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Abstract

Mamba has achieved significant success in various fields due to its ability to efficiently model long-range dependencies with lin-
ear complexity. However, its application in LiDAR point cloud processing is still in its early stages, facing challenges such as
unordered and irregular data structures. In this study, we investigated the performance of two existing Mamba-based algorithms,
PointMamba and PointCloudMamba, on the aerial DALES LiDAR dataset for point cloud segmentation, and further explored the
critical role of token serialization in influencing Mamba’s performance. To evaluate serialization quality, we proposed two novel
indicators—Neighbor Preservation Ratio (NPR) and Sequence Jump Distance (SJD)—which quantify the ability of serialization
methods to preserve spatial topology and geometric relationships. Our findings confirm the great potential of Mamba in LiDAR
point cloud processing, and demonstrate that serialization significantly impacts Mamba’s performance, with better preservation of
spatial and geometric relationships leading to higher segmentation accuracy. These results provide meaningful insights into im-
proving Mamba’s performance in LiDAR point cloud processing and guiding the development of advanced serialization methods.

1. Introduction

LiDAR technology enables precise 3D mapping of real-world
environments by densely sampling object surfaces, generating
detailed point clouds containing spatial coordinates and attrib-
utes such as reflectance intensity. This versatility enables LiDAR
to be a critical tool in remote sensing applications like urban
planning [Wang et al., 2018], environmental monitoring [Xiao
et al., 2023], and disaster management [Vetrivel et al., 2018].
For example, it supports the development of 3D building mod-
els for urban planning [Sun and Salvaggio, 2013] and facilitates
biomass estimation [Yu et al., 2013] in ecological research.

Recently, Mamba [Gu and Dao, 2023], an advanced Structured
State Space Model (SSM), has gained significant attention due
to its remarkable ability to model long-range dependencies while
maintaining linear computational complexity through its inher-
ent recurrence relations. Mamba has been successfully applied
in several domains, such as natural language processing and
time-series forecasting, showcasing its potential for handling
complex sequential data efficiently. Despite its growing ad-
option, the application of Mamba in LiDAR point cloud pro-
cessing remains in its infancy, with only a limited number of
studies exploring its use in this domain.

In this work, we focus on evaluating the effectiveness of Mamba-
based methods for LiDAR point cloud processing, addressing
the unique challenges posed by the sparse, unordered, and ir-
regular nature of point clouds. Specifically, we investigated two
recently proposed Mamba-based point cloud processing net-
works, PointMamba and PointCloudMamba, and analyzed their
performance on a large-scale aerial LiDAR dataset, Dayton An-
notated Laser Earth Scan (DALES) [Varney et al., 2020]. Fur-
thermore, a key aspect of this study is the exploration of point
cloud serialization, which plays a crucial role in enabling Mamba-
based models to handle point cloud data effectively. Despite the
∗ Corresponding author

importance of serialization in determining the performance of
Mamba models, the impact of different serialization methods on
point cloud processing remains underexplored. To address this
gap, we investigated and compared several existing serialization
techniques within the PointMamba framework. Our analysis
not only examines their impact on Mamba’s performance but
also investigates the underlying factors, aiming to provide valu-
able insights for future advancements in Mamba-based point
cloud processing. By analyzing the interaction between serial-
ization methods and Mamba-based networks, we aspire to con-
tribute foundational knowledge to the field and offer guidance
for designing more effective Mamba models tailored to LiDAR
point cloud processing.

The main contributions of our work are summarized as follows:

• Compare and analysis the effectiveness of existing Mamba-
based methods in LiDAR point cloud processing (investig-
ating two representative Mamba works: PointMamba [Li-
ang et al., 2024] and PointCloudMamba [Zhang et al., 2024]
in our experiments).

• Taking PointMamba as the baseline, investigate and com-
pare different point cloud serialization methods, exploring
the impact of serialization on Mamba’s performance.

• Design novel evaluation indicators for assessing the qual-
ity of point cloud serialization, evaluating the preservation
of the original spatial topology and geometric relationships
in serialized data. The new indicators provides valuable
insights for future advancements in Mamba-based point
cloud processing.

2. Methodology

This section introduces the frameworks of PointMamba [Liang
et al., 2024] and PointCloudMamba [Zhang et al., 2024], fol-
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Figure 1. The overall framework of PointMamba [Liang et al., 2024].

lowed by an introduction to a series of existing point cloud seri-
alization methods.

