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Abstract

LiDAR data filtering has been an active research area for nearly thirty years and continues to present significant challenges due to
the increasing density of acquired LiDAR data. This study analysed aerial LiDAR data from Milan, characterised by a density of
20-30 pts/m2. Initiated in the summer of 2022, the survey included aerial and terrestrial surveys. Aerial LiDAR data was captured
at a minimum of 20 pts/m2 using the sensor Leica CityMapper-2S, while mobile data were acquired using Cyclomedia’s MMS
system across 2555 km of roads. The ALS dataset includes Milan’s provincial territory and features unclassified and automatically
classified point clouds in an industrial environment. Two areas, San Siro and Città Studi, were selected to create a ground truth
without automated methods. We created a comprehensive ground truth dataset to validate our filtering method through valid and
well-known algorithms like TerraSolid, and that obtained in an industrial environment where expert users applied these algorithms
under time constraints. Our classification achieved 95.8% accuracy in the San Siro area and 94.6% in the Città Studi district, while
the classification of the industrial environment obtained 93.7% and 88.9%, respectively. In the future, we intend to refine parameters
to improve automatic classification accuracy and extend the process to other areas in Milan, integrating deep learning algorithms
within the MATLAB environment.

1. Introduction

LiDAR data filtering has been a very active area of research for
over 30 years and continues to be an extremely dynamic and
constantly evolving environment in which the scientific com-
munity is concentrated and which remains an area of study
of great relevance and interest. Technological advances have
helped improve the quality and precision of data collected
through LiDAR technology; infact, as technology advances,
ALS LiDAR sensors are proposed to enable the acquisition of
point clouds with increasingly higher densities. Consequently,
new filtering methods for LiDAR data have been developed to
handle the increasing density of points. As current effective fil-
tering methods for low-density point clouds may not produce
the same results with higher-density data. Research on LiDAR
data filtering techniques is complex and ongoing. As LiDAR
technology and its applications progress, it is essential to con-
tinually refine filtering methods to align with the accuracy and
precision of new ALS LiDAR sensors. In addition, attention
must be paid to the limited availability of ALS LiDAR data-
sets with complete and rigorous ground truths for classifica-
tion. Among the datasets currently available and in use, we
can find, for instance, the one related to the city of Vaihingen
(DE) (Chakraborty and Dey, 2024, Özdemir et al., 2021, Feng
and Guo, 2021). However, this dataset is characterised by a re-
latively low LiDAR data density, ranging from 4 pts/m2 to 8
pts/m2, and a limited extent.
Today, technology has evolved, and ALS LiDAR sensors can
acquire cities with a point density much higher than the Vaihin-
gen dataset. Nowadays, cities are acquired with sensors that can
acquire points with densities ranging between 20 pts/m2 and
40 pts/m2. With this technological evolution of ALS LiDAR
sensors, it is essential to have a test site that can cope with
this acquisition method conceived today. Modern acquisition
techniques offer increasingly greater spatial resolutions, gener-
ating large volumes of data with significantly higher point dens-

