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Abstract 
 
One such coastal ecosystem that has various importance is mangrove. They provide biodiversity support, coastal protection, and carbon 
sequestration. One problem not well researched and known for accurate monitoring of mangrove forests is often hindered by the lack 
of consideration for canopy gaps, which significantly influence ecosystem dynamics, seedling recruitment, and overall forest health. 
This study enhances the precision of mangrove area estimation by integrating canopy gap identification using Unmanned Aerial 
Vehicle (UAV) imagery. After UAV acquisition, it would go through orthomosaic, and the following orthomosaic would be used for 
segmentation and Object-Based Image Analysis (OBIA). Conducted in the Lantebung & Untia Mangrove Tourism Area, South 
Sulawesi, Indonesia, the research employed UAV-based high-resolution RGB imagery to classify mangrove species and detect canopy 
gaps. Field validation and OBIA classification were used to improve accuracy, resulting in a refined methodology for calculating 
mangrove area while accounting for canopy gaps. The accuracy of the OBIA classification yielded good results in identifying and 
mapping the distribution of mangrove species. The overall accuracy is 80.65% for three classes: Rhizophora mucronate, Avicenna sp, 
and Canopy gaps. Findings reveal that canopy gaps, caused by natural and anthropogenic factors, impact mangrove structure and 
should be considered in monitoring and conservation strategies. The study introduces a novel formula for more accurate mangrove 
area estimation, demonstrating that traditional methods may overestimate coverage by ignoring gaps. These findings contribute to 
improved conservation planning and management of mangrove ecosystems, particularly in mixed-species environments where 
mapping accuracy remains challenging. 
 
 

1. Introduction 

Mangroves are a coastal ecosystem that functions as a reservoir 
of biodiversity, which is essential in supporting a wide range of 
life forms and providing a series of essential ecosystem services 
(K et al., 2024; Suhardi et al., 2024). Additionally, mangroves 
have the ability to maintain stability in coastal areas, support and 
even increase fisheries activities, and mitigate climate change 
through carbon absorption (IPCC, 2022; Kauffman et al., 2020). 
However, mangroves continue to experience degradation due to 
anthropogenic activities, which necessitates effective 
conservation and management efforts. 
 
Mangrove area monitoring often overlooks canopy gaps. 
Although these gaps occupy a relatively small proportion of the 
total mangrove area, they are critical in influencing 
microhabitats, seedling recruitment, and ecosystem resilience 
(Cao et al., 2023; Imai et al., 2006). Accurate monitoring of 
mangrove canopy phenology is crucial for determining necessary 
rehabilitation actions (Cao et al., 2023). 
 
Mangrove canopy gaps often occur due to natural ecosystem 
mechanisms and human activities (Duke, 2001). The forest's 
ecological aspect and physical conditions also change when 
canopy gaps form. Naturally, a recovery process will occur to 
restore the ecosystem to its original state, which has implications 
for regeneration and the recruitment of new trees(Amir et al., 
2009; Runkle, 1985). Whitmore (1989) explains that the canopy 
gap cycle is divided into three phases: the formation of the 
canopy gap, the growth of new seedlings, and the closure of the 
canopy gap by mature trees (Whitmore, 1989). Naturally, the 
recovery time for mangrove areas to close these canopy gaps is 
around 30 years (Duke, 2001). 
 

Mapping mangroves using UAV technology has been widely 
performed worldwide, often integrating machine learning in 
identifying mangrove cover and species types (Ngo, 2024; Yin et 
al., 2024). One of the classifications frequently used in 
identifying mangrove types is OBIA (Object-Based Image 
Analysis), which can locate mangrove species based on UAV 
imagery through segmentation and identification. OBIA has been 
widely proven to achieve higher accuracy compared than pixel-
based classification (Almeida de Oliveira et al., 2024). 
 
UAV (Unmanned Aerial Vehicle) technology can identify and 
map canopy gaps in mangrove areas (Yang et al., 2024). UAV is 
a better alternative than satellite due to the flexibility to fly 
anywhere, affordability, and higher resolution data (Li et al., 
2024; Zimudzi et al., 2021). UAV imagery falls into the category 
of very high-resolution images, which enables mangrove 
classification down to the species level and allows for mangrove 
ecosystem mapping by adding canopy gap information into the 
estimation of mangrove area coverage (Fu et al., 2022; Lim et al., 
2024; Pham et al., 2019). 
 
