [ANN)

NDWI =

NDII =

Detectswater content in vegetation.

Identifies water stressin plants.

Sensitive towater content and hydration levels.

Detectswater content and stress

Nutrient and Chiorophyil Status

Chlorophyll Index [Clapee) Clypeen = IR _ Estimates chlorophyll concentration, a proxy for nitrogen
Green levels.
Normalized Difference Red Edge (NDRE) NDRE—‘:MR_VREI} Tracks nitrogen content and stress.
= (NIR + VREL)
Red Edge Chlorophyll Index (Cles.s.) .. .= —‘WR _ Highlights chlorophyll status using red edge sensitivity.
redsedas T yREL
Sentinel-2 Red Edge Pcswticnlndex[SZREP]’ (NIR+Red}.-";(2—VREl) Tracks shifts in chlerophyll due to nutrient changes.
S2REP=T705+35x -
VREZ—VREL

Modified Chlorophyll Absorption Ratio Index (MCARI)  yyapr = [(VRE1 — Red) — 0.2(VREL — Blue)] X e
- ’ Red

Cancpy Chlerophyll Content (CCC)

Derived from radiative transfer models using Red Edge and MIR

Enhances chlorophyll estimation by minimizing
background noise.
Measures tetalchlerephyllin the canopy.

Soil and Ch. istics

Scil-Adjusted Vegetation Index (SAVI) SAVI = (MR_R'M) %(1+LkL=05 Adjusts for soil background, useful in low vegetation
(NIR + Red + L) ’ ) areas.

Clay Minerals Ratio (CMR) oM :SWIRI Identifies soil type (sandy vs. clayey), critical for sulfur
SWIR2 content and bulb pungency.

MNormalized Difference Salinity Index (NDSI) NDSI = (Red — NIR) Detectssaline soils, which may hinder cnion growth.
(Red + NIR)

Brightness Index (BI)" BI = /Red® + NIR?
= /Red?

Soil Cempesition Index (SCI) scr = (SWIR1— NIR)
" (SWIR1+ NIR}

Lighter soils (often sandy, well-drained) tend to have
higher brightness.
Helps distinguish different soil types.

; ic Activity and Stress

(Green— Red)

Modified Photochemical Reflectance Index (PRI} ©
(Green+ Red)

PRI =

Measures changesin photosynthetic efficiency,

indicating stress.

Table 1. Biophysical indices used in this study***
4 aV[cFeeters (1996), "Hunt & Rock (1989), *Klemas & Smart (1983), “Frampton et al. (2013), °Khan et al. (2005), 'Khan et al. (2001), ePefiuelas et al. (1995)

before proceeding deeper (T. Chen & Guestrin, 2016; H. Zhang
et al., 2019). Several works used these gradient boosting algo-
rithms for estimation of crop yield (Mahesh & Soundrapandiyan,
2024) and crop mapping (Ustuner et al., 2019). In fact, Ustuner
et al. (2019) noted that gradient boosting algorithms outperform
linear boosters in terms of crop mapping accuracy. The MLA
classifications were performed using PyCaret 3.0 python pack-
age, an open-source machine learning library (Pycaret, n.d.).

To train the MLA models, a total of 250 datapoints were gener-
ated from the field surveys, consisting of 100 onions (17 from
December 2023 ODK, 27 from January 2024 ODK, and 56 from
January 2024 drone data) and 150 non-onion samples (collected
from the participatory mapping). The dataset was then randomly
split into 70 % for training, 15 % for tuning, and 15 % for testing
to evaluate the model performance of the MLAs.

3. Results And Discussion
3.1 Onion Maps and Classification Accuracy

Gradient boosting algorithms such as LightGBM, CatBoost, and
XGBoost were applied to the pre-processed S2 containing the
spectral bands, biophysical indices emphasizing the ideal condi-
tions for onion growth, and pertinent terrain variables to delineate
the onion fields in Bongabon and nearby municipalities in Nueva
Ecija, Philippines. Unlike linear algorithms, gradient boosting al-
gorithms are advantageous for complex, nonlinear relationships

as they work by combining many simple decision trees, with each
tree improving the errors of the previous ones to achieve more
accurate mapping of onion fields (Waske & Braun, 2009). The
models were trained using 250 ground data points consisting of
100 onions and 150 non-onions, split into 70 % training, 15 %
tuning, and 15 % test. The accuracy metrics of the training and
tuned models as well as the test dataset are shown in Figure 4. To
note, the accuracies of the training models were 0.9430
(LightGBM), 0.9267 (CatBoost), and 0.9183 (XGBoost).

