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Abstract 

 

As urban digital transformation advances, accurately extracting three-dimensional building footprints in complex urban environments 

has become a key challenge in 3D scene applications. Traditional building footprint extraction methods primarily rely on geometric 

features or texture information, but in densely built or occluded urban environments, achieving ideal extraction results is often difficult. 

To address this issue, this paper proposes a 3D building footprint extraction method based on spatial constraints. The method designs 

spatial constraint rules based on three dimensions: height, direction, and distance, combining geometric features with spatial 

distribution patterns. By adaptively adjusting thresholds, the method effectively improves building footprint extraction in dense urban 

environments. Experimental results show that the proposed method achieves an IoU of 91.5% in commercial dense areas (a 21.3% 

improvement over traditional methods), reduces directional error to 3.2° (a 74% decrease), increases recall rate in occlusion scenes to 

89.4%, and processes a single scene in only 218 seconds (a 32% reduction). Memory usage is also reduced by 26%. This research 

provides a high-precision, high-efficiency solution for urban digital modeling, especially suitable for large-scale applications in 

planning, design, and disaster emergency management. 

 

 

1. Introduction 

The digital transformation of cities is progressing at an 

astonishing rate, and the application of 3D building models is 

becoming increasingly important across various fields, 

particularly in urban planning, architectural design, disaster 

simulation, and emergency management. As urbanization 

accelerates, the number of buildings in cities continues to rise, 

and the issues of occlusion and adjacency between buildings are 

becoming more severe. This makes the accurate extraction of 

independent building masses from 3D city models a highly 

challenging task. 3D building models are not only the foundation 

of urban digitization but also an essential support for smart city 

management and sustainable development. Efficient and accurate 

extraction of building masses has become one of the core issues 

in current urban 3D modeling technology. 

Traditional building mass extraction methods typically rely on 

geometric features, texture information, or surface morphology 

to identify and extract buildings. For example, methods based on 

building outer contours and surface texture analysis use the 

geometric shape of buildings for segmentation. However, as 

urban environments become more complex, particularly in 

densely built areas, the limitations of these traditional methods 

are becoming apparent. First, geometric features may be affected 

by noise interference (such as trees, vehicles, etc.), leading to a 

decrease in segmentation accuracy. Second, in high-density 

urban environments, the boundaries between buildings are often 

occluded, and traditional methods struggle to effectively handle 

these occlusions, resulting in inaccurate extraction results. Thus, 

how to quickly and accurately extract independent building 

masses in complex urban environments has become a pressing 

technical challenge. 

Existing building mass extraction methods can be broadly 

classified into three categories: traditional geometric 

segmentation methods, deep learning-driven methods, and 

constraint optimization-based methods. Frommholz et al. (2016) 

proposed a geometric constraint segmentation method based on 

multi-view imagery, which relies on geometric features to extract 

building boundaries. However, this method does not effectively 

address the problem of dense occlusion, especially in high-

density urban environments, where it shows certain limitations. 

Ruf et al. (2018) used transfer learning, leveraging a large amount 

of labeled data to improve building segmentation accuracy. 

However, this method is highly dependent on labeled data, and 

the segmentation results are still limited in certain complex 

environments. Wei et al. (2023) proposed a clustering algorithm 

based on adaptive spatial constraints, improving building 

segmentation accuracy, but this method still fails to effectively 

optimize the constraint weights in building mass extraction 

scenarios, resulting in suboptimal extraction results in some 

situations. 

Although existing research has made progress in building mass 

extraction, there are still several shortcomings: First, static rules 

have poor adaptability, and fixed thresholds and weights cannot 

handle diverse scene changes, especially in dense and complex 

urban environments. Second, current methods apply different 

types of spatial constraints (such as height, direction, and 

distance) separately, lacking an effective collaborative 

optimization mechanism, which limits the overall performance of 

building mass extraction. Therefore, how to improve building 

extraction accuracy and enhance the adaptability of the method 

in different urban environments using multi-dimensional spatial 

constraints has become a key issue that needs to be addressed. 

To address the above issues, this paper proposes a building mass 

extraction method based on multi-dimensional spatial constraints. 

The main contributions of this method include: First, a multi-

dimensional constraint model is constructed, integrating spatial 

constraints such as height, position, and distance, and a dynamic 

weight allocation framework is designed to allow different 

constraints to be flexibly adjusted based on the scene. Second, a 

scene-adaptive mechanism is proposed, which dynamically 

adjusts thresholds and weights using statistical analysis, thereby 

enhancing the method's adaptability in dense urban environments 

and improving the accuracy and robustness of building extraction. 

