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Abstract

Global Navigation Satellite System (GNSS) positioning in urban environments remains challenging due to signal obstructions and
reflections caused by tall buildings, trees, and overpasses. Non-Line-of-Sight (NLOS) propagation leads to significant positioning
errors, making accurate classification of Line-of-Sight (LOS) and NLOS signals essential for robust GNSS performance. Machine
learning (ML) techniques have been widely explored for NLOS/LOS classification, yet their effectiveness is constrained by data
imbalance, as acquiring labeled NLOS data is more challenging than LOS data. This imbalance reduces model generalization, lead-
ing to biased predictions. To address this challenge, we propose an Attention-GAN framework for synthetic GNSS data generation,
coupled with a transformer-based encoder to enhance feature extraction. The proposed Attention-GAN incorporates Multi-Head
Self-Attention (MHA) in both its generator and discriminator to improve the quality of generated data. Using the UrbanNav dataset,
we validate our approach by training various ML classifiers on augmented data and comparing their performance against conven-
tional methods. Experimental results demonstrate that our approach effectively mitigates data imbalance, improves classification
accuracy, and enhances GNSS positioning robustness in complex urban environments.

1. Introduction

The Global Navigation Satellite System (GNSS) plays a signi-
ficant role in positioning and navigation, providing users with
global, all-weather and continuous services. However, it is
still challenging to achieve high accuracy in urban canyons,
where GNSS signals can be inevitably blocked and reflected
by tall buildings, trees and overpasses. NLOS propagation oc-
curs when GNSS signals reflect off surfaces before reaching the
receiver. The reflected signal takes longer to reach the receiver,
leading to errors in distance calculations between the receiver
and satellites. Consequently, this results in inaccurate position-
ing. When the receiver receives both LOS and indirect signals
simultaneously, this phenomenon is referred to as Multipath.
The receiver is able to deal with part of the multipath effect due
to the correlator design, but it does not mitigate the effect of
NLOS. In other words, NLOS has a greater impact on the ac-
curacy of positioning in comparison to multipath (Hsu, 2018).
Therefore, it is essential to accurately identify and account for
NLOS data during the data processing stage to attain robust and
accurate positioning in complicated environments.

Extensive research has been undertaken in the domain of
NLOS/LOS classification, encompassing various approaches.
These can be broadly categorized into antenna-related ad-
vancements, advanced receiver algorithms, sensor fusion tech-
niques, 3D building modeling, and machine learning method-
ologies (Hsu, 2017). Recently, machine learning (ML) meth-
ods have gained increasing attention for their ability to pro-
cess complex GNSS data. Techniques such as Support Vec-
tor Machines (SVM) (Jiao et al., 2017), Random Forests (RF)
(Zhang and Hsu, 2018), and Decision Trees (DT) (Linty et al.,
2019) have been explored for GNSS applications. Addition-
ally, (Xu et al., 2024) employed several ML methods as bench-
marks for NLOS/LOS classification. However, addressing the
NLOS/LOS identification challenge requires a sufficiently large
and well-balanced dataset of labeled NLOS and LOS observa-
tions. Moreover, labeling NLOS data is challenging because

signal transmission characteristics are not directly observable.
For the UrbanNav dataset, the Azimuth and Elevation angles
of satellites combined with 3D models are used to identify the
signal transmission types (Hsu et al., 2023) (Hsu et al., 2021).
However, it is time consuming and difficult to acquire large
amounts of labeled NLOS data. As a result, the amount of
labeled NLOS data is much less than LOS data. The data con-
straint issue can lead to bad generalization performance of ma-
chine learning models (Sun et al., 2009) (Ganganwar, 2012),
as they may struggle to learn robust features for NLOS classi-
fication. This class imbalance can cause models to be biased
toward LOS predictions, reducing their reliability in urban en-
vironments where NLOS conditions are prevalent. (Zhou et al.,
2024) proposed a Hopular based model in NLOS/LOS classi-
fication, achieving high classification and positioning accuracy
using relatively small to medium-sized datasets but still faced
imbalanced data issues. Some teams used generative models
to deal with the imbalanced dataset in other fields (Song et al.,
2018) (Tran et al., 2022), which shows the potential of generat-
ive model in the GNSS domain.