ities than previous systems. Filtering techniques must take this
into account, with data that present a complexity given by the
greater density that requires more advanced classification meth-
ods, provided by the greater amount of information associated
with each point, and this translates into higher levels of accur-
acy and detail in the classification processes. In this regard, it
becomes very interesting to have a rigorous LiDAR dataset that
can adapt to the challenge of the acquisition method of these
new technologies. Creating a LiDAR dataset, which includes
different types of terrain, vegetation and infrastructure, will al-
low us to train machine learning models on this data type and
enable us to be a solid base for the calibration and validation
of classification algorithms. In this way, fully exploiting ad-
vanced acquisition technologies will be possible. This dataset
will allow us to be a test bed for existing classification method-
ologies, allowing us to understand if they are robust enough to
handle the complexity of modern data. As the density of points
increases, classification techniques must recognise the various
types of objects, such as terrain, buildings, vegetation and other
infrastructure.
In the summer of 2022, the Municipality of Milan initiated an
important project to survey the entire provincial area and create
a digital twin of the city; this project included the acquisition
of both aerial and ground data. The aerial surveys were car-
ried out by CGR S.p.A. using the Leica CityMapper-2S hybrid
sensor, which combines a 2 MHz LiDAR sensor with simultan-
eous nadir and oblique imagery The nadir images were acquired
in four bands (red, green, blue and NIR), while the oblique im-
ages in three bands (red, green and blue). The nadir images
have a resolution of 5 cm, while the LiDAR data were collected
with a density of at least 20 pts/m2. In parallel, mobile mapping
was performed with Cyclomedia’s MMS system, which collec-
ted 360° panoramic images and point clouds along the roads,
covering 2555 km.
CGR S.p.A. managed and processed the aerial LiDAR data, par-
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ticularly on data calibration, integrating radiometric informa-
tion within the LiDAR flight swaths. In parallel, quality ana-
lyses of the LiDAR data were conducted to ensure the consist-
ency and reliability of the collected measurements. Starting
with the flight strips, which are initially segmented into tiles
measuring 500x100 metres, a tiling process was carried out to
produce tiles of 500x500 metres. Subsequently, an automatic
classification algorithm was applied to the point cloud gener-
ated from the tiling process to classify the points into vegeta-
tion, terrain, water, bridges or viaducts, low points, power lines,
and buildings.
The Municipality of Milan has authorized the Laboratory of
Geomatics to use around 50 TB of survey data for research. The
Laboratory of Geomatics has access to the following products:

• True Orthophoto: orthorectified aerial images, both RGB
and CIR (Color InfraRed), with a resolution of 5 cm.

• Aerial nadir images with a 5 cm resolution and aerial ob-
lique images.

• Raw aerial LiDAR point clouds: unclassified flight swaths,
which contain radiometric information, are divided into
tiles measuring 500x1000 m each.

• Digital Terrain Models (DTM) and Digital Surface Models
(DSM) with a resolution of 50 cm.

• Point clouds from mobile terrestrial mapping (MMS).

• Aerial point clouds classified and divided into 500x500m
square tiles.

For further information regarding the survey of the province of
Milan, please consult the articles (Franzini et al., 2023, Franzini
et al., 2024).
We are currently focusing on data obtained from aerial surveys,
particularly LiDAR point clouds. In this regard, we have built
a ground truth by manually classifying the points in two areas
identified in Milan that have different characteristics. The first
area is characterised by large green spaces; in contrast, a con-
centrated presence of buildings characterises the other.In ad-
dition to creating the ground truth, our goal was to use these
rigorous datasets to validate the filtering performed by consol-
idated algorithms, which are considered valid and widely used,
such as the one used in the commercial software TerraScan.The
validation process involved two distinct methodologies: first, an
industrial filtering performed by a company and, secondly, a fil-
tering from scratch performed by us. Industrial filtering offers
the significant advantage of being controlled by expert users
who can manage the data efficiently. However, this method
is often constrained by time, which can limit the attention to
detail required for accuracy. On the contrary, the filtering we
developed internally was implemented using the consolidated
commercial software TerraScan, and the filtering has the char-
acteristic of being built from scratch with particular attention to
details typical of research.
In this article, the ground truth created for two study areas iden-
tified in the city of Milan will be illustrated. The process of
creating the ground truth will be presented, describing in detail
the methodologies and criteria used to obtain a rigorous data-
set. Consequently, the results obtained from the ground truth
created will be analysed in detail, focusing on the accuracy of
the point cloud classification. Next, we will compare our clas-
sification with the filtering created in an industrial environment.

2. Materials

2.1 Point Clouds

The LiDAR dataset available to us includes the entire provin-
cial territory of Milan, which covers an area of 1,776 km². The
survey, carried out by the company CGR S.p.A., was performed
with the Leica CityMapper-2S LiDAR ALS sensor, which can
simultaneously acquire both LiDAR data, with a capacity of up
to 2 million points per second and nadir and oblique images.
The aircraft flew over the entire province at an average altitude
of 1500 m AGL, providing point clouds with a density of at
least 20 pts/m2 and a nadir and oblique image resolution of 5
cm.
The available data also includes point clouds that have already
been automatically classified in an industrial environment, cov-
ering the boundaries of Milan and the municipality of San
Colombano al Lambro. These classified point clouds are or-
ganised in 500x500 metre tiles and saved in LAS v1.4 format.
In addition to the classified tiles, raw LiDAR point clouds are
also available, and each flight swath is subdivided into tiles of
500x1000 m.
The first area selected consists of 20 tiles measuring 500x500
m, while the second consists of 12 tiles of the same size. The
point clouds contain radiometric information: each point is as-
sociated with the four spectral bands (red, green, blue, and
NIR).

