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Abstract 

Understanding complex causal interactions between local, continental, and global drivers remains a significant challenge in wildfire 

prediction systems. This study implements a causal inference framework combining the Peter-Clark momentary conditional 

independence (PCMCI) algorithm with 𝑑𝑜-calculus interventions to analyse land-atmosphere feedback mechanisms influencing 

wildfire dynamics across South Asia (India, Pakistan, Myanmar, and adjacent regions). Time-series causal graphs derived from satellite 

and reanalysis data identified 500-hPa geopotential height anomalies (∆Z500) as the primary driver of surface aridity and wildfire 

incidence. Extreme scenario simulations via 𝑑𝑜-operator perturbations revealed that artificially enhancing ∆Z500 to the 100th percentile, 

representing intensified upper-tropospheric ridging, produced the most severe mean burned area outcomes. Under these conditions, 

mean extreme burned area reached ~4.2 log ha (~15,000 ha), exceeding impacts from other perturbed variables. The integration of 

PCMCI-derived causal networks with counterfactual analysis provides a novel methodology for disentangling multiscale wildfire 

drivers, offering critical insights into future climate-driven fire risks through explicit representation of teleconnection mechanisms. 

1. Introduction

Wildfires pose serious risks to human safety, economic stability, 

and ecosystems, with climate change intensifying their impact. 

Building on prior research, this study investigates the causal 

structure between Earth systems and wildfires using data-driven 

modeling. It applies the Peter–Clark algorithm with momentary 

conditional independence (PCMCI) to uncover causal links in 

time series. Unlike previous studies focused on fire presence 

(Prapas et al., 2023), this work simulates how changes in input 

variables affect burned area size, providing valuable insights into 

the magnitude of direct and indirect interactions. 

Recent developments in causal discovery methods, such as the 

PCMCI, have made it possible to detect lagged causal links 

within multivariate time series, thereby improving the 

interpretability of wildfire forecasting models (Runge et al., 

2019). Incorporating causal reasoning into wildfire modelling 

has proven valuable, not only for enhancing predictive accuracy 

but also for shedding light on the mechanisms driving fire 

regimes amid evolving climate conditions. Utilizing causal 

inference techniques allows researchers to explore hypothetical 

scenarios and evaluate the effects of interventions like vegetation 

management or fire suppression, supporting the creation of data-

informed strategies for wildfire risk reduction (Carriger et al., 

2021). 

The rationale for employing PCMCI and 𝑑𝑜-calculus in this 

wildfire modelling study stems from their capacity to reveal true 

causal connections, moving beyond simple statistical 

associations. PCMCI is particularly adept at reconstructing 

causal networks in complex time series datasets, as it reduces the 

risk of false positives caused by autocorrelation and confounding 

factors (Runge et al., 2019). In parallel, 𝑑𝑜-calculus, based on 

Pearl’s framework for causal inference, facilitates the estimation 

of causal effects and supports counterfactual analysis under 
various interventions (Pearl, 2009a), which is essential for 
understanding how environmental drivers shape wildfire activity. 
Unlike traditional deep learning (DL) models, which often act as 
opaque “black boxes” with limited transparency (Reichstein et 
al., 2019), these causal techniques generate interpretable causal 
graphs and offer deeper insights into the processes influencing 
wildfire behaviour. This interpretability enhances their 
robustness and adaptability, especially in the context of non-
stationary climate patterns where DL models may falter due to 
their dependence on historical correlations rather than underlying 
causal dynamics (Rudin, 2019). Furthermore, instead of merely 
predicting fire occurrence as in previous work by (Zhao et al., 
2024), this study investigates how modifications to input 
variables impact the overall extent of burned areas. 