Through these innovative designs, the proposed building mass 

extraction method performs well in the diversity and complexity 
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of urban environments, providing strong technical support for 

future urban 3D modeling and intelligent analysis. 

2.  Spatial Constraints and Building Individualization 

Method 

2.1 Design of Spatial Constraint Rules 

This paper proposes a multi-dimensional spatial constraint model 

that optimizes building individualization accuracy through three 

levels of rules: height, distance, and position. 

2.1.1 Height Constraints 

Building Height: Based on absolute elevation and relative height 

difference, dynamic thresholds are set to exclude low-attached 

structures (e.g., vegetation). 

 

𝐻𝑟𝑒𝑙 = 𝐻𝑡𝑜𝑝 − 𝐻𝑏𝑎𝑠𝑒                         (1) 

 

Where  𝐻𝑟𝑒𝑙= The relative height 

 𝐻𝑡𝑜𝑝= The top elevation of the building 

 𝐻𝑏𝑎𝑠𝑒 = The base elevation of the building 

 

Height Gradient: Local height variation rates identify abrupt 

roof slope changes, aiding the segmentation of complex building 

structures. 

2.1.2 Distance Constraints 

Inter-Building Spacing: The minimum bounding box distance 

(dmin) between adjacent buildings is defined, with density-

adaptive threshold adjustments (1.0–2.0m). 

Boundary Distance Constraint: The projection distance from 

building contours to roads/green spaces ensures individualization 

results comply with urban planning standards. 

2.1.3 Position Constraints 

Planar Position: Geographic coordinate alignment ensures 

segmentation results are spatially consistent with the real-world 

scene. 

Relative Position: Analysis of building cluster topology (e.g., 

front-back, left-right arrangements) prevents mis-segmentation 

due to occlusions. 

Directional Position: Extraction of the building principal axis 

direction angle, optimizing segmentation boundaries for densely 

aligned buildings. 

2.2 Integration of Spatial Constraint Rules 

Height, position, and distance constraints are weighted to 

calculate their significance in building individualization, with 

adaptive parameter threshold adjustments based on actual 

conditions. 

The combined constraint score is formulated as:  

 

𝐻𝑛𝑜𝑟𝑚 = 𝐻𝑡ℎ − 𝐻𝑟𝑒𝑙                                  (2) 

 

𝐷𝑎𝑙𝑖𝑔𝑛 = (𝑐𝑜𝑠(∣ 𝜃𝑖 − 𝜃𝑗 ∣))                           (3) 

 

𝐿𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 = 𝑑𝑡ℎ − 𝑑𝑚𝑖𝑛                                (4) 

 

Where    𝐻𝑛𝑜𝑟𝑚 = Normalized height 

𝐻𝑡ℎ = dynamic segmentation threshold 

𝐷𝑎𝑙𝑖𝑔𝑛= Directional alignment 

θ = principal axis direction angle 

𝑑𝑡ℎ  = adaptive distance threshold 

Using an entropy weight method for dynamic weight allocation, 

the comprehensive constraint score is given by:  

 

𝑆 = 𝛼𝐻𝑛𝑜𝑟𝑚 + 𝛽𝑑𝑚𝑖𝑛 + 𝛾𝐷𝑎𝑙𝑖𝑔𝑛                        (5) 

 

where S = segmentation condition 

If S>0.8, adjacent regions are classified as the same building. 

If S<0.5, they are classified as separate buildings. 

If 0.5≤S≤0.8, a secondary segmentation step is triggered (e.g., 

contour curvature refinement). 

This multi-level rule collaboration significantly improves 

robustness and adaptability in complex urban environments. 
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Figure 1. Spatial Constraint Framework 

 

2.3 Building Individualization Extraction Under Spatial 

Constraints 

Based on spatial visual saliency methods, this paper integrates 

height, position, and distance constraints to extract buildings, 

improving extraction accuracy and reducing misclassification. 

Each pixel in the scene DOM contains corresponding RGB color 

information, while DSM grayscale values represent height 

features, where higher brightness indicates greater terrain 

elevation. Saliency detection on DSM ensures that height-related 

spatial information is considered in building extraction. The 

generated DOM retains clear geometric and texture features, with 

building color information distinctly different from surrounding 

objects. The edge orientation characteristics of buildings are also 

apparent, facilitating the extraction of color, brightness, and 

directional features in visual saliency analysis. The DSM, on the 

other hand, provides clear height features, which enhance spatial 

visual saliency detection. 