2.2 Study areas

The study areas are situated in the city of Milan, as shown in
Figure 1. Milan, which is located at 45.46° N and 9.19° E, is the
capital of the Lombardy region in northern Italy. Covering an
area of approximately 182 km2, Milan has a varied landscape,
including rural, residential and high-density urban areas. On
the outskirts, there are ample green spaces mixed with build-
ings, while the centre features densely built areas. This work
evaluates the automatic classification of aerial point clouds re-
lated to two study areas: the San Siro area (peripheral area)
and the Città Studi district (more central area). These two areas
have different urban fabrics, allowing a rigorous evaluation of
the classification process adopted.
The San Siro area, Figure 2, located in the north-western part

of Milan, is one of the peripheral areas of the city, character-
ised by large green spaces and scattered buildings. This study
area, with a total extent of 5 km2, includes the districts of QT8,
Lampugnano, San Siro, ex Fiera, San Leonardo, Portello, and
Ghisolfa. The buildings in this area are primarily residential,
with an average of four to five floors above ground; however,
some buildings reach 25 floors.
The second study area, Figure 3, Città Studi, is located in the

northeastern part of the city, closer to the city centre. The area
covers 3 km2 and is characterized by a prevalence of buildings
compared to the San Siro area. This area is an academic and
research centre, home to the university buildings and scientific
institutes that give it its name. The area is a perfect example of
architectural heterogeneity, with modern buildings coexisting
with historic ones.

3. Methodology

The point cloud is classified using one of the programs from the
TerraSolid suite. The programs run on CAD platforms (Bent-
ley or Spatix) and consist of five modules: TerraScan, TerraM-
atch, TerraModeler, TerraPhoto and TerraStereo. The module
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Figure 1. Map showing the two study areas and the Milan city
border (in red): San Siro (green rectangle) and Città Studi (blue
rectangle). [Map layer source: OSM, “Open Street Map”, QGIS.
Milan boundary source: Municipality of Milan Geoportal (SIT -
Territorial Information System)].

Figure 2. Orthophotos of the San Siro area taken during the flight
in the summer of 2022. The image shows the urban fabric of the
area. It is characterised by a prevalence of residential buildings
with extensive green spaces (La Maura racecourse, San Siro Hill).

used in this work is TerraScan, a program for viewing and pro-
cessing LiDAR data. This software includes LiDAR filtering,
DTM/DSM modeling, point cloud classification, vectorization
and several other functions. One major benefit of this software
is its capability to create macros, which execute a series of op-
erations in order, facilitating the automation of classification
tasks (TerraSolid, 2025).
Figure 4 shows the classification process used in both study
areas. The following paragraphs provide a detailed overview of
the methodology adopted to develop the new filtering method
we applied.

3.1 Ground Truth

Creating a ground truth is a complex and time-consuming pro-
cess, especially for point clouds, as it requires a manual clas-
sification of each single point, assigning a label to each one.
Unlike a 2D image, which provides a clear and simple con-
text, a 3D context, such as a point cloud, presents a more com-
plex challenge due to an unorganised nature of the 3D points.
This implies that the operator cannot rely exclusively on the

Figure 3. Orthophotos of the Cità Studi area obtained from 2022
flight. The image shows the urban fabric of the area, which is
characterised by a high density of buildings, with a mix of historic
and modern one. The area is characterised by a small number of
green areas.

