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Abstract 

Cotton maps for Telangana which is one of the cotton producing region in India were produced through supervised classification in 

Google Earth Engine. To make well-informed decisions, farmers, governments, scientists, and agricultural organizations need accurate 

information on crop prediction. However, automated crop type mapping remains challenging due to the limited availability of field-

level crop labels required to train supervised classification models. Cotton mapping was made more accurate and efficient by using a 

two-step mapping approach, which consists of mapping the cropland and then extracting the cotton crop for areas with more 

heterogeneity, this framework increased the accuracy from 83% to 91%. For a more accurate estimate of the cotton crop, this study 

combined high resolution Sentinel-1 and Sentinel-2 data with several secondary data types in the SMILE Random Forest (RF) model 

at various stages of the crop growth season. For that First, cropland/non-cropland area were predicted to extract features from time 

series. Next, cotton crops through RF classifiers were applied on median composites of Sentinel-1 and Sentinel-2 data for each pixel 

in the region. Furthermore, spectral, structural and phenological feature time-series satellite data were merged and processed into a 

supervised random forest classifier. The classification of cotton, cropland and noncropland model produced with producers accuracy 

of 98%,88% and 90%. Through experiments, we also discovered that employing time-series imagery generates substantially higher 

classification results than single-period images. The inclusion of shortwave infrared bands, followed by the addition of red-edge bands, 

can increase crop classification accuracy more than using simply traditional bands like the visible and near-infrared bands. 

Incorporating common vegetation indices and Sentinel-2 data, combining with Sentinel-1 reflectance bands improved the overall crop 

classification accuracy by 0.2% and 0.6%, respectively. This study demonstrates how combining optical and microwave remote sensing 

data, the GEE platform, transfer learning, and cotton cropland mapping algorithms can enhance insights into precision agricultural 

systems. 

1. Introduction

1.1 Introduction 

Crop monitoring has emerged as a crucial area in remote sensing-

based Earth observation. Remote sensing has become the primary 

approach for crop mapping at both local and global scales. Unlike 

labour-intensive and time-consuming field surveys, often 

complicated by the fragmented and diverse nature of farmland in 

India, remote sensing offers wide coverage, frequent monitoring, 

and provides rapid, accurate, and objective crop information. 

(Dong et al., 2015). For the purposes of crop adaptation 

assessment and disaster warning, precise and timely 

identification of crop types and planting locations is crucial. 

Remote sensing data serves as a resource that can be applied to 

complement ground statistics (Qiu et al., 2015). Cotton is a 

significant cash crop in India, thus the variations in its planting 

area and yield will have an impact on India's cotton-related 

agricultural development decisions. Accurate and timely 

mapping of cotton fields is essential to the long-term 

management and observation of cotton economics. Crop 

mapping for a million km.sq. expanse frequently requires 

handling images with tens of thousands of scenes, which is more 

for the local workstations can handle (Cai et al., 2018). The 

development of cloud computing and storage platforms, such 

Google Earth Engine (GEE), has greatly accelerated the growth 

of crop mapping on a regional and worldwide scale (Xiong et al., 

2017). With the help of this platform, more than 70 studies on 

crop mapping have been carried out throughout the ten years 

since GEE launched (2010–2019) (Tamiminia et al., 2020). The 

two primary sources of satellite data are optical and radar remote 

sensing imagery, which can produce extensive spatial and 

phenological data with spectral reflectance and backscattering 

coefficient, respectively (Chen & Zhang, 2023). The 

combination of Sentinel-1 and Sentinel-2 along with random 

forest classifier increases the accuracy of the cotton field 

mapping (Hu et al., 2021a). The different crop type mapping can 

be analysed effectively by fitting harmonic regression and 

retrieve the coefficients to extract features from time series (S. 

Wang et al., 2019). The Sentinel data series have also been used 

for crop extraction because of their great temporal and spatial 

resolution. It has established the foundation for efficient and 

precise crop extraction (Talema & Hailu, 2020). Due to its 

resistance to sun light and cloud cover, Synthetic Aperture Radar 

(SAR) circumvents the limits of optical images and can be used 

for large-scale, high-resolution crop mapping (Fikriyah et al., 

2019). The surface information provided by optical and SAR data 

varies because of their distinct properties. The measured region's 

spectral properties are provided by the optical data, whereas the 

SAR data include details regarding soil and vegetation structure 

(Tian et al., 2019). 