First, DOM and DSM data are extracted from oblique 

photogrammetry. A color, brightness, and directional feature 

pyramid is constructed from DOM, while a height feature 

pyramid is created from DSM. Through multi-feature fusion, a 
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spatial visual saliency map is generated to preliminarily identify 

potential building regions. Spatial constraints are then applied: 

Height constraints: Using dynamic thresholds (considering both 

absolute height and relative height differences) to filter out 

vegetation, roads, and other non-building objects. 

Position constraints: Ensuring that building contours align with 

street orientations to match urban planning characteristics. 

Distance constraints: Using nearest-neighbor or clustering 

analysis to distinguish between connected and independent 

buildings. 

Finally, spatial constraint scores are weighted and fused with 

initial visual saliency scores. Canny edge detection and contour 

fitting techniques refine building boundaries, enabling accurate 

segmentation of individual buildings from the overall 3D model. 

2.4 Algorithm Implementation and Workflow 

This method is designed based on spatial constraints and 

integrates weighted rules with oblique photogrammetry data to 

achieve building footprint extraction. First, the raw data is 

preprocessed to extract Digital Orthophoto Maps (DOM) and 

Digital Surface Models (DSM), providing high-quality input for 

subsequent processing. 

Next, a multi-scale feature pyramid is constructed, incorporating 

color, brightness, direction, and height features to generate an 

initial visual saliency map, which serves as a coarse locator for 

potential building regions. Based on the visual saliency map, 

spatial constraint rules are embedded to further refine the 

candidate building regions. These rules include dynamic height 

constraints, position constraints, and distance constraints, 

effectively filtering out non-building areas while enhancing the 

consistency of building boundaries. 

To improve boundary precision, the method employs the Canny 

operator for edge detection, combined with vertex coordinate 

constraints to achieve refined building contour extraction. By 

extracting geometric edge information, the method enables 

accurate segmentation of individual buildings. Finally, the results 

of the initial segmentation are refined and optimized through an 

individualized extraction process, followed by accuracy analysis 

to validate the effectiveness and precision of the proposed 

method in building footprint extraction. 
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Figure 2. Technical Route 

 

3. Experiment and Result Analysis 

In this chapter, we conduct experimental validation of the 

proposed 3D building monolith extraction method based on 

spatial constraints. To evaluate the effectiveness of the method, 

we designed multiple groups of experiments covering various 

aspects, including building monolith extraction accuracy, 

computational efficiency, and processing stability. The 

experimental data is sourced from oblique photography models 

in OSGB format, with evaluation indicators including building 

monolith extraction accuracy, computational efficiency, and 

processing stability. The evaluation of each indicator is carried 

out by comparing the results before and after applying the spatial 

constraints, to verify the superiority of the method. 

3.1 Experimental Data and Evaluation Indicators 

The data used in the experiments comes from a high-resolution 

oblique photography model in OSGB format of the urban area of 

Taiyuan, Shanxi. The dataset covers an area of approximately 2.5 

km² and includes about 512 buildings, representing different 

regions of the city, such as high-density commercial areas and 

low-density residential areas. The advantage of the OSGB format 

lies in its efficient tiling technology and optimized data structure, 

which allows us to efficiently load and render large-scale 3D data. 

This format provides faster loading speeds and better rendering 

performance than traditional data formats, especially when 

handling high-resolution data. 

The complexity of the scene is as follows: 

Building density distribution: 

Commercial dense areas (density > 50 buildings/km²); 

Residential areas (density 20-50 buildings/km²); Suburban sparse 

areas (density < 20 buildings/km²); Occlusion ratio: 

Approximately 30% of the area experiences mutual building 

occlusion or vegetation coverage. 

To validate the effectiveness of the proposed method, the 

following comparison baselines were set: 

Baseline 1 (Traditional Geometric Segmentation): This 

method performs region growing based on the abrupt height 

changes in the DSM and texture features in the DOM, without 

applying any spatial constraint rules. 

Baseline 2 (ID Marked Segmentation): This method uses 

manually labeled building IDs as the reference for accuracy 

validation. 