spatial information of the point cloud for an accurate classi-
fication, as it is insufficient to have the context of the points.
For this reason, in creating the ground truth, the operator uses
the images acquired simultaneously as the LiDAR data to have
a visual context. This facilitates the correct interpretation and
classification of each point that makes up the point cloud and
allows for a classification to be identified that responds to the
context of the point being examined, thereby reducing errors
associated with the incorrect interpretation of the point cloud.
We selected six representative tiles from each study area to cre-
ate the ground truth. As mentioned previously, this process
is time-consuming; therefore, we opted not to classify every
identified tile entirely; instead, we manually classified various
objects, taking into account complex cases such as trees at-
tached to buildings, complex roof shapes, cars beneath trees,
and trucks and buses. We also considered simpler cases, in-
cluding buildings with simple roof shapes, trees, and isolated
cars, ensuring that our ground truth remained balanced between
simple and complex instances. We analyzed the distribution of
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Figure 4. Flowchart showing the process of classifying aerial
point clouds according to the macros implemented in TerraScan.

various classes in the two selected study areas using the clas-
sified tiles from the industrial environment. This allowed us to
determine the percentage distribution of classes in both study
areas, resulting in a ground truth that reflected reality. It is im-
portant to note that the six classified tiles as a whole corres-
pond to the defined percentages, while each individual tile does
not conform to this standard. The analysis indicated that the
first study area, San Siro, is primarily characterised by ground
and vegetation points. In contrast, the second study area, Città
Studi, predominantly consists of building points. Table 1 dis-
plays the percentage distribution of the classes used to create
the ground truth. In the San Siro area, 32 million out of 212
million points were classified (approximately 15%), while in
the Città Studi district, around 14 million points out of 112 mil-
lion were classified (about 13%).
The process we adopted in creating the ground truth is rigorous
and based exclusively on an operator’s manual classification.
The classification process was carried out using the TerraScan
software, which has numerous functions for manually classi-
fying a point cloud. Typically, creating a ground truth for the
point cloud begins with its automatic classification, followed
by a manual refinement phase that serves to correct errors in
the automatic algorithm. In this case, we relied exclusively on
manual classification without using any automatic approach.
This method has the disadvantage of being time-consuming;
however, it is objective and neutral, and it avoids the influence
of external factors without being influenced by the initial result
of automatic classification. Figure 5 shows an example of one

of the classified tiles.
The classes used for ground truth creation are as follows:

• Terrain: includes all points that represent the surface of
the earth. This includes ground, pavements, roads and the
bottom of watercourses.

• Vegetation: includes all points representing vegetation, in-
cluding trees, bushes and grass at various heights. Vegeta-
tion on terraces or roofs is also included in this class.

• Buildings: represent roofs. This class does not include
facades, which are part of the other class. This class also
includes permanent roof objects such as chimneys, ventil-
ation towers and antennas.

• Other: this class includes all points not covered by the
previous classes. It includes unclassified or unidentifiable
points, small structures that cannot be considered build-
ings, cars, poles, fences, building facades and all points
considered to be noise.

Classes San Siro (%) Città Studi (%)
Other 10 22
Ground 45 28
Vegetation 33 21
Buildings 12 29

Table 1. Percentage of points in each class that serve as the basis
for creating the ground truth for the two study areas.

Figure 5. Example of the ground truth of the point cloud in the
Città Studi district. This image represents one of the 6 classi-
fied tiles, illustrating the result of classifying the points accord-
ing to the classes of interest. Buildings are represented in red, the
ground in orange, the class called Other in magenta, vegetation
in green and unclassified points in grey.

3.2 Ground Classification

Ground classification is the first step in point cloud classific-
ation. It is a fundamental step that creates the basis for many
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applications ranging from DTM creation (Petschko et al., 2016)
to 3D building vectorization (Albano, 2019).
Several scientific papers discuss the ground classification al-
gorithm implemented in the TerraScan software (Brovelli and
Lucca, 2012, Lin and Mills, 2009). The ground filtering al-
gorithm implemented in TerraScan software software is based
on the algorithm created by Peter Axellson (Axelsson, 1999,
Axelsson, 2000) using TIN (Triangular Irregular Networks).
The classification algorithm initiates the process by identify-
ing seed points based on a user-defined grid, which includes
the maximum building size as a parameter. The method then
create TINs based on the previously determined points. With
each iteration, additional points that meet the specified criteria
are added to the triangle’s surface. The process stops when no
additional points are added to the surface. Specific parameters
must be set in the ground classification routine, such as:

• Terrain angle: maximum slope of the terrain

• Iteration angle: maximum angle between points

• Maximum building size: length in the plan of the largest
building

• Iteration distance: to avoid creating too large TIN triangles

In addition, iteration angles that are too large may include
points that have nothing to do with the ground, such as ve-
getation. When starting the ground classification routine in
TerraScan software, it is important to note that the paramet-
ers are preconfigured with default values. However, it is im-
portant to modify these parameters according to the topograph-
ical characteristics of the study area. The TerraScan software
manual (TerraSolid, 2025) suggests value ranges for the para-
meters described as follows:

• Iteration distance: values between 0.5 m and 1.5 m.