2.1 PointMamba

The framework of PointMamba [Liang et al., 2024] is shown
in Fig. 1. PointMamba is a lightweight and effective Mamba-
based framework for point cloud analysis, leveraging the power
of Mamba’s linear complexity and global modeling capabilities.
The pipeline begins with Farthest Point Sampling (FPS) to se-
lect representative key points from the input point cloud. These
key points are then serialized using Hilbert space-filling curves
and its transposed variant, Trans-Hilbert, which preserve spatial
locality and ensure meaningful sequential representations of the
point cloud.

The serialized points are processed into tokens through a k-
Nearest Neighbor (kNN)-based tokenization process, where local
patches of neighboring points are aggregated using relative co-
ordinates. A lightweight PointNet [Qi et al., 2017a] module is
employed to map these patches to a feature space, producing
serialized point tokens. To differentiate between Hilbert and
Trans-Hilbert tokenizations, order indicators are introduced, em-
bedding unique latent characteristics for each serialization strategy.

The serialized tokens are subsequently fed into a plain, non-
hierarchical Mamba encoder, which stacks multiple Mamba blocks.
Each block includes Selective State Space Modeling (SSM),
layer normalization, depth-wise convolution, and residual con-
nections, enabling efficient global context modeling. The design

intentionally avoids complexity, adhering to the principle of
simplicity for both efficiency and scalability.

PointMamba demonstrates superior performance across various
synthetic point cloud datasets while maintaining significantly
reduced computational costs compared to Transformer-based
counterparts. Its simplicity and efficiency make it a promising
baseline for future point cloud analysis tasks.

2.2 PointCloudMamba

As shown in Fig. 2, the PointCloudMamba (PCM) [Zhang
et al., 2024] framework leverages the strengths of the Mamba
architecture to efficiently process point cloud data while ad-
dressing the inherent challenges of sparsity, irregularity, and
unordered structures in 3D point clouds. PCM introduces sev-
eral novel design elements to adapt Mamba’s state-space model
(SSM) for point cloud processing.

PCM incorporates order prompts, which explicitly inform Mamba
layers about the input sequence’s structure. These learnable em-
beddings are strategically integrated into the model, allowing
Mamba to effectively process data while adapting to the unique
characteristics of point clouds. Additionally, PCM includes a
positional embedding mechanism based on spatial coordinate
mapping, which projects 3D coordinates into feature spaces,
preserving critical spatial information more effectively than tra-
ditional positional encodings.
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Figure 2. The overall framework of PointCloudMamba [Zhang et al., 2024].
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Figure 3. Serialization results of investigated method on the synthetic 3D cube and raw LiDAR point cloud in [Varney et al., 2020].

PCM adopts a four-stage encoder-decoder architecture, where
the encoder alternates between geometric affine modules for
local feature extraction and Mamba layers for global context
modeling. The decoder employs a streamlined design with point
interpolation and Multi-Layer Perceptrons (MLPs) to recon-
struct and classify point cloud features. The multi-stage encod-
ing ensures comprehensive representation learning across dif-
ferent spatial resolutions, enabling the model to capture both
local and global point cloud features.

By combining these innovations, PCM achieves State-Of-The-
Art (SOTA) performance on various benchmark datasets. It sig-
nificantly outperforms transformer- and point-based methods
while maintaining Mamba’s linear computational complexity,
making it a powerful and efficient framework for point cloud
analysis.

2.3 Existing Point Cloud Serialization Methods

Several point cloud serialization methods are examined in this
study, each offering unique strategies for ordering 3D point
cloud data in a one-dimensional sequence. The methods are
described as follows.

Hilbert Curve Serialization. The Hilbert curve is a recursive
fractal that traverses every point in a 3D space within a pre-
defined grid. By repeatedly subdividing the space into smaller
cubes and connecting points in a continuous path, the Hilbert
curve ensures that spatially close points in the 3D space remain
adjacent in the serialized 1D sequence. This characteristic of
spatial locality preservation makes it a widely used method for
reducing the dimensionality of multidimensional data while re-
taining geometric proximity.

Z-order Serialization. The Z-order curve, also known as the
Morton curve, converts 3D coordinates into a one-dimensional
sequence by interleaving the binary representations of the x, y,
and z coordinates. This interleaving generates a unique scalar

value for each point, referred to as the Morton code. Sorting
the points based on their Morton codes produces an ordering
that partially preserves spatial locality, making it effective for
organizing 3D data in a structured, single-dimensional repres-
entation.