This research proposes an approach to estimate mangrove areas 
more accurately using UAVs, which can provide very high-
resolution mapping for identifying mangrove species and canopy 
gaps in mangrove areas. The results of this study can enhance the 
reliability of mangrove monitoring efforts, support data-driven 
conservation policies, and ultimately contribute to global climate 
change mitigation efforts for the preservation of coastal 
biodiversity in Indonesia. 
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2. Methodology 

2.1 Study Area 

The location of the mangrove area that is is in the Lantebung & 
Untia Mangrove Tourism Area (5° 4' 38.71" S, 119° 27' 58.79" 
E), included in the administrative area of Makassar City, South 
Sulawesi Province, Indonesia. The geographical location of the 
mangrove area is close to the residential and industrial areas of 
Makassar City, which would significantly impact the mangrove 
health due to anthropogenic activities around the area. This 
research began with UAV image recording on 16 September with 
a flight time of 08:00 - 10:15. The results of the UAV recording 
were then orthomosaic processed and used as orthomosaic survey 
material. We also conducted a UAV recording on 4 October with 
a flight time of 15:00 - 16:00 (UTC +8:00). The choice of UAV 
recording time is adjusted to the recommendations of Doukari et 
al. (2019), namely solar azimuth angle of 45° degrees. 

 
2.2 UAV Acquisition 

For UAV image acquisition, we used a Phantom 4 Pro V2 Drone. 
Everything that we used on the UAV has not been modified in 
any way. The camera sensor is RGB, with a one-inch CMOS 
sensor and a lens with a FOV of 84° 8.8 mm/24 mm (35 mm 
format equivalent). The satellite positioning system used was the 
onboard module, which was GPS/GLONASS. The maximum 
flight time was 30 minutes, and the maximum wind speed 
resistance was 10 m/s (DJI, 2021).  
 
Flight settings were set at an altitude of 100 m, side overlap, and 
forward overlap of 80%, with a drone speed setting of 9.9 M/S 
and a course angle of 203°. We determined the front and side 
overlap of 80%. In addition, the recording angle is set at 90°, 

which is perpendicular to the ground. We used DJI Terra to create 
and determine the UAV flight routes. The flight results produced 
a GSD (Ground Sample Distance) of 2.74 cm/pixel with a total 
covered area of 34.11 Ha. As a result of the large area and limited 
flight time due to the battery capacity, we had to divide into two 
flights. We also experimented on the best time to take the best 
pictures, and we eventually used second due to the image being 
brighter overall and higher quality. The first UAV acquisition (16 
September) resulted in 669 images, and the second acquisition (4 
October) resulted in 1162 images. The second acquisition we also 
experimented on was the flight UAV acquisition in DJI Terra, 
which was the oblique mode, so there were significantly more 
images taken with the same flight area. 
 

UAV Acquisition Total Images 
Taken 

Flight Time 

16th September 2024 669  08:00 – 10:15 
4th October 2024  1162 15:00 – 16:00 

 
Table 1. UAV imagery acquisition. 

 
2.3 Pre-Processing 

After acquiring the UAV images, the next step is creating an 
orthomosaic of the whole image. This UAV image process was 
done on Pix4dmapper. In general, there are three overall steps to 
generate the orthomosaic needed for further analysis: Initial 
Processing, Point Cloud and Mesh, DSM, Orthomosaic, and 
Index. For easier analysis, Pix4dmapper has a set of templates of 
the chosen parameters, which are:  3D Maps, 3D Models, Ag 
Multispectral, Ag Modified Camera, Ag RGB, 3D Maps – 
Rapid/Low Res, 3D Models – Rapid/Low Res, Ag RGB – 
Rapid/Low Res. We chose 3D Maps due to its various outputs 
(point cloud, 3D textured mesh, DSM, and orthomosaic) for 
further analysis and visualization (Pix4D, 2025). The 3D Map 
template complemented our goals to be more efficient time-wise, 
but its outputs are still deemed good for further analysis.  
 
The important parameters for orthomosaic processing that we 
learned from trial and error are Point Cloud and Mesh. The 
parameters were an Image Scale of ½ (Half image size), optimal 
Point Density, and a minimum number of matches of three. The 
Point Cloud Densification parameters, as written above, we chose 
due to the complex homogenous mangrove canopy. Research 
done by Swayze & Tinkham (2022) shows that increased point 
cloud density results in higher data quality. Kameyama & 
Sugiura (2021) explain that the higher amount of point cloud 

Figure 2. Study area and the UAV orthomosaic/ 

Figure 1. Flowchart of fieldwork and UAV image 
processing 
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density would result in a higher quality orthomosaic, which is 
what is needed to identify the canopy gaps. 
 