Generative models offer promising solutions for image style
transfer, text generation, data simulation and augmentation,
which can be utilized to mitigate the challenges associated with
data constraints. Compared to other models, generative models
have the unique capability to generate realistic data samples, a
feature that most traditional models lack. This ability allows
them to overcome data scarcity by producing high-quality syn-
thetic data that closely mimics real-world observations. Gener-
ative models can be categorized into two types: explicit density
estimation and implicit estimation (Creswell et al., 2018). Ex-
plicit density estimation requires defining and solving the distri-
bution of the data, while implicit estimation involves sampling
from the data without explicitly defining it. For sampling,
they can be categorized based on whether they employ Markov
chains. However, Markov chains pose challenges in achiev-
ing convergence, which means the model need to run for suf-
ficient time to converge (Creswell et al., 2018). Popular gen-
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erative models include: Diffusion Models (Ho et al., 2020)
which iteratively refine noisy inputs into structured outputs,
Autoencoders (particularly Variational Autoencoders) (Gm et
al., 2020) which encode data into latent representations and re-
construct or generate new samples, and Generative Adversarial
Networks (GANs) (Goodfellow et al., 2014) which utilize ad-
versarial training between a generator and a discriminator to
produce realistic samples. Given the complexity of GNSS data,
the need for large datasets, and the difficulty of explicitly defin-
ing data distributions, an implicit generative model that does not
rely on Markov assumptions is preferred. GANs exhibit these
characteristics, making them a suitable choice for addressing
data imbalance in GNSS positioning applications.

In this research, a novel Attention-GAN model with a
transformer-based encoder is proposed for data augmentation.
The attention mechanism (Vaswani et al., 2023) is introduced
to enhance feature representation by focusing on crucial spatial
and temporal dependencies in GNSS signals, thereby improv-
ing the quality of generated samples and reducing noise. The
implementation utilizes the UrbanNav dataset from the Hong
Kong Polytechnic University on Kaggle, which contains GNSS
observation features along with corresponding NLOS/LOS la-
bels. After addressing the data imbalance, several baseline ma-
chine learning classification models, including including SVM,
RF, Logistic Regression (LR) and Gradient Boosting (GB), will
be employed to evaluate the effectiveness of the proposed ap-
proach compared to benchmark methods.

2. Methodology

The purpose of the Attention-GAN is to simulate and generate
GNSS data to balance the training dataset. Figure 1 shows the
work flow of the Attention-GAN. Randomly generated noise
following a normal Gaussian distribution is first fed into the
generator to produce simulated data. The generated data is then
integrated with the scaled real training data to form the encoded
augmented dataset for training.

Figure 1. Attention-GAN Workflow.

In this section, the Attention-GAN training process along with
the structure of the GAN and the encoder is first introduced.
This is followed by the validation of the model including the
steps involved in generating synthetic NLOS samples and in-
tegrating them into the dataset and how the combined dataset is
used to train various machine learning models. The effective-
ness of the proposed approach is then assessed using multiple
evaluation metrics, ensuring a comprehensive analysis of its im-
pact on classification performance.

2.1 Attention-GAN Training

The training data is sourced from the UrbanNav dataset, which
is available at . This dataset consists of two Excel files: one
containing 74,086 entries, which is used for training, and an-
other containing 36,189 entries which is used for validation.

Each entry represents an observation from a specific satellite.
Each observation includes 16 features, but for this experiment,
six key features were selected: elevation angle, azimuth angle,
carrier-to-noise ratio (C/N0), pseudorange residual, root of
sum of square error (RSSE), and standard deviation of pseu-
dorange error. The training dataset is used to train both the
encoder and the GAN. Meanwhile, a portion of the test dataset
is selected and modified to create an imbalanced NLOS/LOS
ratio, which is then used to validate the proposed method’s ef-
fectiveness in handling class imbalance.