Radial Distance Ordering. Radial ordering arranges points
based on their Euclidean distances from a central reference point.
In this work, the geometric centroid of the point cloud is used
as the reference. Points are sorted in ascending order of their
radial distances, ensuring that points closer to the center appear
earlier in the sequence. This method is particularly useful for
analyzing spatial relationships relative to a central position.

Coordinate-Based Lexicographic Sorting. This method ar-
ranges points hierarchically based on their Cartesian coordin-
ates (x,y,z). The sorting prioritizes one coordinate at a time:
initially by the x-coordinate, followed by the y-coordinate if
the x-values are identical, and finally by the z-coordinate for
points with identical x and y values. This simple dictionary-
like approach is easy to implement and ensures a deterministic
sequence of points.

OPTICS-based Serialization. Based on the principles of the
OPTICS (Ordering Points To Identify the Clustering Structure)
algorithm, this method generates an ordering of points that re-
flects their relative densities. Each point is assigned a core
distance and a simplified reachability distance (assuming all
points are core points). The resulting order prioritizes points
in dense regions, placing them consecutively in the sequence,
while points in sparser areas appear later. This density-aware
approach is particularly beneficial for tasks requiring an under-
standing of local point cloud density variations.

Random Ordering. Random ordering serves as a baseline
for evaluating the impact of structured serialization methods.
Points are assigned a completely random sequence, disregard-
ing their spatial or geometric properties. This approach ensures
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Table 1. Performance comparison (%) of different methods on the DALES dataset, including OA, mIoU, and latency(ms).

Methods input points OA mIoU
PointNet++ [Qi et al., Dec. 2017b] 8192 95.7 68.3

KPConv [Thomas et al., 2019] 8192 96.9 72.4
DGCNN [Wang et al., Nov. 2019] 8192 96.1 66.4

PointCNN [Li et al., 2018] 8192 97.2 58.4
SPG [Landrieu and Simonovsky, 2018] 8192 95.5 60.6

ConvPoint [Boulch, 2020] 8192 97.2 67.4
PointTransformer [Zhao et al., 2021] 8192 97.1 74.9

SuperCluster [Robert et al., 2024] 8192 - 77.3
PReFormer [Akwensi et al., 2024] 8192 92.9 70.9
PointMamba [Liang et al., 2024] 8192 96.3 73.3

PointCloudMamba [Zhang et al., 2024] 8192 97.0 74.7

no inherent bias in the ordering and provides a reference for
assessing the significance of spatially informed serialization.

Fig. 3 illustrates the serialization results of the discussed meth-
ods, applied to both a synthetic evenly distributed point cloud
cube and a raw LiDAR point cloud scene from the DALES data-
set [Varney et al., 2020]. The results highlight that the Hilbert
and OPTICS algorithms effectively preserve local geometric
structures in both synthetic and real-world LiDAR point clouds.
In contrast, methods such as coordinate-based lexicographic
sorting and Z-order sorting, while performing adequately on
planar point clouds, struggle to maintain consistent and mean-
ingful orderings in complex LiDAR datasets. This inconsist-
ency undermines their effectiveness in LiDAR point cloud pro-
cessing and analysis tasks.

3. Experiments

This section presents the comparative results of various Mamba-
based methods on the DALES dataset, along with an evaluation
of different point cloud serialization methods within the Point-
Mamba framework [Liang et al., 2024].

3.1 Implementation Details

PointMamba [Liang et al., 2024] and PointCloudMamba [Zhang
et al., 2024] were implemented using PyTorch and executed on
NVIDIA Tesla V100 GPUs. The models were trained using the
SGD optimizer with a momentum of 0.9 and a weight decay of
0.0001. The initial learning rate was set to 0.01 and adjusted
throughout the training process using a cosine annealing sched-
ule. Each model underwent training for a total of 200 epochs
on the DALES dataset.

Table 2. Comparison Results (%) of investigated serialization
methods on DALES. The highest scores are shown in bold.

