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Abstract 

High-value crops like onion are vulnerable to price fluctuations for several reasons, including production shortage, infestation, infla-

tion, importation-related issues, and climate impacts, resulting in high risk for local farmers. Accurate mapping and monitoring can be 

invaluable in managing these price fluctuations and ensuring long-term stable supply chains, as they enable detailed crop monitoring 

and yield estimation for onions. In this work, we utilized Sentinel-2 multispectral imagery for onion mapping, applying machine 

learning algorithms (MLAs) such as Extreme Gradient Boosting Machine (XGBoost), Light Gradient Boosting Machine (LightGBM), 

and CatBoost Classifier. The input data for the analysis included the 10 RGB, VRE, NIR, and SWIR bands of Sentinel-2 as well as 25 

biophysical indices and terrain variables. These indices encompass key indicators for monitoring crop health and suitability like overall 

vegetation health, chlorophyll content, nitrogen content, soil moisture, soil salinity, soil clay content, Leaf Area Index (LAI), etc. The 

results showed that among the MLAs tested, CatBoost achieved the highest accuracy (90.0 %), followed by LightGBM (86.7 %), and 

XGBoost (84.7 %). Among the bands and indices used, the Clay Minerals Ratio (CMR) and Modified Photochemical Reflectance 

Index (PRI) were consistently identified as the most important features, strongly suggesting that onions are distinguished based on a 

combination of soil properties and canopy pigment traits. 

1. Introduction

Onion (Allium cepa L.) is among the most cultivated crops in the 

world (Opara, 2003), with global production reaching more than 

70 million tons, mostly produced by China and India (Pareek et 

al., 2017). In the Philippines, onion production grew more than 

twofold to 283,000 metric tons between 2011 and 2022. How-

ever, the crop remains highly vulnerable to price volatility, 

mainly because of several reasons including production short-

falls, extreme weather events, pest infestations, inflation, impor-

tation issues, and climate change impacts (Hutchinson, 2023). 

Monitoring onion cultivation areas is therefore critical to support 

government interventions aimed at stabilizing the market and en-

suring a reliable supply which is a persistent challenge in the 

country. 

Conventional field surveys remain the primary method for mon-

itoring of onion farming areas and production in the Philippines 

(Philippine Statistics Authority, n.d.). However, these surveys 

are time-consuming, labor-intensive, prone to sampling bias, and 

are often subject to logistical constraints (Liu et al., 2018). Re-

mote sensing (RS) provides a scalable approach to crop identifi-

cation and monitoring, minimizing dependence on field-based 

surveys (Doraiswamy et al., 2005). In fact, RS serves as an effi-

cient tool for improving soil and crop productivity (Kingra et al., 

2016).  

RS is an effective tool for monitoring cropping practices (Bégué 

et al., 2018). Numerous works used RS for crop-type mapping 

and yield prediction (Joshi et al., 2023; Karthikeyan et al., 2020; 

Moran et al., 1997; Navid & Vieira, 2019). Although garlic, a 

similar-looking crop, has been accurately identified and mapped 

using combined Sentinel-1 and Sentinel-2 in a previous work (Y. 

Chen et al., 2022), onion mapping using RS remains limited de-

spite its very huge potential. Nevertheless, in a previous work by 

Diwa et al. (2024), hyperspectral imagery from the PRISMA sat-

ellite was used to map onion fields in Bongabon, Nueva Ecija - 

the onion capital of the Philippines - achieving a 79 % accuracy 

using linear spectral unmixing (LSU). Hyperspectral imagery are 

generally more advantageous for differentiating crop types than 

multispectral images because of its high spectral resolution (Mar-

iotto et al., 2013), enabling the differentiation of onion from other 

landcover types. However, the study also revealed two major lim-

itations: the difficulty to obtain cloud-free hyperspectral images 

during the crucial onion growth period and the relatively coarse 

spatial resolution (30 m), which is insufficient for mapping of 

smallholder and fragmented farm parcels, a significant concern 

given that 38 % of farms in the Philippines are smaller than 0.5 

hectares (ha) (SEARCA, n.d.).  

This study addresses these limitations by leveraging open-source 

Sentinel-2 imagery (S2), which offers more frequent revisit time 

(i.e., 5 days at the equator) and higher spatial resolution (10–20 

m). Like the PRISMA, S2 also captures data in the visible, near-

infrared, and shortwave infrared ranges of the electromagnetic 

spectrum, albeit in broader spectral bands (Diwa et al., 2024; 

Kaplan, 2018). The S2 bands combined with twenty-two (22) bi-

ophysical and three (3) terrain variables based on critical condi-

tions for onion growth provide a robust dataset for applying clas-

sical machine learning algorithms (MLAs) for onion mapping. 