2.4 Ground Truthing  

Ground truthing evaluates the accuracy of image classification 
results by verifying them against real-world field data. For 
mapping mangrove species and gaps, we conducted ground 
truthing to test the accuracy of the image processing results. 
Points that will be used for classification are taken with the 
Avenza Maps application, which is available on Android & IOS. 
 
For us, canopy gaps were defined as an opening of the canopy. 
Young canopy gaps, would usually have the tree still standing if 
there was a lightning strike or a fallen tree/s These trees would 
then create an opening through which light would pass through. 
Species effect, defined by Duke, is where a particular species 
would dominate or be more successful in its growth. Certain 
species would dominate and sometimes overlap with others; 
other times, there would be a gap due to height canopy 
differences. We did not categorize the gaps in this research 
canopy gaps as written above. 
 
Due to the limited research on canopy gaps, there was no single 
method on reliably canopy gaps. Our method was to approach the 
canopy gaps and locate the individual/group of trees that had 
fallen or died. Duke (2001) mentions that gap creation, whilst 
unknown, can be caused by various factors such as the most 
common is lightning. Other causes may be due to wind, insects, 
pathogens, toxic chemicals, and anthropogenic causes such as 

logging (Amir et al., 2009; Duke, 2001). We also tried to identify 
the causes of the canopy gaps in our study area, but we cannot 
precisely determine the causes due to factors such as old trees 
that may have already been composed. This was a challenge for 
us because lightning strikes would be easily identifiable due to 
the burnt trees. 
 
For efficiency, we determined the ground truthing for canopy 
gaps based on visual interpretation of UAV imagery and also 
recorded the ones we found while walking through the mangrove.  
 
By UAV imagery, we determined there were 37 canopy gap 
points. Identification of Canopy gaps points was done by on-
screen visual interpretation of the orthomosaic results when were 
doing our location check. Of the 37 gap points we determined, 
we only conducted field checks at 17 points due to the terrain 
conditions, limited time, and the reachability of each gap 
location. Of these 17 points that we checked in the field, 2 
locations that we considered gaps through visual interpretation i 
n the orthomosaic were in fact, not gaps. In addition to the 17 that 
were done to verify the existence of the gaps, we recorded 81 
ground points to map species of the mangrove area. 
 
2.5 Segmentation and OBIA Classification 

Segmentation and OBIA classification were done in eCognition 
Developer 64. We used a multiresolution segmentation 
algorithm. The algorithm introduced by Baatz & Schäpe (2000) 
partitioned images into objects with high accuracy using a 
region-growing technique. It begins by merging individual pixels 

Figure 3. Canopy gaps identified from on-screen visual interpretation from UAV imagery overlaid with ground truthing points of the canopy 
gaps. 
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based on shape, texture, and color criteria. The algorithm was 
designed to handle high-resolution images efficiently, which is 
why we chose to use this algorithm due to very high-resolution 
images from the UAV. 
 
To maximize the results, we used various iterations; we found the 
parameters that resulted in the best segmentation for detecting 
canopy gaps. We used a Scale Parameter of 200, a Shape of 0.1, 
and a Compactness of 0.5. 
After the segmentation process was finished, the OBIA 
classification was done using the classification tool. The ground 
truthing points used for the classification were divided for 
classification (80%) and validation (20%). The classification 
points were chosen randomly. We selected features for the 
classification process by choosing the segmented objects that 
directly overlap the ground truthing points. After that, we did an 
accuracy assessment to see if classification was in detecting gaps. 
All of the above processes were completed in eCognition 
Developer 64. 
 
2.6 Accuracy Assessment 

The results of the OBIA classification from the segmentation will 
be assessed for accuracy. This is done to test the accuracy of a 
classified map versus the actual conditions in the field. The 
overall accuracy of a classified image is compared to how many 
features (polygons) exist between the actual conditions; the 
actual conditions are usually in the form of ground truth data. The 
producer’s accuracy is to measure how well a land cover/object 
that is mapped can be classified. User’s accuracy measures the 
likelihood of a classified polygon to its location in the real world. 
 