Methods DALES
mIoU OA

Random Ordering 71.1 96.1
Z-order Curve 71.2 96.1

Radial Ordering 71.6 96.2
Lexicographic Ordering 72.4 96.3

OPTICS Ordering 73.3 96.4
Hilbert Curve 73.3 96.3

3.2 Datasets and Metrics

The Dayton Annotated LiDAR Earth Scan (DALES) dataset,
introduced by [Varney et al., 2020], is a comprehensive aerial

LiDAR dataset containing over 500 million points spanning an
area of 10 square kilometers. The dataset is annotated into eight
distinct object categories: Ground, Vegetation, Cars, Trucks,
Powerlines, Fences, Poles, and Buildings. Aerial Laser Scan-
ner point clouds, such as those in DALES, present unique chal-
lenges due to their scale and sparsity while offering diverse ap-
plications.

The dataset is divided into 40 regions, each covering 0.5 km2

and containing approximately 12 million points with detailed
class annotations. Each point is characterized by four attrib-
utes: spatial coordinates (XYZ) and intensity. For consistency
and fair comparisons, we subsampled the dataset using a 10 cm
grid, then partitioned it into 20m × 20m blocks, each contain-
ing 8,192 points after sampling. These blocks were used as the
training and testing samples.

To evaluate performance, we utilized standard metrics, includ-
ing mean Intersection over Union (mIoU), Overall Accuracy
(OA), and the average F1 score.

3.3 Performance Comparison

Table 1 shows the comparison results of PointMamba and PCM,
as well as previous deep learning methods. From the results,
these two Mamba-based point cloud processing methods sur-
passes the traditional deep learning methods such as PointNet++
[Qi et al., Dec. 2017b] and KPConv [Thomas et al., 2019],
achieving competitive performance with current SOTA meth-
ods such as PReFormer [Akwensi et al., 2024]. The compar-
ison results demonstrate the superiority and great potential of
Mamba in LiDAR point cloud processing. In addition, due to
comprehensive representation of point features by combining
both local and global feature modeling, PCM achieves better
results than PointMamba.

Furthermore, we also reported the comparison results of the in-
vestigated serialization method introduced in Section 2.3. Point-
Mamba [Liang et al., 2024] represents a purely Mamba-based
network, relying solely on the strengths of Mamba’s global mod-
eling capabilities without incorporating additional components.
Therefore, we chose PointMamba as the baseline to investig-
ate the impact of different serialization methods on Mamba’s
performance. Table 2 shows the related comparison results.
Among the evaluated methods, the Hilbert curve and OPTICS
ordering achieved the highest scores, as reflected by their su-
perior mIoU (73.3%) and average F1 score (81.9%). Random
ordering and Z-order curve exhibit the lowest performance, sug-
gesting that these methods are less effective at maintaining the
spatial coherence of complex LiDAR point clouds, leading to
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Table 3. Comparison results measured by NPR and SJD for investigated serialization methods on the DALES dataset.

Methods NPR SJD
K = 1 K = 10 K = 30 K = 50

Hilbert Curve 0.1981 0.5126 0.5601 0.5869 0.1644
OPTICS Ordering 0.0431 0.3061 0.4098 0.4447 0.3732

Lexicographic Ordering 0.0257 0.1460 0.2580 0.3236 0.7271
Radial Ordering 0.0125 0.0817 0.1592 0.2118 1.0178
Z-order Curve 0.0043 0.0292 0.0681 0.1080 1.0657

Random Ordering 0.0020 0.0195 0.0587 0.0978 1.1102

reduced segmentation quality. The quantitative comparison res-
ults are also consistent with the visual serialization results of
these methods shown in Fig. 3.

4. Discussion and Analysis

To further explore the intrinsic factors affecting the serialization
method on Mamba performance, we designed novel indicators
to evaluate the quality of point cloud serialization. When con-
verting 3D point clouds into 1D sequences, our primary concern
is whether the spatial topology and geometric relationships of
the point cloud are adequately preserved. Therefore, our pro-
posed indicators focus on measuring a serialization method’s
ability to retain these critical properties. Specifically, we em-
ploy two evaluation indicators as follow.

Point 1

Point 2

Point 3

Point N

…
Point 4

Serialized points

Point 5

Point 6

Point 7

Point 8

Query PointK=6 24

Figure 4. Illustration of the definition of NPR, where the green
points represents common neighbor points in both the serialized

neighborhood and the original spatial neighborhood.