Phenological curves and differences are frequently used to 

identify crops due to phenological variances among different 

crops (Hu et al., 2021). Textural features like the Gray-Level Co-

occurrence Matrix (GLCM) indices have been used to improve 

crop classification performance (Peña-Barragán et al., 2011). 
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Radar, an active form of remote sensing, can more accurately 

represent the spatial characteristics of land cover in cloudy and 

rainy weather than optical remote sensing. Because of their 

effectiveness when they work together, the combination of radar 

and optical remote sensing has been an effective tool for 

classifying crops (Mascolo et al., 2021). Furthermore, there are 

two categories of typical supplementary data: meteorological and 

topography variables (Boryan et al., 2011). A digital elevation 

model (DEM) and slope are two topographic characteristics that 

may assist to identify terraced fields and irrigated crops, 

respectively. Temperature and rainfall are two examples of 

meteorological factors that have a significant impact on crop 

growth and development and hence have high correlation with 

the phenology of plants (Tariq et al., 2023). Therefore, the 

combination of optical and radar remote sensing imageries as 

well as auxiliary data may offer more information gains for crop 

classification across the study area Telangana. 

In this study 10 m cotton map for 2020 to 2021 were created, 

utilizing all available Sentinel-1 and Sentinel-2 imageries, 

together with supplementary data in the GEE platform. Owing to 

varying image availability between years, we created distinct 

methods and conducted in-depth analysis and comparison. In the 

upcoming year, the released cotton maps dataset can serve as a 

foundation for crop management and policymaking, and the 

suggested method can be applied to cotton mapping. 

2. Methods

2.1 Study Area 

This study area provides the description of the dataset location. 

The state of Telangana in southern part of India is the home to 

the research region (Figure.1). The latitude and longitude of the 

study region are (17.32,77.99). There are mild undulations across 

the research area due to elevation variations of 520 m to 730 m 

above Mean Sea Level. The eastern part of the research area 

gradually falls, whereas the western portion is at a greater level. 

The average annual rainfall in the study area is 875 mm, with the 

NW portion of the watershed receiving the most (about 1000 

mm) as opposed to the SE, which only receives 700 mm. As the

Pediplain Pediment Complex of Denudational Origin covers

approximately 85% of the study region, this topography is better

suited for agricultural use. The western Deccan traps makes this

location perfect for growing cotton crops. Loamy soil is more

suited for agricultural use because it is more prevalent in the

western region than the eastern one. Consequently, the western

part of the study area contains the majority of the double crop

zones. The majority of the grounds are utilized for producing

vegetables, corn, cotton and receive rainfall.

Figure 1. Study area location in Telangana, India Google 

satellite Image. 

2.2 Datasets 

We carried out field sampling in the main-cotton-planting areas 

in March 2020. We interviewed the local farmers regarding how 

many years they have been cultivating cotton over this study area. 

For the past 10 years they were cultivating cotton over this 

region. A large number of georeferenced points were collected 

for both crop types (such as cotton, maize, and corn) and non-

crop areas (including barren land, water bodies, forests, and 

grasslands), as summarized in Table 1. To ensure sufficient, high-

quality, and spatially balanced training data across the study area, 

sample expansion was conducted through visual interpretation of 

high-resolution imagery available on the Google Earth platform. 

This process resulted in a total of 2,228 samples for March 2020: 

728 samples for non-cotton land cover, 1,000 for cotton cropland, 

and 500 for another cropland (Table 1). 

 Class name 

(March 

2020) 

Field 

Survey 

Google 

Earth 

ESA 

world 

Cover 

(2020-

2021) 

Total 

cotton 500 500 1000 

cropland 100 400 500 

Water 

body, built 

up, trees 

and barren 

land(non-

cropland) 

28 200 500 728 

Table 1. Number of point coordinates for supervised 

classification. 