2.1.1 Transformer-Based Encoder Training: The
transformer-based encoder leverages a multi-head self-
attention mechanism, a feedforward network, and layer
normalization with residual connections to effectively capture
complex dependencies within the input data.

The multi-head self-attention mechanism is a key component
that enhances the model’s ability to identify intricate relation-
ships between different features within the input data. Instead
of computing a single attention score for each input element,
this mechanism employs multiple attention heads, each learn-
ing to focus on different aspects of the input. This allows the
model to capture diverse dependencies across features, improv-
ing its ability to extract meaningful representations. In detail,
each input feature vector is linearly transformed into three dif-
ferent vectors: Query (Q), Key (K) and Value (V). If we have n
inputs with dk dimensions, the Q, K and V are all in the shape
of n ∗ dk. The results are calculated as follows:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V, (1)

where dk = the dimensionality of the key vectors

The scaling by
√
dk prevents overly large dot-product values

which can lead to unstable gradients. Instead of using a single
set of Q, K, and V, the model applies multiple attention heads
in parallel, each with independent learned weights.

The outputs from all attention heads are concatenated and pro-
jected back into the original feature space with the feedforward
network, allowing the model to integrate multiple perspectives
on feature interactions. The attention mechanism plays a cru-
cial role in identifying relationships between different elements
of the input, enabling the model to focus on the most relevant
features while preserving contextual information. In the case
of GNSS data, it helps the encoder emphasize key attributes
such as signal strength variations, geometric relationships (e.g.,
azimuth and elevation angles), and error characteristics, ensur-
ing that significant patterns are effectively captured. By lever-
aging multi-head self-attention along with residual connections
and normalization, the transformer-based encoder enhances its
ability to generalize across different GNSS observations, mak-
ing it well-suited for improving classification performance in
NLOS/LOS scenarios.

The procedure of the encoder’s training is shown in Figure
2. The sixteen features are firstly scaled by StandardScaler.
This ensures that all features contribute equally to the model
and prevents any one feature from dominating due to differing
scales. The StandardScaler is a commonly used data normaliz-
ation technique that transforms each feature to have a mean of
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0 and a standard deviation of 1. It achieves this by applying the
following transformation to each feature:

Xscaled =
X − µ

σ
, (2)

where X = original feature value
µ= mean of the feature across all samples
σ = the standard deviation of the feature

After scaling, the processed data is passed into a transformer
encoder-based network which contains multi-head attention
mechanism for feature extraction. Following this, a fully con-
nected linear layer is applied to map the extracted representa-
tions back to the original feature space, reconstructing the input
data. To evaluate the effectiveness of the encoder, the recon-
structed data is compared to the original standardized features
using Mean Squared Error (MSE) loss. This loss function quan-
tifies how well the encoder preserves essential feature informa-
tion. Lower MSE values indicate that the encoder successfully
retains the key characteristics of the GNSS features. Once the
encoder is trained and optimized, it is used to encode the entire
scaled training dataset to train the machine learning models for
NLOS/LOS classification.

Figure 2. Encoder Training Procedure.

2.1.2 GAN Training The GAN contains two parts: the
generator with multi-head attention (MHA) and discriminator
with MHA. The generator is designed to transform an input
noise vector into a meaningful high-dimensional representa-
tion, which mimics the data distribution. The noise vectors are
sampled from a standard normal distribution to ensure a diverse
range of initial latent vectors.

The generator architecture transforms a random noise vector,
sampled from a standard normal distribution into synthesized
data through a series of structured operations. Initially, the
noise input is processed through three fully connected layers
with progressively increasing dimensionality, each followed by
a Rectified Linear Unit (ReLU) activation function to introduce
non-linearity and facilitate complex feature extraction. The
output is then reshaped and passed through a multi-head self-
attention layer, which captures long-range dependencies in the
feature space by computing self-attention scores across mul-
tiple attention heads. This attention mechanism, configured
with an embedding dimension of 256 and four attention heads,
enhances feature representation by preserving contextual rela-
tionships. Subsequently, the attended features are processed
through a fully connected layer to generate the synthesized
data. To ensure numerical stability and improve training dy-
namics, the generated output is standardized using a Standard-
Scaler, which normalizes feature distributions and facilitates
model convergence (Ahsan et al., 2021).