2.7 Accurate Area Calculation without Gap 

Using the following segmentation and OBIA classification, we 
could then create a map to see the mangrove species distribution 
and the detected canopy gaps. Besides that, we then dissolve the 
whole area of the segmentation to calculate the total area of each 
class. This process was done in QGIS using the field calculator's 
area syntax. The calculated area will be the same as the 
corresponding Coordinate System Referenced used, which, in 
our case, we used a Universal Transverse Mercator (UTM); the 
resulting area will be in m2. We hypothesized that to calculate a 
more accurate mangrove area the total of the mangrove minus the 
canopy gaps area. 
 

3. Results and Discussion 

3.1 Distribution of Mangrove Species 

After performing segmentation and OBIA, the results can be seen 
in Figure 5. We found two mangrove species in the field: 
Rhizophora Mucronata (RM) and Avicennia sp. (AV). This 
corresponds to a study done in the same area by Larekeng et al. 
(2024), in which they found three species of mangrove which are 
the following Rhizopora apiculata, Avicennia sp, and Rhizopora 
mucronata. For R. Apiculata, we did not find any of the 
individuals due to its distribution being outside our study area. 
From our ground-truthing points, we identified a total of 65 
points. We found AV, 29 points, RA, and 4 points in which there 
were mixed AV and RA. 
 
The distribution of mangrove species by zonation is determined 
by their suitability to grow in a specific area (substrate). 
Mangrove zonation can also be influenced by other topographic 
contours that form vegetation patterns (Tomlinson PB, 1994).  

Figure 4. Distribution of AV, RM and Canopy Gap classes after OBIA classification in our study area. 
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For our research, we decided to create our zonation/fringes by the 
distance to the sea or to land. So, we created three zones which 
we created: seaward, landward, and interior.  
 
This research has shown that the distribution of mangrove species 
zones is varied. In seaward zones, only RM can be found, in 
interior areas, a mix of RM and AV, and for landward, AV is  
 dominantly present with rarely showing RM. For seaward zones, 
RM thrives in areas that experience tidal flooding (high and low 
tide). This results in an area of high salinity and low oxygen. 
RA’s stilt roots help to anchor in soft sediments where it can 
withstand the currents (Matthijs et al., 1999). In contrast, AVs are 
mostly found in landward zones where tides rarely reach. Thus, 
creating areas where salinity is low, results in rich and stable 
oxygen, perfect for AV to thrive.   
 
3.2 Challenges of Mapping Mangrove Canopy Gaps using 
UAV-RGB 

There is still limited research on mapping mangrove canopy gaps 
by remote sensing approach and even less is being done that uses 
UAV. To our understanding and preliminary literature, research 
shows that there are, in total, only three studies that have 
researched on mapping canopy gaps in mangrove forests. Two of 
these were used airborne LiDAR done by  (Zhang, 2008; Zhang 
et al., 2008), and one research that used VHR (Very High 
Resolution) satellite images (Turner et al., 2012).  
 
Our challenge was that the UAV we used only used an RGB 
sensor, which could not explicitly detect gaps in mangroves 
unlike LiDAR or multispectral sensors. LiDAR provides vertical 
and horizontal information about a forest’s area in a high 
resolution (Gaulton & Malthus, 2010). The satellite images that 
was used in Taureau et al. research were WorldView-3 and -4 
images, consisting of a multispectral sensor VNIR (Visible Near-
Infrared, 400-1000 nm) range and 0.3 m panchromatic channel. 
Using the pan-sharpening algorithm to create a higher resolution 
image, the resulting images were 0.3 m (Taureau et al., 2019). It 
was challenging to detect canopy gaps because we only used a 
camera with an RGB sensor.  
  
Our UAV images had a GSD (Ground Sample Distance) of 2.8 
cm; when compared to detected gaps in the study area, it was not 
as large compared to other research that has been done (Lassalle 
& de Souza Filho, 2022). Our findings of the gap area (m2) by 
OBIA classification were 86.27 m2. To our understanding, no 
research has been done of mapping mangrove canopy gaps in 
Indonesia. The closest territory we found that studied canopy 
gaps in detail was done by Amir (2012) in Malaysia; the gap size 
ranged from 390 m2 to 5112 m2. 
 
In our case, for us to accurately detect canopy gaps, it had to be 
big enough, no other trees to cover the gap, and it had to have the 
right light conditions (solar azimuth angle). The size of the gap 
was important because small gaps that are detected in reality can 
be just height differences between tree species/individuals. Duke 
(2001), explains that in areas where mangroves are mixed  
 
Avicennia is more favored due to its fast growth from damaged 
stems and vegetative growth. Rhizophora trees also tend not to 
focus on vegetative growth. Our observation in the field also 
yields similar results, which is one reason why there are more 
canopy gaps near the landward fringe compared to the seaward 
fringe.  