2.3 Sentinel-2 Imagery and Pre-processing 

The Sentinel series, comprising optical (Sentinel-2 A/B, S2) and 

radar (Sentinel-1, S1) imagery, provides multi-band images at a 

spatial resolution of 10 meters for the study area, covering the 

period from 2020 to 2021. Harmonized Sentinel-2 Multispectral 

Instrument (COPERNICUS/S2_SR_HARMONIZED) surface 

reflectance data from March 2020 to March 2021 is available on 

the GEE platform for this region. Sentinel-2 surface reflectance 

imagery is commonly utilized for crop classification (Hu et al., 

2021c). To remove clouds and cloud shadows from the Sentinel-

2 dataset, we implemented the Clean Pixel Extraction: Utilized 
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the cloud probability dataset available in GEE to identify and 

retain cloud-free pixels. 

 

2.4 Sentinel-1 imagery and pre-processing 

In this research, all images for VV (single polarization, vertical 

emission/vertical reception) and VH (double polarization, 

vertical emission/horizontal reception) polarization from March 

2020 to March 2021, were selected. In total, 42 Sentinel-1 dual 

polarized C-band SAR instrument images were analysed for 

cotton crop classification, and these data were archived in GEE 

in the form of Sentinel-1 SAR Ground Range Detected (GRD) 

datasets. All images were pre-processed by the Sentinel-1 

toolbox using thermal noise removal, radiometric calibration, 

terrain correction using the Shuttle Radar Terrain Mission 

(SRTM) or Advanced Spaceborne Thermal Emissions and 

Reflection Radiometer (ASTER) digital elevation model (DEM) 

and conversion to a backscattering coefficient (σ0) in decibels 

(dB). Sentinel-1 has an average a maximum of 42 observations. 

Finally, the Refined Lee Filter has been used to filter the 

backscattering time series to remove speckle noise in the 

Sentinel-1 dataset (Lee et al. 2008; Yommy et al. 2015). For this 

classification task, this paper selected the VV polarization and 

VH polarization of Sentinel-1, which are commonly used in land 

use classification tasks. 

Based on previous studies in crop classification and mapping, a 

two-step strategy has been employed to first separate the 

cropland from non-croplands and then cotton, cropland and non-

cropland has been classified within the study area. A two-step 

process enables the elimination of non-cropland types and has a 

significant application in cotton mapping. 

 

Figure 2. Methodology presented in this study. 

 

2.5 Feature Selection 

The Google Earth Engine (GEE) platform offers various machine 

learning techniques for imagery classification, including random 

forest (RF), decision tree, support vector machine (SVM), and 

naive Bayes classifiers. Among these, RF is widely used for crop 

classification due to its ability to leverage the bagging technique, 

which optimizes feature selection through an automated process 

to enhance classification accuracy. In our study, we trained the 

models using a consistent set of features for both cropland and 

cotton mapping tasks. As an illustration, the technical framework 

for the second phase of cotton mapping is presented in Figure 2. 

Implementing the vegetation index has made it possible to assess 

vegetation growth and coverage qualitatively, which is useful for 

crop monitoring. This study computed two vegetation indices: 

the normalized difference vegetation index (NDVI) and the EVI 

stands for enhanced vegetation index (Gong et al., 2024). These 

indices offer essential data, regarding the growth of vegetation 

and biomass, respectively. Additionally, several indices were 

computed to capture essential features related to vegetation, 

water, and land cover. These include the Normalized Difference 

Water Index (NDWI), Normalized Difference Moisture Index 

(NDMI) and Normalized Difference Bareness Index (NDBaI), 

which are widely applied in studies focusing on water bodies, 

built-up areas, vegetation canopies, and related phenomena 

(Habibie et al., 2024). NDWI emphasizes water body 

information, making it effective for detecting surface water 

features. VV and VH polarizations capture vegetation-related 

information by accounting for factors such as canopy structure 

and observation angle, offering advantages for cropland 

monitoring. Red Edge Band is particularly sensitive to 

chlorophyll content, making it a valuable indicator for assessing 

crop growth and health. These indices, combined with SAR data, 

provide complementary insights into vegetation dynamics, 

enhancing the accuracy of crop monitoring and classification. 