The discriminator acts as a binary classifier, distinguishing
between real and generated samples. The input data first un-
dergoes three fully connected layers with decreasing dimen-
sions, each followed by a LeakyReLU activation function with
a negative slope of 0.2. This allows for efficient gradient flow

while mitigating issues related to vanishing gradients (Xu et al.,
2020). Then the extracted features are passed through a multi-
head self-attention layer with an embedding dimension of 64
and four attention heads. This mechanism enables the discrim-
inator to focus on the most critical features, improving its ability
to detect generated samples. The final layer consists of a fully
connected layer with a sigmoid activation function, producing
a probability score that indicates the likelihood of the input be-
longing to the real dataset.

Figure 3. Attention-GAN Training Procedure.

The training procedure is shown in Figure 3. To train the
Attention-GAN, the raw features are scaled by StandardScaler
first. The scaled data is then used to train the GAN, consist-
ing of the generator and the discriminator. The discriminator
is optimized using real encoded samples and synthetic samples
generated by the generator, with a loss function that encour-
ages the discriminator to assign higher scores to real data and
lower scores to fake data. Traditional GANs use a binary cross-
entropy loss to minimize the difference between two distribu-
tions, equivalent to minimizing the Kullback-Leibler (KL) Di-
vergence. The discriminator is minimizing:

LD (Xr, Xg) =−Exr∼Xr [log (D (xr))]

−Exg∼Xg [log (1−D (xg))]
(3)

And the generator is minimizing:

LD (Xr, Xg) = −Exg∼Xg [log (D (xg))] (4)

where D is the discriminator function
xr is sampled from the real distribution Xr

xg is sampled from the generated distribution Xg

To address issues such as vanishing gradients, which may cause
the generator to stop learning, and mode collapse, where the
generator produces only a limited set of outputs instead of cap-
turing the full data distribution (Huang and Jafari, 2023)(Mari-
ani et al., 2018), Wasserstein GAN is introduced. This ap-
proach utilizes the Wasserstein distance to mitigate these chal-
lenges, helping to stabilize training and improve output di-
versity(Gulrajani et al., 2017). Wasserstein distance, also
known as Earth-Mover Distance (EMD), quantifies the min-
imum cost of transporting a mass from one distribution to an-
other. EMD is a continuous and differentiable function, ensur-
ing that its gradients are always meaningful and contributing to
the stability of GAN training (Huang and Jafari, 2023). Aligned
with the theory of WGAN, the generator will eventually con-
verge to the performance of the discriminator. Consequently,
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WGAN necessitates a deep architecture for the discriminator.
The EMD distance is defined as:

W (Xr, Xg) = inf
γ∼Π(Xr,Xg)

E(xr,xg)∼γ ∥xr − xg∥ , (5)

where Π(Xr, Xg) denotes all the joint distributions between
the real distribution Xr and the generated data distribution Xg .
However, it is not feasible to try all pairs to find the smallest
EMD. By using Kantorovich-Rubinstein duality, it is equivalent
to find the upper bound in:

W (Xr, Xg) = sup
∥D∥L≤1

(Exr∼Xr [D (xr)]

−Exg∼Xg [D (xg)]
)
,

(6)

where ||D||L <= 1 ensures that D belongs to the space of 1-
Lipschitz functions. In the absence of this constraint, the dis-
criminator’s objective function simplifies to maximize:

W (D) (Xr, Xg) = EXr∼Xr [D (xr)]−Exg∼Xg [D (xg)] , (7)

In contrast to the original GAN, the discriminator in WGAN
employs an unconstrained real number as the criterion for eval-
uating the quality of real/fake data, rather than classification
probability. Additionally, a gradient penalty (GP) is applied to
enforce Lipschitz continuity, ensuring stable training (Gulrajani
et al., 2017). The 1-Lipschitz constraint equals to ensure the
normality of gradients ∥∇xD(x)∥2 everywhere. The GP is:

GP = Ex∼X

[(
∥∇xD(x)∥2 − 1

)2]
, (8)