2. Study Area

This research utilizes a comprehensive collection of global 
datasets on wildfire drivers and burned area, integrating 
information from three sources covering the period from 2011 to 
2020. All data are harmonized onto a uniform spatial and 
temporal grid (0.25° × 0.25°, with eight-day intervals). The focus 
area for this investigation is South Asia, specifically within the 
coordinates 5°–38°N and 59°–99°E. The choice of this region is 
driven by its recent history of intense wildfire activity. Notably, 
the occurrence of extreme wildfire events increased by a factor 
of 2.2 between 2003 and 2023, with six of the most significant 
episodes in India taking place over the last seven years 
(Cunningham et al., 2024). In addition, Nepal faced an 
extraordinary wildfire season in spring 2021, experiencing 
active fires at a frequency ten times above the long-term average 
observed from 2002 to 2020. This surge in fire activity followed
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an extended period of rainfall shortage and severe drought that 

began after the monsoon season in October 2020 (Pokharel et al., 

2023). 

The study region is characterized by pronounced climatic and 

ecological diversity, featuring complex topography and a rich 

assortment of vegetation types. Climate zones range from the 

humid tropics of southern India and Myanmar, to the arid and 

semi-arid landscapes of Pakistan and western India, and the 

cooler, temperate areas of northern India (Verma, 2021). The 

broad spectrum of vegetation, spanning tropical rainforests, 

deciduous forests, grasslands, and desert ecosystems, reflects the 

region’s varied environmental conditions, with each vegetation 

type distributed according to local climate and terrain (Champion 

and Seth, 1968). 

3. Dataset 

This study uses a compilation of global data on fire drivers and 

burned areas from three separate datasets spanning the years 

2011 to 2020, all aligned on a consistent spatio-temporal grid 

(0.25° × 0.25° with eight-day intervals). Anomaly values, 

denoted with ∆ in this study, are calculated to remove the 

seasonality (Irawan et al., 2024). Local scale (𝑋𝑙) inputs are 
obtained from SeasFire Cube (Karasante et al., 2023), including 

total precipitation anomalies (∆TP), vapor pressure deficit 

anomalies (∆VPD), and normalized difference vegetation index 

anomalies (∆NDVI). Soil moisture anomalies (∆SM), are taken 

from the Soil Moisture and Ocean Salinity Level 3 (SMOS L3) 

products. At the continental scale (𝑋𝑐), this study selects two 
tropospheric variables from ERA5 climate reanalysis (Hersbach 

et al., 2020): 500-hPa geopotential height anomalies (∆𝑍500), and 
the 300-hPa meridional wind component (𝑣300). Additionally, 
North Atlantic Oscillation (NAO) and El Niño-Southern 

Oscillation (ENSO) data from SeasFire Cube are used to explain 

global climate indices (𝑋𝑔). The target variable is a value of 
global burned area (BA) from SeasFire Cube. 

4. Methodology 

The Peter–Clark (PC) algorithm (Spirtes and Glymour, 1991), a 

widely used constraint-based method, is applied to construct 

directed acyclic graphs (DAGs) by identifying causal 

relationships through conditional independence tests. The 

process follows these steps: 

1) Initialize: Begin with a fully connected undirected graph

representing potential causal relationships. 

2) Conditional Independence Testing: Test each variable pair

𝑋𝑡
𝑖, 𝑋𝑡

𝑗
 given a conditioning set Z. If they are conditionally

independent, remove the edge. 

3) Iterate: Increase the size of Z and repeat until all variable

pairs have been tested. 

4) Edge Orientation: Identify v-structures (colliders) and

apply rules to direct edges while preventing cycles. 