 

2.6  Pixel-Based Classifier: Random Forest 

Classification tree or K tree, P random choices is nothing but the 

classification trees which belongs to family with name Random 

Forest classifiers. Breiman was the first to propose this idea, in 

2001(Breiman, 2001). Classes that submit to K-tree P with 

variables and prediction over each k when combining via 

majority category voted in the full process. Each tree is trained 

on random points for each node, and a binary problem to split the 

learning set at this level of each tree chosen from p input variables 

(picked randomly). The random forest is a bagging machine 

learning technique that fits many decision trees on subsamples of 

the data. Random forest classifiers are also good for interpreting 

important of indicators and feature selection (Maxwell et al., 

2018), which making it high necessity but data rich module to be 

able to employed better than other models Lawrence and Moran 

(2015) has compared the Random Forest with other machine 

learning models analysis. The classification accuracy based on 

attributes obtained higher for pre-processing data among 

different ways used, where the average of prediction by random 

forest was greater than others methods: Support Vector Machines 

(SVM). Therefore, the random forest model has higher 

computational cost than other decision tree of ensemble methods 

for better performance cotton crop extraction. They take care of 

the variables in a more optimal way and require very less to zero 

work on hyperparameter tuning. 

 

2.7 Accuracy Assessment 

High-quality data can be used to assess the accuracy of outputs 

at a relevant spatial and temporal scale. Both of these verification 

datasets are therefore essential components to the mapping 

project. Ground-truth data of 2020 were collected with a stratified 

random sampling of the accuracy assessment, based on different 

sources. The cotton, cropland and non-cropland field samples 

were interpreted on the High Spatial Resolution images in 

Google Earth or ESA Worldcover with an S2 image 2020 as a 

reference dataset to produce the final results of Cotton Croplands 

Map. During the collection of the ground sample points, the third 

Derivative Land Survey data was applied as an auxiliary 

reference source in visual process handling. In this study 

collected a total of 2228 validate samples which is combination 

with 1000 cotton field, 500 cropland and 728 non-cropland field. 

The confusion matrix was calculated using the validation samples 

for accuracy calculation. Accuracy including overall accuracy 

(OA), producer's accuracy (PA), user's accuracy (UA) and kappa 

coefficient (k) were computed by following equations: 
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OA = TP + TN+TS / TP + FPS + FPN +FSP+FSN+FNS+FNP+ 

TN+TS   (1)   

PA=TP/(TP+FSP+FNP)   (2)                                                                                       

UA=TP/(TP+FPS+FPN)  (3)                                     

k=ƿo-ƿe/1–ƿe      (4)                                

where TP represents the actual number of cotton fields predicted 

as cotton fields, TN is the actual number of non-cropland fields 

predicted as non-cropland fields, TS actual number of cropland 

predicted as cropland ,FPS is the actual number of cotton fields 

predicted as cropland fields, FPN is the actual number of cotton 

fields predicted as non-cropland, FSP actual number of cropland 

predicted as cotton, FSN actual number of cropland predicted as 

non-cropland, FNS actual number of non-cropland predicted as 

cropland, FNP actual number of non-cropland predicted as cotton 

, po represents the overall classification accuracy, and pe 

represents the ratio of the sum of the product of the number of 

real samples and the number of predicted samples to the square 

of the total number of samples. 

3. Results and Discussions

3.1 Mapping of cropland and non-cropland 

For the cropland classification, we trained random forest models 

using the sentinel 2 dataset. Breiman (2001) describes random 

forests as an ensemble machine learning technique that combines 

many decision trees to produce exceptional accessibility and 

performance. For crop type mapping, they have been shown to 

yield higher accuracies than maximum likelihood classifiers, 

support vector machines, and other techniques (Pelletier et al., 

2016). They are extensively utilized in the field of remote sensing 

for mapping crop types and classifying land cover (Ghazaryan et 

al., 2018). The detailed landscape mosaic that is observed in the 

study area comprises five classes – (1) water bodies – rivers, 

lakes; (2) cropland- permanent crops; (3) built up- urban areas; 

(4) treecover- forests, like those growing along rivers or lake

shore with the fifth category-called others for non-irrigated

agricultural land and miscellaneous other lands. A total of 1228

training points were generated randomly and labelled manually

through a visual interpretation of the 'ESA/WorldCover/v100'.

The literature study makes extensive use of this strategy. Transfer

learning approach has been adopted in this research that is

training the model with pretrained datasets like ESA Worldcover

increases the overall accuracy from 83% to 91%. Earth Engine

has a classifier called random forests that is computationally

efficient and capable of achieving high accuracies. A minimum

leaf population of 10 and 100 trees for an ee.Classifier object has

been assigned. Thus, the landcover of the study area has been

mapped.