,

As a result, with the extra gradient penalty term, the discrimin-
ator is to minimize:

W (D) (Xr, Xg) =Exr∼Xr [D (xr)]− Exg∼Xξ [D (xg)]

+ λEx̂∼X̂

[(
∥∇x̂D(x̂)∥2 − 1

)2] (9)

Since gradient penalty is only applied into the discriminator
loss, the loss function for generator remains the same as equa-
tion 4 (Huang and Jafari, 2023). The generator is updated
by minimizing the negative discriminator score on generated
samples, effectively learning to produce realistic feature distri-
butions. The training follows an alternating approach where
the discriminator is trained for multiple iterations per gener-
ator update, stabilizing the learning process. In the real exper-
iment though the WGAN-GP is applied, the training process
is still unstable. This may be due to the high variance in real
GNSS data, which makes it difficult for the discriminator to
enforce a smooth decision boundary. To address this, gradient
clipping is applied to prevent exploding gradients throughout
training (Zhang et al., 2020), ensuring the norm of the gradi-
ents of the discriminator does not exceed maxnorm = 1.0. If
the gradient norm is greater than 1.0, all gradients are scaled
down proportionally to keep the norm within the limit.

2.2 Validation On the Machine-Learning Models

To evaluate the effectiveness of the transformer-based encoder
and the attention-GAN, two experimental setups were designed.
First, a baseline evaluation was conducted using traditional ma-
chine learning models, including SVM, RF, LR and GB. These
models were trained on a dataset comprising 2,000 randomly
selected Line-of-Sight (LOS) samples and 200 Non-Line-of-
Sight (NLOS) samples, which is imbalanced to establish bench-
mark performance. While the transformer-based encoder was
applied to encode the dataset before training, as shown in Fig-
ure 4. The second experiment introduced the Attention-GAN,
which was used to generate 800 synthetic NLOS samples to bal-
ance the dataset. Finally, the augmented dataset, incorporating
both real and synthetic data, is used to train the previously men-
tioned machine learning models. These two experiments effect-
ively evaluate the capability of the Attention-GAN in mitigating
class imbalance and improving classification performance.

Figure 4. Augmented Data Validation Procedure.

For NLOS/LOS classification, four evaluation metrics are em-
ployed to assess the model’s effectiveness. The first metric is
overall accuracy, which measures the proportion of correctly
classified samples out of the total dataset. Although accuracy
provides a straightforward measure of model performance, it
may not fully reflect classification effectiveness when dealing
with imbalanced datasets, as it can be dominated by the major-
ity class. Therefore, additional metrics such as recall, precision,
and F1-score are used to provide a more comprehensive evalu-
ation.

One of these metrics is recall, which measures the model’s abil-
ity to correctly identify all relevant instances within a specific
class. In the context of NLOS/LOS classification, recall for the
NLOS class indicates the proportion of actual NLOS samples
that are correctly classified as NLOS, while recall for the LOS
class reflects the proportion of actual LOS samples that are cor-
rectly identified as LOS. A higher recall value suggests that the
model effectively captures more instances of the target class, re-
ducing the likelihood of misclassification and improving overall
detection performance. And precision measures the proportion
of correctly predicted instances of a class among all instances
predicted as that class.

F1-score is a balanced metric that takes both precision and re-
call into account, providing a more comprehensive evaluation
of classification performance. It is calculated as the harmonic
mean of precision and recall, ensuring that both false positives
and false negatives are considered in the assessment. In the
context of NLOS/LOS classification, a high F1-score indicates
that the model not only correctly identifies a large proportion
of NLOS and LOS instances (high recall) but also minimizes
incorrect classifications (high precision). This metric is partic-
ularly useful when dealing with imbalanced datasets, as it as-
sesses the model’s performance comprehensively when faced
with biased datasets.
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3. Results and Analysis

The benchmarks where machine learning models are trained
solely on the imbalanced original dataset are shown in Table 1.
In comparison, the SVM and RF models trained on the GAN-
augmented data experience an improvement in overall accuracy,
while the LR and GB models trained on the GAN-augmented
data show a decline. However, overall accuracy alone does not
fully capture the model’s performance. When the training data
is highly imbalanced, the model may struggle to classify un-
derrepresented categories. For instance, in the original dataset,
the SVM model achieved an accuracy of 0.67, yet its recall for
the NLOS class was 0, meaning it completely failed to detect
NLOS instances. This justifies the introduction of additional
evaluation metrics.