3.3 Causes of Canopy Gaps 

We also studied the causes of gaps and their surrounding 
conditions. The cause of gaps varied, but out of 18 confirmed 
gaps, seven were due to old age, two were natural causes, six 
were due to lightning strikes, and three were unknown. The 
unknown causes we couldn’t identify them because we were not  
sure of the exact causes of the gaps. The 11 gaps we identified 
landward in the southern side were mainly caused by lightning 
strikes and old age. Since we couldn’t identify the exact causes 
of each gap, we suggest that the most likely cause is a lightning 
strike and old age. It is not apparent due to the tree that caused 
the gap creation mainly starting to decompose or already 
decomposed. Figure 7. shows some examples of the field of gap-
creation trees that were in the process of decomposing and 
already decomposed.  
 
The cause of gaps that we identified as lightning strikes was that 
the tree burnt and was still standing with most of its branches 
intact. Trees that have been struck by lightning are usually 
distinguished if they are scorched, stripped of their leaves, 
severed horizontally, sometimes a bark is stripped, and its crown 
may also be withered (Latham & Williams, 2001). We cannot 
mention the severity of the damage caused by a lightning strike 
on a tree explicitly due to the small amount of research done on 
factors that can affect where lightning strikes on trees.  

 

Figure 5.  From UAV imagery to OBIA classification with the 
corresponding field documentation. 
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Yanoviak et al. (2020) mention that more research needs to be 
done on how lighting strikes affect different forests of different 
ages, species/genus composition, structures, and the lightning's 
characteristics (e.g., intensity, duration, polarity). 
 
Sherman et al. (2000) researched identifying gaps through aerial 
photography and found that gaps caused by lightning were easily 
distinguishable due to the uniformity of the canopy structure. The 
research that was done in the Dominican Republic consisted of 
various classes which included Rhizophora, Languncularia, 
Rhizophora-Laguncularia mix, and Rhizophora-Laguncularia-
Avicennia mix. Sherman et al. explained for Avicennia dominated 
areas, it was hard to differentiate between gaps and the varied 
canopy heights of multiple species (Avicennia and Rhizophora).   
 
Our research faced the same problem: areas of RA were hard to 
differentiate between canopy heights and canopy gaps. It was still 
hard to differentiate for gaps that were old or considered gap 
growth stage due to the stands being similar to or the same height 
as the surrounding canopy heights. We can see many small gaps 
in the UAV imagery, but in reality, it is trees with small/medium 
height differences. We experienced the same hurdle in which 
there were areas with mixed species, so we were categorized into 
another class, Rhizophora-Avicennia (RA). Landward areas had 
a mix of RA and AV dominant classes. Only RM were found in 
interior areas, seaward fringes were dominated by RM and RA. 
 
In Figure 5 we can see that gaps are mostly found landward and 
interior fringe where the present species are a mix of RA and AV. 
The gaps where the trees were still standing or either fallen down, 
were very tall trees which in most likely were caused burnt due 
to lightning strikes.  
 
3.4 Accuracy Assessment 

To test and validate our OBIA classification of our three classes 
which are RM, AV, and canopy gaps; we used a error matrix to 
calculate the user accuracy, producer accuracy, and overall 
accuracy. The overall accuracy assessment shows that the model 
identified the three classes well, but producer and user accuracy 
results suggest that some classes were better than others. 
 
RM had a high classification accuracy with producer’s accuracy 
of 88.89% and a users accuracy of 80%. The results explains that 
most segmented objects of the OBIA classification was correctly 
identified. AV in the other had a producers accuracy of 83.33% 
and a user’s accuracy of 76.92%. The lower accuracy may be due 
to the similar spectral resolution and also may be in fact due to 

the areas where mixed species in prevalent. Canopy gaps were 
the most challenging due to the classify, this is reflected on the 
producer’s accuracy of 70.00% and users accuracy of 87.5%. The 
high omission (30%) shows that the canopy gaps indicates that 
are misclassified either AV or RM.  

 
Class RM AV Gap P. Sum P. Accuracy (%) 
RM 8 0 1 9 88.88 
AV. 2 10 0 12 83.33 
Gap 0 3 7 10 70 

U. Sum 10 13 8   
U. Accuracy (%) 80 76.92 87.5   

Overall Accuracy (%) 80.65 
Table 2. Accuracy assessment results 

 
There are a few factors that must be taken that caused 
misclassification. Spectral similarity which must be taken 
because of the segmentation algorithm where one of its 
parameters that it priorities is spectral signature. Mixed classes in 
the field as mentioned in this research shows in the field some 
canopy are identified AV but in reality its RM due to the 
overlapping of canopies. To increase the validation of this 
accuracy assessment, a required step should be to increase the 
ground truthing points. 
 