3.2 Mapping of cotton crop 

In this study, ground samples were taken from cotton fields and 

several Index values were calculated for selected point 

coordinates through March 2020-21 using Sentinel-1 and 

Sentinel-2 satellite images. For this, the study centered on the 

phenology of cotton crops (specifically at peak growing months). 

The findings were expressed with the help of graphs, which 

showed that the cotton plants experienced observable growth 

between June 2020 and January 2021, which also represented the 

peak season for growing. This data enables tracking the health 

and growth of cotton crops over time and aid in precision farming 

practices leading to improved yield. 

In Google Earth Engine (GEE), a composite image was created 

incorporating spectral bands from Sentinel-1 and Sentinel-2, 

along with various spectral indices such as EVI, NBR, NDMI, 

NDWI, NDBI, and NDBaI. Additionally, elevation data from 

NASA’s Shuttle Radar Topography Mission (SRTM) at 30 m 

resolution (“USGS/SRTMGL1_003”) was included. We 

generated variables like classvalue, classnames, columns, and 

features. The classvalue had values from 0 to 2, representing 

cotton, cropland, and non-cropland as classnames. We created 

samples based on these classnames and split the data into training 

(80%) and testing (20%) sets. Samples were extracted using the 

sampleRegions function, where each pixel was treated as a 

feature with an associated classvalue. We then trained the model 

using the smile Random Forest (RF) algorithm, which is based 

on multiple decision trees to classify crop types. The model 

involved determining the number of trees and estimating the out-

of-bag error. The results were assessed using a confusion matrix, 

overall accuracy, and kappa coefficient. The confusion matrix 

compared the model’s predicted classifications with the actual 

ones, yielding an overall accuracy of 0.91 and a kappa coefficient 

of 0.88. 

Figure 3. The classified image cotton map of the study area. 

Figure 4. Accuracy Assessment 

Graph comparing Producer Accuracy (PA) and User Accuracy 

(UA) for cotton, cropland & non-cropland. PA is the performance 

of the model and refers how well it detects pixels belonging to 

class x, and UA measures how often the predictions made by a 

model is correct. Cotton has approximately 0.98 for PA and 0.92 

for UA which is high accuracy. On the other hand, while cropland 

also shares PA and UA having lower values than all other land 

classes (approx. 0.84), it shows more classification errors, non-

cropland had an intermediate value of balanced PA around 0.95, 

which provides some confidence that the drop in performance for 

this class was not due to severe misclassification errors. 

3.3 Time series profile of cotton map 
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Figure 5. NDVI of 4 cotton point coordinates selected from the 

classified image. 

 

NDVI (Normalized Difference Vegetation Index) is a remote 

sensing tool GIS analysts use for cotton crop analysis to examine 

plant health and development throughout the growing season. 

NDVI values are between -1 and +1 which allows us to learn 

about the photosynthetic energy, hence, vegetative greening 

changes in the quantum of light absorbed by green vegetation 

cover initiated by the surface. 

The chart shows the seasonality of NDVI values for four different 

data points (pt1, pt2, pt3, and pt4) in the one-year whereby each 

line represents relevant to a specific location/pixel within a cotton 

field. The NDVI curves show some of the following trends. 

At the early season (March-May), all points exhibit low NDVI 

values, ranging between 0.1 and 0.3 This indicates a cotton field 

in pre-plant or early growth stage. Given that cotton is a warm 

season crop, this information means that at the time these NDVI 

images were captured in spring, this has essentially zero or some 

vegetation cover, as it may be either bare or extremely early 

stages of its growth. At the growing season (June - August), 

NDVI values increase notably especially from June. Pt1 and pt2 

both have a rapid rise in NDVI values that peaks around August, 

with values in the range of 0.6–0.7 This corresponds to the early-

mid-season active growth period under dense canopy cover and 

thus maximal photosynthetic activity in cotton. The curve for pt3, 

appears to be shallower and does not show the NDVI peak value, 

which could again indicate a difference in health of the crop or 

possibly planting density or some external variable like soil 

quality, watering levels pesticide/ pest pressure. The pt4 shows a 

relatively lower peak compared to pt1 and pt2, suggesting a 

variation in crop conditions or environmental factors in that area. 