The PCMCI framework relies on conditional independence tests 

of the form CI(𝑋𝑡−𝜏
𝑖 , 𝑋𝑡

𝑗
, 𝑆) to determine whether (𝑋𝑡−𝜏

𝑖 , ⫫ 𝑋𝑡
𝑗

∣
S), given a specified conditioning set 𝑆. The TIGRAMITE 

software package (Runge, 2017) provides multiple options for 

conducting these independence tests. To improve recall, the 

PCMCI method (Runge et al., 2019) integrates momentary 

conditional independence (MCI) tests, capturing time-delayed 

causal effects where a cause at 𝑡 − 𝜏 influence effects at 𝑡. MCI 

systematically evaluates all variable pairs 𝑋𝑡
𝑖 and 𝑋𝑡

𝑗
, and

computes the conditional independence CI(𝑋𝑡−𝜏
𝑖 , 𝑋𝑡

𝑗
∣ 𝑆), where

the conditioning set 𝑆 is composed of the union of the parent sets 

𝑃(𝑋𝑡
𝑗
) and 𝑃(𝑋𝑡−𝜏

𝑖 ) , as estimated during the PC phase. The set

𝑃(𝑋𝑡−𝜏
𝑖 ) s constructed by shifting the parent variables of 𝑋𝑖

backward by 𝜏 timestep. In cases where 𝑋𝑡−𝜏
𝑖  𝜖 𝑃(𝑋𝑡

𝑗
), it is

excluded from the conditioning set to avoid conditioning on the 

variable under test. Link assumptions are used to determine the 

orientation of certain edges, with the ordering based on the 

climate scale, progressing from the global to the local scale. 

Based on the spatial scale of climate change and its impacts 

(Wilbanks and Kates, 1999), the influence of global emissions 

and atmospheric driving forces cascades downward to affect 

local-scale ecosystems. Therefore, in cases of conflicting 

orientations, this study reverses the direction to ensure the correct 

orientation. The conditional independence test applied in this 

study uses partial correlations (ParCorr). A maximum time delay 

(𝜏max = 10, ~3 months) is considered as proposed in the previous

result (Goswami et al., 2022), and a significance level 𝛼 = 0.05 

is used to threshold the estimated matrix of p-values and 

construct the causal graph. 

In the context of time series analysis, this study assume that 

variables follow a temporal order and satisfy the assumptions of 

Fig. 1. Workflow of the proposed causal model. The input time series data include local, continental, oceanic, and climatic index 

variables, each characterized by different temporal and spatial scales. Interventions can be performed through the “Query Models” 

on the causal model. Adapted from Cooper et al., (2015). 

.
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the causal Markov condition (LMC), faithfulness assumption 

(TPa), causal sufficiency, and causal stationarity, while also 

excluding any contemporaneous causal relationships (Runge, 

2018). The validation of directed acyclic graphs (DAGs) in 

causal inference fundamentally depends on two key assumptions: 

the LMC and the TPa. The LMC ensures that a node is 

conditionally independent of its non-descendants given its 

parents, while the TPa states that 𝑑-separated variables in the 

graph should be conditionally independent in the data. Violations 

of these assumptions indicate potential errors in the DAG. A 

permutation-based framework is used to test these assumptions 

by comparing the given DAG against randomly permuted ones, 

establishing a statistical baseline (Pearl, 2009b). Additionally, 

the random common cause approach introduces covariates to 

assess the DAG's stability, ensuring that causal estimates remain 

robust. 

Given an outcome 𝑦, its value depends on one or more specific 

features. The 𝑑𝑜(∙) operator calculates the probability that 𝑌 = 𝑦 

conditioned to the input variable 𝑋𝑡 being held constant at 𝑋𝑡 =
𝑥𝑡 (Pearl, 1994). This 𝑑𝑜-calculus allows for the intentional

manipulation of the selected variable by fixing it at a specific 

state or value, thereby excluding all other possible states and their 

associated data. This is typically expressed as 

𝑃(𝑦|𝑑𝑜(𝑋𝑡 = 𝑥𝑡)). Since PCMCI is designed to uncover causal

relationships across different time lags, an autoencoder approach 

was used to perform temporal embedding, compressing 

information from various time lags into a one-dimensional space. 

The encoder layer reduces the multi-time-lagged input of each 

variable into a compact latent representation. The decoder 

subsequently restores the input by transforming this latent space 

back into the original feature dimensions. The data was then 

mapped back onto the original latitude and longitude grid to 

calculate the intervention. The intervention scenario is 

implemented with the input variable bootstrapped and set to the 

25th, 50th, 75th, and 100th percentiles to simulate the impact of the 

input variables, ranging from minimum to worst-case conditions 

(represented by the 100th percentile), on the size of the burned 

area. The method proposed in this study is summarized in 

Figure 1. 