Baseline 3 (U-Net Segmentation Model): This method adopts 

the classic U-Net architecture, trained using transfer learning on 

the same dataset. The input consists of multi-channel fused 

images from both the DOM and DSM. 

In the experiment, the following evaluation metrics were used: 

(1) Building Monolith Extraction Accuracy: 

• IoU (Intersection over Union): This metric measures the 

accuracy of the extracted buildings. A higher IoU value 

indicates greater overlap between the extracted building 

monolith and the actual building, resulting in higher 

extraction accuracy. 

• F1-score: The harmonic mean of precision and recall, 

providing a balanced evaluation of both false positives and 

false negatives. 

• Direction Error: The angular deviation between the 

building's main axis direction and the true direction 

(measured in degrees). 

(2) Computational Efficiency: 

The computational efficiency is mainly evaluated by the time 

required to extract building monoliths and the consumption of 

system resources (such as memory usage and CPU utilization). 
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(3) Processing Stability and Robustness: 

This metric evaluates the robustness of the method across 

different scenarios (high-density buildings, low-density 

buildings, severely occluded areas, etc.) by analyzing the stability 

of the extraction results. The focus is on testing the algorithm's 

stability under noise and occlusion conditions, as well as how it 

handles different types of building shapes and densities. 

3.2 Monolith Extraction Accuracy Analysis 

In this experiment, we selected an urban area that includes 

different types of buildings, and performed extraction separately 

using models with and without spatial constraints. 

 

Metric 
Traditional Geometric 

Segmentation 
U-Net 

Our 

Method 

IoU (%) 72.3–85.2 
85.2–

90.4 
91.5–95.4 

Directional 

Error (°) 
5.3–12.4 3.0–6.5 1.5–3.2 

Processing 

Time(s) 
320 240 218 

Occlusion 

Recall(%) 
68.3 82.1 89.4 

Noise False 

Detection Rate 

(%) 

18.9 12.5 6.3 

Table 1. Accuracy Analysis 

 

Table 1 presents a comparison of the accuracy results of different 

methods in commercial dense areas, residential areas, and 

suburban sparse areas. The proposed method outperforms the 

traditional geometric segmentation and U-Net segmentation 

models in terms of IoU, direction error, and recall rate in 

occluded scenarios. 

Specifically, in terms of IoU improvement:In commercial dense 

areas, the IoU of the proposed method reaches 91.5%, a 21.3% 

increase over the traditional method (72.3%), effectively 

eliminating interference from low-height structures (such as 

streetlights and billboards). 

In suburban sparse areas, the IoU increases to 95.4%, indicating 

that the distance constraint (dth=2.0m) can accurately distinguish 

independent buildings in low-density environments. 

Regarding direction error optimization: In commercial dense 

areas, the direction error of the proposed method is 3.2°, a 74% 

reduction compared to the traditional method (12.4%), validating 

the boundary optimization effect of the direction constraint (Dalign

>0.97) for densely arranged buildings. 

In terms of robustness in occluded scenarios: In areas with 30% 

occlusion, the recall rate of the proposed method reaches 89.4% 

(compared to 68.3% for the traditional method), mainly attributed 

to the collaborative effect of the geometric constraint and 

direction consistency judgment. 

 

 

Figure 3. Building Contour Extraction 

 

 

Figure 4. Building Monolith Extraction 

 

3.3 Computational Efficiency Analysis 

The testing environment for this experiment is as follows: 

Hardware Environment: 13th Gen Intel(R) Core(TM) i9-

13900K, 64GB RAM, NVIDIA RTX 4070. Scene Division: The 

scene was divided into 200m × 200m blocks, with each block's 

memory usage ≤ 2GB. Processing Method: Block data were 

processed using multithreading, with CUDA acceleration for 

Canny edge detection and gradient computation. 

In this section of the experiment, we measured processing time, 

memory usage, and CPU utilization. 

The performance results of different methods are summarized in 

the table below: 

 

Method 
Processing 

Time (s) 

Memory 

Usage (GB) 

Parallel 

Speedup 

Traditional 

Geometric 

Segmentation 

320 38 1.0× 

U-Net 

Segmentation 
240 42 1.3× 

Proposed Method 218 28 3.2× 

Table 2. Computational Efficiency Analysis 
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Table 2 compares the processing time, memory usage, and 

parallel speedup of different methods. The efficiency 

performance of the proposed method is as follows: 

Processing Time Optimization: The processing time for a 

single scene in the proposed method is 218 seconds, which is a 

32% reduction compared to the traditional method (320 seconds). 