At the peak season (August- September) the observed NDVI 

values are high which indicates the maximum (greenness) levels 

of the cotton crop, reflecting a healthy canopy with maximum 

leaf area. The cotton crops are well developed and active 

photosynthesis. The productivity and the yield of the cotton crop 

are largely decided in these months. Following the peak, during 

November NDVI values steeply drop. This period reflects the 

natural senescence of the cotton crop to maturity and harvesting. 

The drop in NDVI is correlated to the decline in green biomass 

as cotton plants shed their leaves and mature bolls, the result of 

both stages having less photosynthetic resources. During this 

period, NDVI show a significant fall for all points which is 

common in cotton harvest cycles. From December, the NDVI 

values once again returns to post-harvest low near 0. The cotton 

fields are likely to be recently ploughed with little or no residue 

left behind and thus all points have low NDVI. This time is also 

crucial for assessing the condition of field and soil to plan next 

seasons planting cycles. 

 

 
Figure 6. EVI of 4 cotton point coordinates selected from the 

classified image. 

EVI is an indicator of vegetation health and is commonly used to 

monitor crop phenology. During (March- May), all cotton field 

presented an EVI that has a slight increase, showing the crop 

growth began. EVI reaches its maximum in the growing season 

(June to August) when photosynthesis is at its maximum. Among 

them, Pt 4 is the highest in EVI value (about 0.8), indicating the 

cotton crop with the greatest growth vigor; Such could mean a 

likely optimal growing conditions and very high productivity. On 

the other hand, Pt 1 has a slower growth trajectory and later peak, 

which means different cotton field with delayed phenological 

events. 

From the peak in summer, all cotton fields show a decreasing 

trend in EVI values from August to October. This decline in 

integration suggests the crops are headed toward senescence, a 

time during which growth slows and leaves begin to yellow or 

drop from plants leading to reduced photosynthetic activity. The 

EVI values for all-time series were low during the winter 

(November–February), indicating that there was almost no 

vegetation activity over this period. This is the dormancy of many 

agricultural systems, in which crops either have been harvested 

or are not actively growing. The cotton crops time series from the 

temporal domain has a general seasonal growth pattern, starting 

in (March-May) and reaching its maximum vegetative 

productivity within (Jun-Aug), then undergoing a slow 

senescence fall dormancy winter cycle. Pt 4 is the rapid growth 

stage and may be a fast growing or prolific seeding crop, while 

Pt 1 could be an earlier maturing type of crop. 

 
 

Figure 7. VH of 4 cotton point coordinates selected from the 

classified image. 

 

The graph shows the phenology of that crop based on VH 

(Vertical-Horizontal) polarization from SAR (Synthetic Aperture 

Radar) data. Maps the surface reflectance over time, against Day 

of Year (DOY) The Y-axis shows the backscatter intensity (VH 

polarization) representing how much of the radar signal is being 

reflected back from the surface of cotton crop at different growth 

stages. That is simply the day of year (DOY) of that year on days 
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and time scale, which goes through many months through March 

from next year to around March again.  

Each line corresponds to one of the different crop fields (pt1 to 

pt4) where the reflectance data were collected. There are many 

seasonal patterns observations which represent the four growth 

phases of the cotton crop: planting, growing, peak and harvest 

periods. Across all points, there is an obvious spike in surface 

reflectance from July to about September, which we assume 

reflects the seasonal peak vegetation or floral stage of the cotton 

crop. This is the period in which the whole of the crop is good 

established and will communicate more offering with the radar 

signal. 

Once this peak is reached, reflectance drops more abruptly for all 

but the first point, typically indicating the end of the growing or 

harvesting season. Up to the early months (Mar-May), the 

reflectance was quite low, probably due to either bare soil or 

initial vegetative stages of cotton crop. However, the signal from 

each line (pt1, pt2, pt3, pt4) can be mainly attributed to variability 

of soil moisture and crop density or very small phenological 

variation considering both locations. As the VH polarization in 

SAR data is sensitive to vegetation structure and moisture, the 

peaks and troughs signify large changes in these parameters 

throughout the season. 

 

 
Figure 8. VV of 4 cotton point coordinates selected from the 

classified image. 

 

The following figure 8 is the cotton phenology which was derived 

from VV polarized data of Synthetic Aperture Radar (SAR), 

within this the plant surface reflectance is plotted against time 

with DOY represented on X-axis and reflectance in Y-axis. The 

graph shows very high reflectance immediately after emergence 

in April-May, with a definite but uncertain spike between 7 and 

8 weeks (more visible for pt3); this is likely soil moisture as well 

as early vegetative stages or rapid growth in that region. The VV 

signal which is widely interfered by the structural properties of 

crops and surface roughness, especially for early stages of 

growth. 