• Terrain angle: values between 88° and 90° (if there are
man-made objects), and sum values of 10° or 15° degrees
for nude terrain with only vegetation.

• Iteration angle: small values close to 4° for flat terrain and
values close to 10° for mountain terrain.

The macro we created for ground classification starts with
identifying low points. These points are essential before the
ground classification, as they allow the ground to be correctly
classified and prevent the areas below the ground from being
classified as ground. Then, as recommended in the TerraScan
manual, the candidate points for ground are identified using the
”hard surface” function. This allows the step of identifying
all the points that could be classified as ground, reducing the
number of points the algorithm has to analyze and, therefore,
reducing the classification time. The next step is classifying
the ground based on the previous candidate’s points for ground.
The points not classified as ground are reclassified to the un-
defined class once the ground has been identified. Finally, all
points within 5 cm of the ground are classified as ground.
The table 2 shows the parameters used to classify the ground
in the two study areas. The parameters are identical except for
the maximum size of the building. This parameter is particu-
larly relevant in the Città Studi study area: an incorrect setting
can cause an incorrect ground classification. Small areas, like
building courtyards, may not be recognised as ground, while
structures close to the ground, such as garages, might be mis-
classified as ground.

Parametres San Siro Città Studi
Max building size (m) 125.0 50.0
Terrain angle (°) 88.0 88.0
Iteration angle (°) 12.0 12.0
Iteration distance (°) 1.0 1.0
Reduce iteration angle when
edge length (m)

5.0 5.0

Table 2. Parametres chosen for the classification of the ground
for the two study areas.

3.3 Vegetation Classification

In addition to the three R, G and B bands, the point cloud
attributes also include the NIR (Near InfraRed) band. With
four bands available, it is possible to use a range of indices to
identify vegetation. The most common index used in literature
to determine the presence of vegetation is the Normalized Dif-
ference Vegetation Index (NDVI).
The NDVI parameter is generally used to determine the health
and vigour of vegetation. This index uses two bands: the red
band and the NIR band. Healthy plants absorb most of the red
light for photosynthesis while they reflect the light in the Near
InfraRed. NDVI uses this difference in reflectance to evaluate
the state of vegetation and its presence. NDVI values vary from
-1 to +1; a value close to -1 indicates no vegetation presence,
while values close to +1 indicate dense and lush vegetation. The
NDVI (Huang et al., 2021) formula is:

NDV I =
NIR−Red

NIR+Red
(1)

In both cases, there is a significant peak in NDVI around 0,
indicating that most of the points in the two study areas do not
represent vegetation. Analysing the interval between 0 and 1,
it can be observed that the presence of points associated with
vegetation is more significant in the San Siro area than in Città
Studi.
For both study areas, a minimum threshold of 0.15 was chosen
for the NDVI index, in line with what is reported in the literature
for the identification of vegetation (Hashim et al., 2019), while
the maximum value was set at 1.