3.5 Proposed Formula for Calculating Accurate Mangrove 
Area 

After segmentation, the OBIA classification resulted in three 
classes: RM, AV, and canopy gaps. These three classes, when 
dissolved, each resulted in an area of AV 12.56 ha, RM 5.486 ha, 
and Canopy Gap 0.23 ha. Conventional methods for calculating 
mangrove area is to calculate the total area of the mangrove area 
without considering the canopy gaps. The formula is written as 
below (1): 
 
               𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑜𝑜𝑜𝑜 𝑎𝑎 𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑜𝑜𝑚𝑚𝑎𝑎 = 𝐴𝐴𝑀𝑀𝑀𝑀1 + 𝐴𝐴𝑀𝑀𝑀𝑀2 + ⋯ ,𝐴𝐴𝑚𝑚,            (1) 
 
Where  AMS1 = total area of mangrove species 1 
 AMS2 = total area of mangrove species 2 
 An    = total area of other mangrove species 
 
Using the standard method (formula 1) to calculate the area of a 
mangrove, results in an area of 18.27 ha. 
 

Figure 6. Various causes of canopy gaps that is be seen. Only in picture (a) can we determine precisely the causes which is fallen tree/s. 
(a) fallen tree, (b) lightning strike, (c, d) one very large RM tree that has created a large gap, the colour and medium-large cracks may 
indicate lightning strike. 
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Our proposed formula is a simple equation that takes account of 
the canopy gap area: 
 
                  𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑜𝑜𝑜𝑜 𝑎𝑎 𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑜𝑜𝑚𝑚𝑎𝑎 = 𝐴𝐴2 − 𝐴𝐴1,               (2) 

 
where  A2 = total area of the mangrove with canopy gaps 
 A1 = total area of canopy gaps 
 
To our understanding, no research has a more detailed and 
accurate way to calculate the mangrove area. Using the second 
formula we proposed, the more accurate area of mangroves is 
17.81 ha. There is a difference of 0.46 ha. 
 
Our findings are still the very bare minimum, from the tools we 
have and methods we used to gather the data. More specifically, 
there should be more research on how to identify canopy gaps 
more accurately and its area. In our research, we only used one 
segmentation algorithm, which is multiresolution segmentation. 
With the availability and more polished algorithms based on deep 
learning, this is recommended for further research on canopy 
gaps; one example done is by (Lassalle & de Souza Filho, 2022). 
This algorithm that we used can be considered old, but with our 
findings we found that it still can be used. 
 
For the tools we used, there should be more iterations on the 
UAV acquisition, such as the flight mission parameters and the 
flight time. Such examples that can be done is to compare the 
results of the same flight mission parameters but different flight 
times; this may shed new light on the ideal parameters for UAV 
imagery acquisition for canopy gaps. 
 
Canopy gaps are still not a well researched phenomenon. Even 
though (Amir, 2012; Duke, 2001) research has shed new light on 
canopy gaps, there is still no new research on identifying the 
cause of canopy gaps, how they affect the surrounding trees, and 
how they also affect other biotas and fauna in the mangrove area. 
We hope with this research, more people will research mangroves 
in tropical and sub-tropical areas, as they are two completely 
different environments. 
 

4. Conclusion 

There are still many flaws in our methodologies and many 
shortcomings, such as locating gaps, identifying the cause of the 
gaps, not calculating the actual area of the canopy gap in the field, 
using different sensors to help locate gaps, and many more. With 
the new proposed formula, there should be more research to 
accurately calculate an area of canopy gap and newer methods to 
calculate it more accurately. Hopefully, these findings can open 
a new perspective on calculating a mangrove area, especially in 
areas prone to canopy gaps that are anthropogenic or natural 
causes. Calculating an accurate area of mangroves and 
calculating canopy gaps is important for rehabilitation and 
monitoring purposes. 
   
Another note is that in our literature research, most, if not all, 
research that has been done on mangrove canopy gaps is in areas 
where mostly single species thrive, not mixed species. This 
creates a challenge in our study areas as it is also harder to map 
the accurate species distribution due to mixed species 
intertwining and overlapping each other. One of our key findings 
was that using a UAV with an RGB sensor can detect different  
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