These indices encompass key indicators for monitoring crop 

health and suitability such as overall vegetation health, chloro-

phyll content, nitrogen content, soil moisture, soil salinity, soil 

clay content, Leaf Area Index (LAI), etc. 

Premised upon the main goal of developing an operational work-

flow for onion mapping, this work evaluates the performance of 

various gradient boosting MLAs (i.e. CatBoost, Light Gradient 

Boosting Machine, and Extreme Gradient Boosting Machine) in 

accurately mapping onion fields in Bongabon, Nueva Ecija, us-

ing S2 imagery. This study underscores the potential of blending 

S2 multispectral data with MLAs and auxiliary growth variables 

for onion mapping. The findings contribute to the goal of 
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achieving more accurate onion mapping, providing a scalable ap-

proach to monitor onion production and mitigate market volatil-

ity. 

 

 
Figure 2. RGB composite (Bands 4-3-2) of Sentinel-2 image for the 

study area captured on February 6, 2024 

2. Materials And Methods 

2.1 Location of Study Area and Ground Data Collection 

The study was conducted in neighbouring municipalities of 

Bongabon, Rizal, General Mamerto Natividad, Laur, and Palayan 

City in the province of Nueva Ecija, approximately 144 km north 

of Manila, the capital of the Philippines (Figure 1). Often referred 

to as the “Onion capital of the Philippines”, Bongabon is the lead-

ing producer of onion in the country and in Southeast Asia with 

approximately 27 km2 of arable land for onion production 

(Gavino & Tiw-an, 2020). The onion cultivated in the study area 

has a growing period of 90 – 110 days (3 – 4 months) and is nor-

mally planted from September to January and harvested from De-

cember to April. Aside from onion, rice and other seasonal crops 

(e.g., corn) are also cultivated in Bongabon.  

 

Three field campaigns were conducted to gather ground truth 

data of onion cultivation sites using the ODK collect app 

(Bokonda et al., 2019). The first two field visits which took place 

on December 12-14, 2023 and January 17, 2024 were carried out 

to collect onion ground locations (including drone images in Jan-

uary 2024). To note, the onions were at vegetative and bulbing 

states during the December 2023 and January 2024 field visits, 

respectively. During the third visit on April 15–17, 2024, local 

farmers were shown a February 2024 Sentinel-2 mosaic of the 

study area. Using reference points provided to guide them, the 

farmers identified the locations of onion and rice planting areas 

directly on the map. The onion and non-onion data points from 

the field visits are also shown in Figure 1.  

 

Figure 1. Location map of the study area and ground data points of onion and non-onion collected in Nueva Ecija, Philippines 
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2.2 Satellite Image and Pre-processing  

To perform onion mapping, we utilized S2 Level 2A image ac-

quired on 6 February 2024 covering the study area (Figure 2), 

selected based on the phenological stage of onion growth (i.e., 

bulbing to maturity) when spectral contrast is maximized. Since 

S2 Level-2A data are pre-corrected for atmospheric and geomet-

ric effects, the image downloaded from the Copernicus Browser 

required no additional preprocessing before analysis. Ten (10) 

spectral bands were used as follows: RGB (Bands 2, 3, and 4), 

Vegetation Red Edge (VRE; Bands 5, 6, 7, and 8A), Near-Infra-

red (NIR; Band 8), and Shortwave Infrared (SWIR; Bands 11 and 

12).  

 

In addition to the spectral bands, twenty-two (22) derived indices 

were calculated using both GEE and Sentinel Application Plat-

form (SNAP). These indices were selected based on agronomic 

studies highlighting optimal onion growth conditions (Boyhan & 

Kelley, 2007), particularly: (1) well-drained soils, (2) low sulfur 

content, (3) adequate nitrogen and phosphorus levels, and (4) 

moisture content. Table 1 summarizes the biophysical indices 

used in this study as well as their formulas and relevance for on-

ion mapping. 

 

The S2 downloaded from the Copernicus Browser was used to 

calculate the Leaf Area Index (LAI), Fraction of Vegetation 

Cover (fCover), Fraction of Absorbed PAR (fAPAR), Canopy 

Water Content (CW), and Canopy Chlorophyll Content (CCC) in 

SNAP. All the S2 bands were first resampled to 10 meters prior 

to calculation of these indices. The seventeen (17) other biophys-

ical indices were calculated in GEE.  

 

Terrain variables were also incorporated in the analysis, as onions 

typically grow only in flat areas. This helps minimize potential 

misclassification of onions with grasses or low-lying shrubs in 

steeper terrains. Terrain variables such as the slope, roughness, 

and Topographic Position Index (TPI) were calculated in QGIS 

v3.34.2 using Interferometric Synthetic Aperture Radar (IfSAR) 

Digital Elevation Model (DEM) with a spatial resolution of 5 m. 