3.4 Buildings Classification

Building classification is a fundamental step in creating 3D vec-
tor models of buildings. In this process, the facades of the build-
ings are not classified since this information is not considered
by the software currently in use. The TerraScan software util-
ised for vectorisation generates vector models of buildings with
a Level of Detail (LOD) of 2. Even if the facades were classi-
fied, the algorithm would not account for their position on the
roof, as it first generates the slopes and then calculates the walls
from the perimeter of the roof.
The macro developed for building classification starts by clas-
sifying all points into a temporary class, where all points in
that class are potential candidates for being a building. This is
achieved by classifying all points higher than 2m above ground
level. After this step, any points not identified as buildings are
returned to a default class. To include fixed objects on the roof,
such as chimneys, the “group by best match” function is used to
classify these objects into the building class as well. The build-
ing classification algorithm implemented in the TerraScan soft-
ware is based on the algorithm developed by Peter Axellson.
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The algorithm utilises information about the height of points
from the ground: roofs are typically flat surfaces, and thus,
changes in height along the scan lines are observed. If the elev-
ation changes little along a scan line (i.e., the elevation changes
do not vary significantly), it is likely to be a roof; on the other
hand, considerable variations indicate vegetation or changes in
the direction of the roof. The model searches for flat surfaces
and identifies roofs using a simplified method that examines
elevation changes along the scan lines. When the second deriv-
ative of elevation along the scan line is zero, it indicates uni-
form elevation changes on a flat surface like a building’s roof.
Conversely, a non-zero second derivative denotes a change in
slope, reflecting alterations in the roof’s direction or uneven sur-
faces, potentially due to vegetation or a roof ridge. The method
then employs the second derivative to detect these changes and
to distinguish between flat surfaces (indicating buildings) and
rough surfaces (indicating vegetation or other non-flat objects).
Table 3 shows the values of the parameters used to classify
buildings in the two study areas.

Parametres San Siro Città Studi
Accept using Normal rules Relaxed rules
Min. size building (m2) 50.0 25.0
Z tolerance (m) 0.25 0.25

Table 3. Parameters chosen for the classification of the buildings
for the two study areas.

4. Results

The LiDAR point cloud classification results, are illustrated in
Figure 6 and Figure 7, which respectively show a portion of the
ground truth and a comparison between our automatic classi-
fication and that obtained in an industrial environment. Con-
fusion matrices and Cohen’s kappa parameters are reported for
each approach. Figure 6 shows a building in the study area of
San Siro and a small part of the surrounding area.. In contrast,
Figure 7, which identifies a portion of the Città Studi district,
shows a more extensive reference area with a greater number of
buildings and other objects. The classification considered four
classes: other, ground, buildings, and vegetation. In analysing
the first study area, the San Siro area, the automatic classific-
ation method in an industrial environment highlights high user
accuracies for the ground and vegetation classes, with a reduc-
tion in accuracy for the buildings and other classes. The pro-
ducer’s accuracy indicates a good ability to identify the ground
and vegetation classes, with strong performance for the building
class and difficulties for the class called other. Our classification
method demonstrates high accuracy for the ground, vegetation,
and buildings classes, while the other class has low accuracy.
Regarding producer accuracy, our approach improves compared
to the first method for the buildings class, while the other class
continues to face problems. In this first study area, we can con-
clude that our adopted method is more accurate for the building
class. However, both methods indicate that the classification of
the other class is critical for both methods.
Moving on to the second study area, the Città Studi district, the
classification method in an industrial environment highlights
high user accuracy for the ground and buildings classes, fol-
lowed by the vegetation class. In contrast, the other class has a
low accuracy value. As for the producer accuracy, good recog-
nition capabilities of the ground class are highlighted, followed
by vegetation and buildings; however, in this case, the producer