5. Result 

Causal networks were generated using the PCMCI algorithm 

applied to 2011–2020 datasets to establish directional links 

between input and output variables, integrating both spatial and 

temporal dimensions. As demonstrated in Fig. 2, PCMCI 

effectively identifies delayed teleconnections between the El 

Niño–Southern Oscillation (ENSO, quantified via SOI indices) 

and upper-atmospheric circulation anomalies (∆Z500 and v300) 

over South Asia, with response lags of 6 and 10 months, 

respectively. These relationships align with previously validated 

atmospheric dynamics (An and Goswami, 2022). The analysis 

reveals a robust inverse relationship between SOI values and 

aridity indicators (∆VPD and ∆SKT), where negative SOI phases 

(El Niño conditions) correlate with heightened surface dryness. 

The PCMCI analysis further reveals that the North Atlantic 

Oscillation (NAO) exerts a positive causal influence on 

precipitation patterns within the study region. This aligns with 

prior findings demonstrating NAO’s correlation with enhanced 

winter rainfall in northwestern India (Hunt and Zaz, 2023). The 

results also indicate that positive NAO phases amplify the upper-

level pressure gradient (∆Z500) over South Asia, strengthening the 

subtropical jet stream’s intensity. Additionally, PCMCI identifies 

a marked increase in vapor pressure deficit (∆VPD), driven by 

warming-induced atmospheric desiccation linked to soil moisture 

deficits, as a key factor strongly associated with expanded burned 

Fig. 2. Causal network visualization for South Asia. The color of each connecting line (MCI) represents the strength and type of 

causal link: red lines indicate positive relationships, while blue lines signify negative ones. Numbers on the arrows specify the time 

lag between variables, given in eight-day increments, and the arrowheads show the direction of causality. Node colors (auto-MCI) 

illustrate the degree of autocorrelation present in each variable’s time series. 
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areas, corroborating earlier mechanistic analyses (Williams et al., 

2019). 

The methodology was implemented within the Structural Causal 

Model (SCM) framework, leveraging causal networks identified 

through the PCMCI algorithm. SCM formalizes causal 

relationships by structuring variables as nodes in a directed 

acyclic graph (DAG), with edges representing direct causal 

dependencies. Each variable is expressed through structural 

equations that incorporate only its direct causal antecedents 

(parent nodes), ensuring alignment with the underlying data-

generating mechanisms. By iteratively estimating variables 

through these equations, the framework propagates causal effects 

across the system, disentangling direct, indirect, and confounded 

influences on burned area dynamics. Interventional calculus 

techniques were then applied to quantify variable-specific causal 

impacts, enabling predictive counterfactual analysis of wildfire 

behavior under hypothetical conditions. 

To optimize causal representation, three regression approaches 

were tested: gradient-boosted decision trees, polynomial 

regression with feature transformation, and standard linear 

regression. Gradient-boosted trees achieved the lowest mean 

squared error (MSE = 0.14 log hectares), outperforming 

polynomial regression (MSE = 0.24) and linear regression (MSE 

= 0.29). The strong performance of the gradient-boosted 

approach highlights its capacity to model complex nonlinear 

causal interactions in wildfire spread. A coefficient of 

determination (R² = 0.54) indicates the model explains moderate 

variance in burned area, suggesting additional refinements could 

improve explanatory power. 

To assess the robustness of causal assumptions, the original 

causal network underwent 50 permutations to produce 

randomized directed acyclic graphs (DAGs). For each 

randomized version, violation rates for the Local Markov 

Condition (LMC) and Time-series Parental (TPa) assumptions 

were quantified. Fig. 3 illustrates the resulting violation 

distributions across permutations, with LMC deviations shown in 

blue and TPa deviations in orange. Vertical dashed lines depict 

the baseline violation rates observed in the non-permuted DAG, 

providing a reference for evaluating statistical significance. 

As illustrated in Fig. 3, a  p-value of 0.18 for the LMC indicates 

that the observed fraction of violations of this condition in the 

given DAG is 82% lower than the lowest value observed in any 

of the 50 randomly permuted DAGs. This suggests that the 

structure of the original DAG is highly consistent with the LMC, 

and that the dependencies modelled by the graph align closely 

with the true conditional independence relations in the data. 