The spectral bands, biophysical indices, and terrain variables 

were stacked into one image file and then crop masked using the 

annual and perennial crop layers of the 2020 land cover map of 

National Mapping and Resource Information Authority 

(NAMRIA) (Geoportal PH, n.d.). A flow chart showing the steps 

for preprocessing and succeeding classification techniques used 

in this study is shown in Figure 3. 

 

2.3 Machine Learning Algorithms   

Three gradient boosting machine learning algorithms (MLAs) 

such as Light Gradient Boosting Machine (LigthGBM), Categor-

ical Boosting Classifier (CatBoost), and Extreme Gradient 

Boosting Machine (XGBoost) were evaluated to classify onion 

and non-onion areas. Briefly, these three MLAs share key char-

acteristics that make them particularly advantageous for onion 

mapping using S2, such as (1) high predictive performance even 

with complex, nonlinear relationships, (2) less sensitive to multi-

collinearity, and (3) strong performance on small to moderate-

sized datasets, among others.  

 

To improve the weak learner classifiers, gradient boosting algo-

rithms iteratively train a series of individual classifiers, with each 

stage aimed at correcting the errors of the previous ones (Ka-

vzoglu & Colkesen, 2013; Mahesh & Soundrapandiyan, 2024; 

Waske & Braun, 2009). Among the widely used implementa-

tions, LightGBM, CatBoost, and XGBoost are gradient boosting 

frameworks built on decision trees but differ in how the trees are 

constructed. LightGBM adopts the leaf-wise strategy to grow the 

trees by splitting the leaf with the largest loss reduction first 

which often results in deeper and more complex trees (Ustuner & 

Balik Sanli, 2019). CatBoost uses the symmetric tree growth 

strategy by ensuring balanced trees at each level (Hancock & 

Khoshgoftaar, 2020). In contrast, XGBoost uses the level-wise 

tree growth strategy by expanding all leaves at the same depth 

Figure 3. Methodological flow diagram for mapping onion fields using machine learning. 
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before proceeding deeper (T. Chen & Guestrin, 2016; H. Zhang 

et al., 2019). Several works used these gradient boosting algo-

rithms for estimation of crop yield (Mahesh & Soundrapandiyan, 

2024) and crop mapping (Ustuner et al., 2019). In fact, Ustuner 

et al. (2019) noted that gradient boosting algorithms outperform 

linear boosters in terms of crop mapping accuracy. The MLA 

classifications were performed using PyCaret 3.0 python pack-

age, an open-source machine learning library (Pycaret, n.d.). 

 

To train the MLA models, a total of 250 datapoints were gener-

ated from the field surveys, consisting of 100 onions (17 from 

December 2023 ODK, 27 from January 2024 ODK, and 56 from 

January 2024 drone data) and 150 non-onion samples (collected 

from the participatory mapping). The dataset was then randomly 

split into 70 % for training, 15 % for tuning, and 15 % for testing 

to evaluate the model performance of the MLAs.  

 

3. Results And Discussion 

 

3.1 Onion Maps and Classification Accuracy 

Gradient boosting algorithms such as LightGBM, CatBoost, and 

XGBoost were applied to the pre-processed S2 containing the 

spectral bands, biophysical indices emphasizing the ideal condi-

tions for onion growth, and pertinent terrain variables to delineate 

the onion fields in Bongabon and nearby municipalities in Nueva 

Ecija, Philippines. Unlike linear algorithms, gradient boosting al-

gorithms are advantageous for complex, nonlinear relationships 

as they work by combining many simple decision trees, with each 

tree improving the errors of the previous ones to achieve more 

accurate mapping of onion fields (Waske & Braun, 2009). The 

models were trained using 250 ground data points consisting of 

100 onions and 150 non-onions, split into 70 % training, 15 % 

tuning, and 15 % test. The accuracy metrics of the training and 

tuned models as well as the test dataset are shown in Figure 4. To 

note, the accuracies of the training models were 0.9430 

(LightGBM), 0.9267 (CatBoost), and 0.9183 (XGBoost).   

 

The post-processed onion classification maps generated using the 

trained MLA models are shown in Figure 5. To assess the agree-

ment between the three MLA models in classifying onion, an on-

ion consistency map was created, counting how often a pixel is 

classified as onion, also shown in Figure 5. To validate and assess 

the accuracy of the onion maps, ground truthing was carried out 

on 15-17 April 2024 using the Open Data Kit (ODK) collect app 

(Bokonda et al., 2019) and participatory mapping with local 

farmers. The points visited for field validation were chosen by 

random sampling of 150 points, comprising of 60 onions and 90 

non-onion ground data points. To note, onion locations were ver-

ified through direct field visits, while non-onion points (e.g., 

built-up areas, rice fields, bare soil, etc.) were identified based on 

participatory mapping results and satellite images. The ground 

truth data were then used to calculate the accuracy, precision, 

sensitivity, and specificity of the onion classification (Table 2).  

