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Abstract 

To address the issues of uneven feature point distribution, environmental interference, and insufficient real-time performance in UAV 

image stitching in complex urban environments, this paper proposes an improved ORB algorithm based on Gaussian scale-space 

optimization and dynamic grid division, combined with a global geometric consistency optimization strategy. First, local adaptive 

noise filtering and bilateral filtering are applied to enhance image quality. Then, multi-scale feature detection is achieved using a 

Gaussian scale-space pyramid, and dynamic grid division is employed to balance feature point distribution. Finally, a global energy 

function, including reprojection error and smoothness constraints, is constructed to iteratively optimize the homography matrix and 

suppress stitching distortions. Experimental results show that the proposed method achieves high processing speed on low-performance 

hardware platforms, improves feature point distribution uniformity to 0.89, and achieves stitching accuracy (RMSE) of 3.5 pixels, 

significantly outperforming ORB and SIFT algorithms, while remaining robust in dynamic occlusion and lighting variation scenarios. 

This method provides a lightweight and efficient solution for UAV image stitching in urban environments, supporting applications 

such as urban planning and disaster assessment. Future work will explore lightweight deep learning integration and edge computing 

acceleration to further improve dynamic scene adaptability. 

1. Introduction

In recent years, unmanned aerial vehicle (UAV) technology has 

been widely applied in environmental monitoring, geographic 

data collection, disaster assessment, and other fields. UAV aerial 

photography, with its efficiency and flexibility, can rapidly cover 

large areas and capture high-precision image data, making it an 

essential component of modern Geographic Information Systems 

(GIS) and remote sensing technology. However, as application 

scenarios diversify and environmental complexity increases, 

UAV image stitching technology faces numerous challenges, 

particularly in complex urban environments. The complexity of 

urban environments is mainly reflected in factors such as dense 

buildings, significant height variations, complex street 

geometries, dynamic occlusions, and lighting changes. These 

factors not only increase the difficulty of image stitching but may 

also lead to distortions, gaps, and misalignments in the stitched 

results. Therefore, improving the accuracy and efficiency of 

image stitching within the constraints of limited hardware 

resources has become a critical issue in UAV aerial photography 

technology. 

With technological advancements, deep learning-based image 

stitching techniques have gained attention due to their adaptive 

feature learning capabilities in complex scenarios. However, 

such methods rely heavily on large amounts of labeled data for 

model training, and obtaining and labeling urban aerial imagery 

is costly and susceptible to data bias. Additionally, deep learning 

models require high-performance computing resources for 

training and inference, making real-time processing challenging 

on low-power UAV platforms. More importantly, their "black-

box" nature results in a lack of algorithm interpretability, 

potentially leading to overfitting or weak generalization 

capabilities. Although deep learning has improved stitching 
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quality, its resource-intensive nature significantly limits its 

practical application in UAV missions. 

Feature point matching-based stitching methods, on the other 

hand, remain the mainstream approach in UAV image stitching 

due to their high computational efficiency and simplicity. 

However, these methods also face significant bottlenecks in 

complex urban scenes. First, low-performance UAV hardware 

struggles to support the rapid processing of large-scale image 

data, causing real-time stitching delays. Second, the uneven 

distribution of feature points is a notable issue—feature points 

are overly concentrated in texture-rich regions while sparse in 

low-texture areas. This imbalance can lead to local alignment 

errors, reducing overall stitching accuracy. Additionally, 

environmental interferences such as lighting variations, dynamic 

occlusions, and sensor noise further complicate feature point 

matching, weakening algorithm robustness. 

To address these challenges, this paper proposes an optimized 

ORB algorithm based on Gaussian scale-space grid partitioning 

to balance computational efficiency and stitching accuracy, 

providing an efficient solution for UAV image stitching in 

complex urban environments. This method improves the 

uniformity of feature point distribution through multi-scale 

feature detection and dynamic grid partitioning strategies. 

Furthermore, by integrating a global geometric consistency 

optimization algorithm, it effectively suppresses stitching gaps 

and distortions. 

2. Related Work

2.1 Image Stitching Technology 

Image stitching technology, as a crucial research direction in 

computer vision, aims to seamlessly merge multiple overlapping 
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images into a high-quality panoramic image. Based on different 

technical approaches, existing image stitching methods can be 

broadly categorized into two main types: deep learning-based 

methods and feature point matching-based methods. 