accuracy of the other class is very high, but the user accuracy is
low (less than half), which suggests that the algorithm struggles
to identify the points that are part of the other class. Our ap-
proach shows high user accuracy for the ground, buildings, and
vegetation classes, while the other class confirms lower accur-
acy. The user accuracy is high for the vegetation and ground
classes, followed by buildings, while the other class is charac-
terised by lower accuracy (about 78%).
A significant challenge in classifying aerial point clouds is dis-
tinguishing structures such as bridges and viaducts from build-
ings or terrain. The misinterpretation is often due to the sim-
ilarity in appearance between elevated viaducts and buildings
due to their flat surfaces, leading to misclassification by al-
gorithms. Currently, TerraScan software does not have a fully
automated method for classifying these structures using point
clouds alone; existing techniques rely on complementary data,
such as polygons that indicate locations and boundaries of
bridges.
Another challenge is accurately distinguishing vegetation next
to buildings. We are exploring a strategy that starts with fil-
tering points with a single return, typically corresponding to
ground or roof surfaces. This initial step may help reduce mis-
classification risks, though it does not provide information on
objects located on roofs. Additionally, we are considering clas-
sifying points according to specific planes to isolate vegetation
for better classification.
We achieve a high accuracy for buildings; however, there are
cases where objects like trucks are misidentified as buildings
due to their horizontal surfaces. To avoid this problem, in-
creasing the area parameter within the building classification
routine may be a solution; however, this could result in the loss
of some building details. Furthermore, the use of polygons to
identify buildings is not possible as the available information is
outdated and typically does not align with the building perimet-
ers in LiDAR data. Our focus is on refining classification by
utilizing TerraScan’s grouping function to minimize misclassi-
fication errors; we aim to adjust parameters so that vehicles are
identified in “other” class rather than buildings one.
Both methods show difficulties in the class “other”. This dif-
ficulty is probably related to the composition of this class, as
it includes poles, cars, building facades, and in general, all the
points that do not belong to the other defined classes. The con-
fusion matrices show high accuracies for the ground and build-
ings classes, but some confusion is noted in the other and ve-
getation classes. To improve the overall accuracy, a possible
approach could be to refine the separation between the classes,
particularly the vegetation class, which shows general confu-
sion with the other classes and buildings.

5. Conclusion

Creating ground truth is a time-consuming process, but it en-
ables us to evaluate the effectiveness of an automatic classific-
ation method objectively. In this article, we compare two clas-
sification methodologies: one used in an industrial setting and
the other in a research context. To accomplish this, we identi-
fied two study areas in Milan, each with distinct characteristics;
this allowed for an adequate evaluation of the classification pro-
cess.
The comparison between the industrial method and our ap-
proach reveals some differences: our methodology generally
demonstrates higher global accuracy. In the first study area, we
achieved a global accuracy of 95.8%, compared to 93.7% in the
industrial setting. In the second study area, slightly lower ac-
curacy rates were recorded for both methods, precisely 94.6%
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Figure 6. The ground truth, compared with the two classification techniques applied in the San Siro study area, along with the corres-
ponding confusion matrix, illustrates the performance of these classification methods.

Figure 7. The ground truth, compared with the two classification techniques applied in the Città Studi district, along with the corres-
ponding confusion matrix, illustrates the performance of these classification methods.
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for our classification and 89% for the industrial classification.
This variance between the two study areas can be attributed to
environmental complexity, particularly in the Città Studi dis-
trict, which features adjacent buildings and complex shapes.
The TerraScan software algorithm emphasises the generalisa-
tion capability that distinguishes the various objects in the two
study areas, supported by confusion matrices that illustrate the
robustness of the classification process.
Future developments will certainly involve further refinement
of the parameters to improve the accuracy of automatic clas-
sification. Concurrently, we will continue creating the ground
truth by classifying the remaining tiles for the two study areas
using the same methodology adopted in this study. Addition-
ally, we will extend this classification process to other areas
of Milan, allowing us to assess the algorithm’s performance
in various scenarios, such as the city centre with its complex
urban fabric. Another future goal is to utilise deep learning al-
gorithms to classify the aerial point cloud automatically. We
have a rigorous, manually classified ground truth, currently in-
cluding six tiles for each study area, which we plan to extend by
classifying the remaining tiles in the two study areas using the
same methods employed to classify the six tiles. This dataset
not only facilitates the validation of the automatic classification
process with commercial software but also serves to train deep
learning algorithms. In particular, the MATLAB environment
will be utilised to train these algorithms: MATLAB already in-
cludes a Deep Learning module which, specifically for point
clouds, features pre-trained neural networks such as RandLA-
Net (Hu et al., 2020) and PointNet++ (Qi et al., 2017) on the
DALES dataset. With an existing pre-trained neural network,
a viable approach involves applying the transfer learning tech-
nique, which allows us to leverage a network that has already
been trained and adapt it to our dataset without necessitating a
complete training process from scratch. The results obtained
from deep learning will then be compared with established al-
gorithms like those available in the commercial software cur-
rently used.
In conclusion, our classification process has shown encouraging
results, with accuracies exceeding 94% for both study areas.
Analysing two study areas with distinct urban characteristics
has allowed us to validate the TerraScan software algorithm rig-
orously, ensuring satisfactory results across various scenarios.
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