Neighbor Preservation Ratio (NPR). NPR represents the pro-
portion of original neighbors preserved in the serialized neigh-
borhood, which can be expressed as:

NPR =
1

N

N∑
i=1

|N serialized
K (pi) ∩N original

K (pi)|
K

, (1)

where K represents the number of nearest neighbors, N serialized
K (pi)

and N original
K (pi) represent the set of K-nearest neighbors of the

query point pi in the serialized 1D sequence and original 3D
space, respectively, |N serialized

K (pi)∩N original
K (pi)| represents the

number of neighbors that are common between the serialized
neighborhood and the original spatial neighborhood. A higher
NPR value indicates better preservation of the original spatial
topology, as more neighbors from the original 3D space are re-
tained in the serialized neighborhood. In extreme cases, if NPR
equals 1, it means the serialization perfectly preserves the spa-
tial locality for all points. Fig. 4 provides a clear illustration for
the definition of NPR.
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Sequence Jump Distance (SJD). SJD is defined as the average
3D spatial distance between sequentially adjacent points in the
serialized 1D sequence. It quantifies how well the original spa-
tial locality of points in the 3D point cloud is preserved after
serialization. Mathematically, it can be expressed as:

SJD =
1

N − 1

N−1∑
i=1

d(pi, pi+1), (2)

where N represents the total number of points, pi and pi+1 rep-
resent consecutive points in the serialized sequence, d(pi, pi+1)
represents the Euclidean distance between the two points in 3D
space. A lower SJD value indicates better preservation of spa-
tial proximity, as points that are close in 3D space remain close
in the serialized sequence. Fig. 5 provides a clear illustration
for the definition of SJD.

We applied the NPR and SJD indicators to evaluate the invest-
igated serialization methods and summarized their performance
on the DALES test set, as shown in Table 3. To comprehens-
ively assess the effectiveness of different serialization methods,
we calculated NPR at various K values. The results indicate
that the Hilbert curve consistently outperforms other methods
across all K-values, achieving the highest NPR scores. This
demonstrates that the Hilbert serialization effectively preserves
the original spatial neighborhoods, leading to superior retention
of the local geometric and topological structures of the point
cloud. Additionally, Hilbert achieves the lowest SJD score, re-
flecting its ability to maintain spatial continuity with minimal
distortion in the serialized sequence.

The results also reveal a clear correlation between the evaluated
serialization methods’ accuracy on the DALES dataset and their
performance on the proposed indicators. As shown in Fig. 6,
higher NPR scores are strictly positively correlated with greater
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The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-G-2025 
ISPRS Geospatial Week 2025 “Photogrammetry & Remote Sensing for a Better Tomorrow…”, 6–11 April 2025, Dubai, UAE

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-1015-2025 | © Author(s) 2025. CC BY 4.0 License.

 
1020



accuracy (measured by mIoU), while lower SJD scores exhibit
a strict negative correlation. This alignment underscores the
reliability of the proposed indicators in quantifying serialization
quality. Moreover, the consistency of NPR across different K-
values for the investigated methods highlights the robustness of
the indicators.

Overall, these comparative results demonstrate the validity and
robustness of our indicators in assessing serialization quality.
They further confirm that preserving the spatial topology and
geometric relationships in serialized point clouds is a critical
factor influencing Mamba’s performance. This provides valu-
able insights for future efforts to enhance Mamba’s capabilities
and guides the design of more effective serialization methods
for point cloud processing.

5. Conclusion

This study demonstrates the effectiveness and significant poten-
tial of Mamba-based models in LiDAR point cloud processing.
Through evaluating two representative Mamba-based algorithms,
PointMamba and PointCloudMamba, we confirmed their cap-
ability to handle the challenges posed by unordered and irreg-
ular point cloud data while achieving promising results in seg-
mentation tasks. These findings highlight Mamba’s suitabil-
ity for processing complex point cloud data, reinforcing its po-
tential for broader applications in the field. Additionally, we
conducted an in-depth analysis of token serialization and its
impact on Mamba’s performance. By introducing two novel
indicators—Neighbor Preservation Ratio (NPR) and Sequence
Jump Distance (SJD)—we provided a comprehensive frame-
work to evaluate serialization quality. The results revealed that
serialization plays a critical role in preserving spatial topology
and geometric relationships, which are essential for enhancing
Mamba’s performance. Methods like Hilbert and OPTICS were
shown to excel in maintaining these relationships, resulting in
improved segmentation accuracy.

Overall, this work not only underscores the potential of Mamba-
based models for LiDAR point cloud processing but also provides
meaningful insights into the importance of serialization strategies.
These findings offer valuable guidance for optimizing Mamba’s
performance and designing more effective serialization meth-
ods to unlock its full potential in point cloud analysis.
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