The post-processed onion classification maps generated using the
trained MLA models are shown in Figure 5. To assess the agree-
ment between the three MLA models in classifying onion, an on-
ion consistency map was created, counting how often a pixel is
classified as onion, also shown in Figure 5. To validate and assess
the accuracy of the onion maps, ground truthing was carried out
on 15-17 April 2024 using the Open Data Kit (ODK) collect app
(Bokonda et al., 2019) and participatory mapping with local
farmers. The points visited for field validation were chosen by
random sampling of 150 points, comprising of 60 onions and 90
non-onion ground data points. To note, onion locations were ver-
ified through direct field visits, while non-onion points (e.g.,
built-up areas, rice fields, bare soil, etc.) were identified based on
participatory mapping results and satellite images. The ground
truth data were then used to calculate the accuracy, precision,
sensitivity, and specificity of the onion classification (Table 2).
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Figure 4. Accuracy metrics of the training and tuned models and the
overall test dataset

The accuracies of the MLAs are as follows: CatBoost (90.0 %),
LightGBM (86.7 %), and XGBoost (84.7 %). Notably, the clas-
sified maps achieved high precision and specificity levels, indi-
cating their strong ability to minimize overestimation of onion
classification and their effectiveness in correctly identifying non-
onion pixels, respectively. However, the maps exhibited rela-
tively modest sensitivity, indicating challenges in detecting ac-
tual onion pixels, which may be attributed to the overlapping
spectral features between onions, other crops, and bare soil which
was also mentioned in Diwa et al. (2024). Moreover, the “3” clas-
sification in the consistency map only slightly increased the ac-
curacy to 90.5 %, though yielding insignificant improvement to
other accuracy metrics.

Accuracy Metrics LightGBM CatBoost XGBoost Consistency Map

True Positive A 43 48 39 37

True Negative TN 87 87 a8 87

False Positive FP 3 3 2 2

False Negative FN 17 12 21 11
Accuracy 86.7% 90.0% 84.7% 90.5%
Precision 93.5% 94.1% 95.1% 94.9%
Sensitivity 71.7% 80.0% 65.0% 77.1%
Specificity 96.7% 96.7% 97.8% 97.8%

Table 2. Accuracy metrics of the onion and non-onion classification

3.2 Comparative Analysis of the MLA results

Detailed examination of onion classification in Figure 5 shows
very little difference in onions classified by the three MLA mod-
els. Generally, the models provided a smooth transition between
onions and other land cover types in the study area (i.e., rice and
bare soil). Relative to the earlier study by Diwa et al. (2024) that
utilized PRISMA hyperspectral image, the present approach pro-
vided a more accurate depiction of onion distribution, particu-
larly in mixed vegetation zones (Figures 5B&D) and along tran-
sitional boundaries between crop types (Figures SA—C). Minor
misclassifications remained in certain parts of the area (Figure
5A) but occurred less frequently than in the previous results. No-
tably, this study’s models more effectively distinguished onions
from rice, fallow land, and burned areas.

A notable observation is that the CatBoost model occasionally
classified early-stage rice fields as onions (Figures SA and 5D).
This misclassification likely stems from the spectral resemblance
between onions in their bulbing or mature phases and rice during
its initial growth stage. Because young rice crops only partially
cover the soil surface, their reflectance often represents a mixture
of soil and vegetation signals, making them spectrally similar to
onion plots. Although CatBoost achieved the highest classifica-
tion accuracy, it still exhibited confusion when both crops dis-
played limited canopy cover and comparable greenness levels
(Cheng et al., 2023).

3.3 Variable Importance

Among the bands and indices used, the CMR and PRI were con-
sistently identified as the most important variables in classifying
onion. This finding underscores the critical role of soil properties
and moisture in shaping onion cultivation patterns. As shallow-
rooted crops, onions are highly sensitive to moisture stress during
the bulbing stage (Rao, 2016). The importance of CMR possibly
indicates that soil mineral composition (i.e., clay) that affects wa-
ter retention in soils plays a significant role in onion growth
(Gaiser et al., 2000). This is supported by earlier discussion on
optimal onion growth conditions, particularly, well-drained soils
(Boyhan & Kelley, 2007).

Meanwhile, PRI is also recognized as a water-sensitive index
(Thenot et al., 2002). Beyond this, its sensitivity to photosyn-
thetic efficiency possibly enhances its effectiveness in distin-
guishing onion canopies, which exhibit distinct physiological and
spectral responses compared to surrounding crops (Zhang et al.,
2016). Overall, the importance of PRI in mapping onions is likely
due to its responsiveness to key phenological stage/s of onion
growth, particularly the bulbing stage, when onions exhibit
unique physiological characteristics and heightened sensitivity to
moisture stress.

All in all, the results of this work feature the importance of com-
bined static (soil) and dynamic (physiological growth of onion)
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Figure 5. Onion classification maps generated using LightGBM, CatBoost, and XGBoost, with onion areas highlighted in red. The map also illustrates the spatial consistency of onion classification across all
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factors for accurate onion mapping. Moreover, this work high-
lights opportunities for targeted soil management and water-use
optimization in onion cultivation.

3.4 Conclusion and Future Work

This study showed the comparative analysis for onion mapping
using gradient boosting algorithms such as LightGBM, CatBoost,
and XGBoost. The robustness of CatBoost in classifying onion
fields was demonstrated in this study. Future works include de-
velopment of ways to address the misclassification of early-stage
rice as onions by CatBoost.
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