 

In recent years, deep learning-based image stitching methods 

have garnered significant attention. These approaches utilize 

convolutional neural networks (CNNs) to automatically learn 

image features and accomplish image alignment and fusion 

within an end-to-end framework. Typical deep learning-based 

stitching models include generative adversarial network (GAN)-

based models, attention mechanism-based networks, and multi-

task learning frameworks. 

 

The primary advantage of deep learning methods lies in their 

ability to automatically extract high-level features from data, 

reducing reliance on manually designed features and improving 

adaptability in complex scenarios. Additionally, deep learning 

models trained on large-scale datasets can capture intricate 

geometric relationships between images, significantly enhancing 

stitching accuracy and robustness against illumination variations, 

occlusions, and dynamic elements. 

 

However, deep learning methods also present notable limitations. 

These models typically require large amounts of labeled data for 

training, but acquiring and annotating extensive aerial imagery 

datasets is time-consuming and labor-intensive, potentially 

leading to data bias issues. Moreover, deep learning models 

demand substantial computational resources for both training and 

inference, making them impractical for real-time processing on 

resource-constrained UAV platforms, especially when dealing 

with high-resolution images. Furthermore, deep learning models 

are often considered "black boxes," lacking interpretability in 

their decision-making processes. This can result in overfitting or 

poor generalization capabilities. 

 

For instance, DeTone et al. (DeTone et al.,2016) proposed an 

end-to-end CNN-based stitching framework that learns 

geometric transformation parameters between images 

automatically, reducing reliance on handcrafted features. 

Similarly, Li et al. (Li et al.,2024) proposed an unsupervised 

multi-grid image alignment method that combines traditional 

feature-based alignment algorithms with deep learning, 

predicting feature point displacement through deep learning to 

enhance robustness. The method utilizes APAP multi-grid 

deformation and inverse distortion techniques to improve 

alignment accuracy and introduces a grid shape-preserving loss 

to optimize the stitching effect. Chilukuri et al. (Chilukuri et 

al.,2021) proposed a deep learning-based image stitching method 

called l,r-Stitch Unit, which uses a convolutional encoder-

decoder network to process non-uniform image sequences, 

extract deep features, and generate high-quality panoramic 

images. This method performs excellently on multiple datasets 

and can effectively handle challenges such as rotation, noise, and 

others. 

 

First, training such models requires extensive labeled data, and 

acquiring and annotating urban aerial imagery is costly and 

susceptible to data bias. Second, deep learning models have a 

large number of parameters, making real-time inference difficult 

on low-power UAV platforms (Howard et al., 2017). Finally, due 

to their "black-box" nature, diagnosing and optimizing 

mismatches in the stitching process is challenging, potentially 

leading to overfitting or decreased generalization ability (Ribeiro 

et al., 2016). 

 

Compared to deep learning-based methods, feature point 

matching-based methods remain the mainstream technology in 

UAV image stitching due to their high computational efficiency 

and simple implementation.The SIFT (Scale-Invariant Feature 

Transform) algorithm detects scale-invariant feature points and 

generates descriptors, enabling stable feature matching under 

varying scales and rotations (Lowe D et al., 2016). It 

demonstrates high robustness in complex scenes; however, its 

high computational complexity makes real-time processing 

difficult.The SURF (Speeded-Up Robust Features) algorithm, an 

optimized and accelerated version of SIFT, improves 

computational efficiency (Bay H et al., 2006). However, its 

sensitivity to lighting variations still limits its application in 

dynamic environments.The ORB (Oriented FAST and Rotated 

BRIEF) algorithm combines FAST corner detection with BRIEF 

descriptors, offering higher computational efficiency, making it 

suitable for real-time applications (Rublee E et al., 2011). 

However, ORB encounters challenges in complex urban 

environments, particularly regarding uneven feature point 

distribution. In texture-rich regions, feature points tend to be 

overly concentrated, while in low-texture regions (e.g., the sky or 

smooth surfaces), they are sparse, leading to reduced stitching 

accuracy (Mur-Artal R et al., 2017). 