Table 1. Biophysical indices used in this study*** 
*** aMcFeeters (1996), bHunt & Rock (1989), cKlemas & Smart (1983), dFrampton et al. (2013), eKhan et al. (2005), fKhan et al. (2001), gPeñuelas et al. (1995) 
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The accuracies of the MLAs are as follows: CatBoost (90.0 %), 

LightGBM (86.7 %), and XGBoost (84.7 %). Notably, the clas-

sified maps achieved high precision and specificity levels, indi-

cating their strong ability to minimize overestimation of onion 

classification and their effectiveness in correctly identifying non-

onion pixels, respectively. However, the maps exhibited rela-

tively modest sensitivity, indicating challenges in detecting ac-

tual onion pixels, which may be attributed to the overlapping 

spectral features between onions, other crops, and bare soil which 

was also mentioned in Diwa et al. (2024). Moreover, the “3” clas-

sification in the consistency map only slightly increased the ac-

curacy to 90.5 %, though yielding insignificant improvement to 

other accuracy metrics.  

 

 

3.2 Comparative Analysis of the MLA results 

Detailed examination of onion classification in Figure 5 shows 

very little difference in onions classified by the three MLA mod-

els. Generally, the models provided a smooth transition between 

onions and other land cover types in the study area (i.e., rice and 

bare soil). Relative to the earlier study by Diwa et al. (2024) that 

utilized PRISMA hyperspectral image, the present approach pro-

vided a more accurate depiction of onion distribution, particu-

larly in mixed vegetation zones (Figures 5B&D) and along tran-

sitional boundaries between crop types (Figures 5A–C). Minor 

misclassifications remained in certain parts of the area (Figure 

5A) but occurred less frequently than in the previous results. No-

tably, this study’s models more effectively distinguished onions 

from rice, fallow land, and burned areas. 

 

A notable observation is that the CatBoost model occasionally 

classified early-stage rice fields as onions (Figures 5A and 5D). 

This misclassification likely stems from the spectral resemblance 

between onions in their bulbing or mature phases and rice during 

its initial growth stage. Because young rice crops only partially 

cover the soil surface, their reflectance often represents a mixture 

of soil and vegetation signals, making them spectrally similar to 

onion plots. Although CatBoost achieved the highest classifica-

tion accuracy, it still exhibited confusion when both crops dis-

played limited canopy cover and comparable greenness levels 

(Cheng et al., 2023). 

 

3.3 Variable Importance 

Among the bands and indices used, the CMR and PRI were con-

sistently identified as the most important variables in classifying 

onion. This finding underscores the critical role of soil properties 

and moisture in shaping onion cultivation patterns. As shallow-

rooted crops, onions are highly sensitive to moisture stress during 

the bulbing stage (Rao, 2016). The importance of CMR possibly 

indicates that soil mineral composition (i.e., clay) that affects wa-

ter retention in soils plays a significant role in onion growth 

(Gaiser et al., 2000). This is supported by earlier discussion on 

optimal onion growth conditions, particularly, well-drained soils 

(Boyhan & Kelley, 2007).  

 

Meanwhile, PRI is also recognized as a water-sensitive index 

(Thenot et al., 2002). Beyond this, its sensitivity to photosyn-

thetic efficiency possibly enhances its effectiveness in distin-

guishing onion canopies, which exhibit distinct physiological and 

spectral responses compared to surrounding crops (Zhang et al., 

2016). Overall, the importance of PRI in mapping onions is likely 

due to its responsiveness to key phenological stage/s of onion 

growth, particularly the bulbing stage, when onions exhibit 

unique physiological characteristics and heightened sensitivity to 

moisture stress. 

 

All in all, the results of this work feature the importance of com-

bined static (soil) and dynamic (physiological growth of onion) 

Figure 4. Accuracy metrics of the training and tuned models and the 

overall test dataset 

Table 2. Accuracy metrics of the onion and non-onion classification 
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factors for accurate onion mapping. Moreover, this work high-

lights opportunities for targeted soil management and water-use 

optimization in onion cultivation.  

 

3.4 Conclusion and Future Work 

This study showed the comparative analysis for onion mapping 

using gradient boosting algorithms such as LightGBM, CatBoost, 

and XGBoost. The robustness of CatBoost in classifying onion 

fields was demonstrated in this study. Future works include de-

velopment of ways to address the misclassification of early-stage 

rice as onions by CatBoost.  
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