Similarly, the TPa, which posits that all conditional 

independencies present in the data should also be reflected in the 

structure of the DAG, yields a p-value ≤ 0.0001. This means that 

the given DAG also has significantly fewer violations of the 

faithfulness assumption than the randomly permuted DAGs, 

further supporting the idea that the original DAG is a valid 

representation of the causal relationships in the data (Bozcuk and 

Alemdar, 2024). 

The causal model integrates probabilistic and interventional 

interpretations, employing Pearl’s 𝑑𝑜-operator to simulate 

interventions by conditioning on parent variables within the 

causal network. For example, interventions were applied to 

continental-scale drivers (∆Z500, 𝑣300) and local factors (∆VPD,

∆SM) to quantify their relative impacts on burned area extremes. 

Input variables were systematically adjusted to percentile 

thresholds (25th, 50th, 75th, 100th) to model the effects of 

conditions ranging from baseline to worst-case scenarios. 

As shown in the heatmap in Fig. 4, the intervention analysis 

reveals distinct causal pathways: 

• Soil moisture (∆SM): At the 100th percentile (extremely wet

conditions), burned area decreases markedly due to

suppressed flammability.

• Geopotential height anomalies (∆Z500): Maximum values

(intense upper-level ridges) drive the most pronounced surge

in extreme mean burned area magnitude, around log 5 ha

(~15,000 ha).

• Vapor pressure deficit (∆VPD): Elevated ∆VPD increases

fire activity at the 100th percentile, though less dramatically

than ∆Z500.

• Meridional wind (𝑣300): High 𝑣300 values correlate with

northward airflow from the Indian Ocean, enhancing

moisture transport and rainfall, thereby reducing fire risk

across the study region.

The causal network (Fig. 2) and intervention results collectively 

identify ∆Z500 as the dominant driver of surface desiccation and 

extreme fire spread. Mechanistically, heightened ∆Z500 fosters 

persistent high-pressure systems that trap heat, amplifying 

heatwave intensity and fuel aridity (Irawan et al., 2024). These 

findings emphasize the need for wildfire prediction systems that 

holistically account for multiscale interactions between global 

teleconnections, regional atmospheric dynamics, and local 

environmental conditions. 

6. Conclusion

This study presents a causal discovery framework combining 

PCMCI with structural causal modelling to analyse wildfire 

Fig. 3. Evaluation of directed acyclic graph (DAG). 

Fig. 4. Heatmap analysis of the logarithmic values of the 

potential extreme mean burned area after applying 

bootstrapping and intervening on the input variables set at the 

25th, 50th, 75th, and 100th percentiles, simulating the influence of 

these variables across a range from minimal to worst-case 

scenarios (with the latter represented by the 100th percentile).  
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drivers using Earth observation data. The approach generates 

hierarchical causal networks that separate direct and indirect fire 

influences, improving transparency and reliability compared to 

purely statistical models. By embedding physical mechanisms 

into the causal graph, the methodology captures how upper-

tropospheric variables, particularly 500-hPa geopotential height 

anomalies (∆Z500) and 300-hPa meridional wind (𝑣300), directly 
and indirectly modulate burned area across South Asia. Indirect 

effects propagate through intermediate surface variables, 

including skin temperature, vapor pressure deficit, precipitation, 

and soil moisture. Critically, results emphasize the multifactorial 

nature of wildfire causation, rejecting single-driver explanations. 

Validation metrics (LMC/TPa 𝑝-values) confirm the causal 

network’s statistical robustness against randomized 

permutations, demonstrating its capacity to resolve conditional 

dependencies. The framework advances process-based wildfire 

modeling by linking macroscale atmospheric dynamics to local 

fire behaviour through explicit causal pathways. Future work will 

focus on merging adaptive causal discovery with deep learning 

architectures to develop predictive models that maintain physical 

consistency while leveraging data-driven pattern recognition. 
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