This improvement is mainly due to the use of block processing 

techniques and dynamic constraint pruning strategies (which 

preemptively remove low-confidence regions where S < 0.5). 

Compared to U-Net (240 seconds), the proposed method is 9.2% 

more efficient, and it does not rely on labeled data. 

Memory Usage: The peak memory usage is reduced to 28GB 

(compared to 38GB for the traditional method), achieved through 

OSGB block loading (200m × 200m) and parallel computing 

optimizations for memory management. 

Parallel Speedup: The use of multithreading processing and 

CUDA acceleration (for Canny edge detection) results in a 

parallel speedup of 3.2×, significantly improving the efficiency 

of processing large-scale scenes. 

3.4 Method Superiority Analysis 

In this section, we further explore the advantages of the proposed 

spatial constraint method in terms of stability and robustness, 

particularly when dealing with interference factors such as noise 

and occlusion. In building extraction tasks, various sources of 

noise (e.g., trees, vehicles), occlusion phenomena (e.g., gaps 

between high-rise buildings), and complex building shapes often 

negatively impact extraction accuracy. Traditional methods tend 

to suffer from mis-segmentation or omission errors under such 

conditions.   

In contrast, the proposed spatial constraint method effectively 

addresses these challenges. For example, in heavily occluded 

areas, the introduction of height constraints enables the algorithm 

to accurately identify and restore the contours of occluded 

buildings even when parts of them are hidden. In scenarios where 

low-rise and high-rise buildings are adjacent, the distance 

constraint helps distinguish different buildings and prevents the 

erroneous merging of neighboring structures into a single unit. 

Additionally, the position constraint, by analyzing the spatial 

distribution and orientation of buildings, significantly reduces 

segmentation errors caused by complex building shapes or urban 

planning variations. Even in special areas such as historical 

districts, the method can ensure accurate building extraction 

through adaptive weight and threshold adjustments.   

Experimental results show that in environments with high noise 

levels and severe occlusion, the recall rate of the spatial 

constraint method improves by approximately 21% compared to 

traditional methods, while the mis-segmentation rate decreases 

by more than 20%. This fully demonstrates the robustness and 

stability of the proposed method in complex environments. 

4. Conclusion and Future Work 

This paper presents a method for extracting 3D building 

monomers based on spatial constraints, which integrates multi-

dimensional spatial constraint strategies such as height, location, 

and distance to achieve accurate building extraction. The method 

not only effectively improves the precision of building extraction 

but also demonstrates high stability and robustness in dealing 

with dense urban scenes, occluded environments, and complex 

building forms. Experimental results show that, compared to 

traditional methods, this approach has significant advantages in 

terms of accuracy, computational efficiency, and stability in 

building monomer extraction. Particularly in high-density urban 

environments, the introduction of spatial constraint rules 

effectively reduces mis-segmentation and under-segmentation, 

making the extraction results more consistent with real urban 

structures. Moreover, the weighted fusion-based adaptive spatial 

constraint strategy allows the method to adapt to various urban 

environments, ensuring good extraction performance in modern 

high-rise building areas, low-density residential districts, and 

historical districts alike. 

Future research could further expand and optimize the spatial 

constraint-based 3D building monomer extraction method 

proposed in this paper in several aspects. First, by combining 

semantic information such as building use, material 

characteristics, and plot attributes, semantic enhancement 

through deep learning models could improve segmentation 

accuracy and the method's adaptability. Secondly, introducing 

deep learning techniques, especially self-supervised learning and 

transfer learning, could allow the model to automatically adjust 

spatial constraint parameters in different urban environments, 

enhancing its adaptability. Furthermore, with the acceleration of 

urban digitalization, improving the computational efficiency of 

the algorithm to handle large-scale urban data is a key research 

direction. This can be optimized through parallel computing, 

GPU acceleration, and incremental updating strategies. In terms 

of data, integrating multi-source data such as LiDAR point clouds, 

remote sensing images, and BIM data would further improve the 

accuracy and robustness of building boundary extraction. Lastly, 

as cities dynamically change, the research could extend to 

dynamic urban modeling and intelligent analysis, using time-

series data to detect changes in building forms, enhancing urban 

management intelligence, and promoting the widespread 

application of this method in smart city construction, urban 

planning, and building information modeling. 
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