Specifically, for NLOS classification, although precision gener-
ally decreases across models, recall and F1-score significantly
improve. For example, the SVM’s recall for NLOS increases
from 0.00 to 0.29, and the RF’s recall for NLOS improves from
0.22 to 0.46, an increase of 24 percentage points, which is
approximately 109% relative to the benchmarks, indicating a
stronger ability to identify NLOS cases. Additionally, the cor-
responding F1-scores improve by 0.39, 0.19, 0.60, and 0.60 for
SVM, RF, LR, and GB, respectively. For the last three mod-
els, these improvements correspond to relative increases of ap-
proximately 0.53%, 0.18%, and 0.15% compared to their initial
values, reflecting a more balanced overall performance across
all four models. Similarly, for LOS classification, most models
maintain high recall and f1-score, with some improvement in
precision. These results suggest that the adjustments in train-
ing help models achieve better generalization, particularly in
recognizing NLOS instances, thereby enhancing overall classi-
fication effectiveness.

Models Overall Accuracy
NLOS/LOS Metrics

Precision Recall F1-score
SVM 0.67 0.67/0.67 0.00/0.10 0.00/0.80
RF 0.74 0.97/0.73 0.22/0.10 0.36/0.84
LR 0.73 0.97/0.72 0.20/0.10 0.33/0.84
GB 0.75 0.93/0.73 0.26/0.99 0.40/0.84

Table 1. Original Selected Dataset Training Results

Models Overall Accuracy
NLOS/LOS Metrics

Precision Recall F1-score
SVM 0.71 0.61/0.73 0.29/0.91 0.39/0.81
RF 0.76 0.69/0.77 0.46/0.90 0.55/0.83
LR 0.72 0.70/0.73 0.27/0.94 0.39/0.82
GB 0.73 0.67/0.74 0.35/0.92 0.46/0.82

Table 2. Augmented Dataset Training Results.

4. Conclusion and Future Work

In this work, we propose a novel attention-GAN together with
an encoder for GNSS data augmentation to address data con-
straint issues in deep learning applications. A multi-head at-
tention mechanism is applied to the encoder, generator and dis-
criminator to extract more representative features from the data.
For training, we employ the GAN with a penalty term and gradi-
ent clipping to stabilize the training process and achieve better
results.

In the classification task of NLOS and LOS, the GAN is used to
generate synthetic data to mitigate dataset imbalance, as NLOS
samples are significantly underrepresented compared to LOS.
To evaluate the effectiveness and quality of the generated data,
we train multiple machine learning models including SVM, RF,
LR and GB models on both the augmented and original datasets
for comparison. The results demonstrate that the models trained
on the augmented dataset achieve superior performance in clas-
sifying NLOS data in the test set, improving by 39%, 19%, 6%
and 6% in f1-score for NLOS respectively. The results highlight
the potential of generative models in the GNSS domain.

Future work will focus on redesigning the GAN architecture
to better align with GNSS data characteristics. Furthermore, a
more diverse dataset—including dynamic data, receiver-level
signals, and other variations—will be incorporated for train-
ing. Beyond NLOS/LOS classification, the generated synthetic
data has broad applicability across various domains, especially
when needing a large-scale and diverse dataset. For instance,
simulated GNSS data can be leveraged to generate large-scale
datasets tailored to diverse environmental conditions, address-
ing data scarcity issues in real-world applications. This cap-
ability is particularly beneficial for training end-to-end GNSS
positioning models, enhancing their robustness and generaliz-
ation across different urban and rural scenarios. Additionally,
synthetic GNSS data can support the development of autonom-
ous driving models by providing diverse and realistic navigation
data, improving the reliability of localization and sensor fusion
algorithms in challenging conditions.
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