All the points show a rise in peak reflectance during (June-July), 

which would be expected as it is around the mid to late growth 

stage of the cotton crop and is when flowering occurs, and 

continues until about peak vegetative phase of canopy cover. We 

can see that certain regions have clearer peaks or more stable 

reflectance values (for example, pt2 has sharper high peaks) that 

may suggest differences in crop condition, moisture content or 

regional growth dynamics. Following September, there is a 

downward slope in the surface reflectance corresponding to the 

senescing phase of crop when the canopy density is decreasing 

down due to harvesting. 

The VV polarization is generally more sensitive to surface 

roughness and the vertical crop structure, including stalks and 

leaves. Consequently, the high reflectance in the middle of the 

year indicate maximum growth and variability through points 

could be attributed to differences in crop health or soil moisture 

across cotton fields. 

                      (a)                                               (b)    

 

 
 

Figure 9. Cotton Field check in QGIS 

 

Figure 9 shows the classified image is analysed in QGIS, to verify 

if the point coordinates collected from the cotton fields align with 

the predicted cotton crop areas. In Figure a and b ensures that the 

ground coordinates collected from the field survey falls under the 

classified cotton. This assessment ensures that the classification 

accurately represents the areas designated as cotton crops based 

on the collected coordinates. 

In addition, some general characteristics of its flowering stage 

and boll-opening remain phenologically indicative for cotton-

mapping. Optical imagery from Sentinel 2 can distinguish the 

cotton flower, but it is difficult, because of the cotton consist tens 

of flowers have different color, such as white and red color that 

has apparent distinct colors (Liang et al., 2023). In particular, the 

color of petals might change as a flower develops. Though 

different cotton varieties show variations in the flowers colors, 

even on same plant flowers of different colors are present. 

Another important phenological stage is the boll-opening period 

(Jiang et al., 2020). White fibre contains most of the cotton color 

with a small amount of fibre. Some recent studies found that boll-

open time can be used as a phenological feature for cotton 

mapping and yield estimation (Xu et al., 2021). Wang et al. 

(2021) established the white bolls index (WBI) from Sentinel 2 

imagery in the boll-opening period and conducted a county-level 

cotton mapping. The mapping performance was similar to our 

study (OA=95%, Kappa =0.88) to the best of our knowledge, in 

which WBI (N. Wang et al., 2021) was able to achieve this 

accuracy. However, there are some drawbacks: It needs the 

temporal data at a higher resolution, temporally (every 5 days) 

for the boll-opening timing determination or in other words it still 

does not decrease up the same data as our monthly vegetation 

index. A second point is that it heavily utilizes the optical 

imagery in boll-opening. However, it is very hard to ensure that 

all the cotton fields can have one clear observation during the 

boll-opening stage because of bad weather (clouds, mist, rain), 

etc. This makes it difficult to transfer the WBI approach to cotton 

where early detection is possible. Specifically, the WBI is 

employed based on determining cotton and non-cotton, therefore 

another technical means should be used to identify cropland. To 
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address this issue, the study first differentiated between cropland 

and non-cropland areas using remote sensing techniques. This 

separation was achieved by analyzing the land cover data. Once 

cropland was identified, cotton crops were predicted based on 

their unique temporal and spatial features in Google Earth Engine 

using SMILE Random Forest classifier. By using these methods, 

the study effectively identified cotton fields, distinguishing them 

from other types of crops or land cover, ensuring more accurate 

detection and classification of cotton crops. 

 

4.Conclusion 

The cotton-growing area was estimated using both SAR and 

optical data, applying a supervised classification technique in 

Google Earth Engine to distinguish cotton pixels. By fusing SAR 

and optical data, the classification achieved an overall accuracy 

of 91% and a kappa coefficient of 88%, with the cotton area 

calculated to be 14,666.35 hectares. Temporal analysis of 

backscattering coefficients and spectral reflectance for cotton, 

cropland, and non-cropland was conducted throughout their 

vegetative and reproductive stages. This research could be further 

extended to predict cotton yield and biomass estimation. 
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