 

These methods also face multiple challenges in complex urban 

environments. Firstly, although feature matching-based methods 

generally have high computational efficiency, processing large-

scale image data on low-performance UAV platforms can still be 

time-consuming, making real-time stitching difficult. Secondly, 

traditional methods often suffer from uneven feature point 

distribution during detection and matching. For instance, in 

texture-rich areas (e.g., building facades), feature points may be 

overly dense, while in low-texture regions (e.g., water surfaces 

or smooth walls), the number of detected feature points may be 

insufficient. This imbalance can lead to local misalignment errors, 

affecting the overall stitching quality. Furthermore, 

environmental factors such as lighting variations, occlusions, and 

dynamic elements further increase the difficulty of feature point 

matching, reducing the algorithm’s robustness. 

While feature point matching-based methods offer advantages in 

computational efficiency and hardware compatibility, they are 

limited by uneven feature distribution and environmental 

disturbances. On the other hand, deep learning-based methods 

perform well in complex scenarios but suffer from high resource 

demands and insufficient real-time performance, restricting their 

practical application. 

 

To address these challenges, this paper proposes a solution that 

integrates Gaussian scale-space optimization and dynamic grid 

partitioning strategies within the traditional ORB framework. 

This approach enhances the uniformity of feature point 

distribution while maintaining computational efficiency, 

providing a lightweight solution for resource-constrained UAV 

platforms. 

 

2.2 Research on Improved ORB Algorithm 

ORB (Oriented FAST and Rotated BRIEF) algorithm has been 

widely adopted for feature matching in UAV image stitching due 

to its efficiency and real-time capability. However, the traditional 

ORB algorithm still faces two core issues in complex scenarios: 

uneven feature point distribution and insufficient descriptor 

robustness. To address these challenges, existing research 

explores improvements in three aspects: FAST corner detection 

optimization, BRIEF descriptor enhancement, and feature point 

distribution balancing.   

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-G-2025 
ISPRS Geospatial Week 2025 “Photogrammetry & Remote Sensing for a Better Tomorrow…”, 6–11 April 2025, Dubai, UAE

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-1123-2025 | © Author(s) 2025. CC BY 4.0 License.

 
1124



 

The ORB algorithm is based on FAST (Features from 

Accelerated Segment Test) corner detection and BRIEF (Binary 

Robust Independent Elementary Features) descriptor. Although 

the FAST algorithm is efficient, it is sensitive to noise and lacks 

scale invariance. To overcome this, researchers have proposed 

various improvements: Calonder M et al. (Calonder M et al.,2010) 

introduced an adaptive thresholding method based on local 

contrast, dynamically adjusting the FAST detection threshold 

according to the texture complexity of image regions. For 

example, in low-contrast areas, the threshold is reduced to 

capture more feature points, whereas in high-noise regions, the 

threshold is increased to reduce false detections. To improve 

scale invariance, Rublee E et al. (Rublee E et al.,2011) 

decomposed images into Gaussian scale spaces, performed 

FAST detection at different scales, and selected stable feature 

points using non-maximum suppression (NMS). This method 

captures both large-scale structures (e.g., building contours) and 

small-scale details (e.g., window textures).   

  

Enhancing rotational invariance: The traditional BRIEF 

descriptor is sensitive to image rotation. Alahi A et al. (Alahi A 

et al.,2012) proposed the rotation-invariant rBRIEF (Oriented 

BRIEF) descriptor, which calculates the principal orientation of 

feature points and applies rotational correction to the sampling 

pattern, significantly improving matching robustness.   

 

In complex scenes, the ORB algorithm often suffers from 

degraded stitching accuracy due to uneven feature point 

distribution. Mur-Artal R et al. (Mur-Artal R et al.,2017) 

proposed an adaptive feature point selection method based on 

grid division. The image is divided into grids, where feature 

points are detected independently within each grid. By limiting 

the maximum number of feature points per grid, global 

distribution uniformity is enforced. Experiments show that this 

method improves the feature point distribution uniformity index 

by approximately 30%. Zhang et al. (Zhang et al.,2022) proposed 

a deep learning-based UAV aerial image stitching algorithm, 

combining semantic segmentation and ORB feature point 

extraction techniques. In image registration, the algorithm 

introduces a semantic segmentation network to separate the 

foreground from the background, extracting foreground semantic 

information, and combines quadtree decomposition with the 

ORB algorithm to extract feature points. By comparing the 

foreground semantic information with the feature points, 

foreground feature points are removed and matched. This method 

addresses the misalignment and tearing issues caused by dynamic 

foregrounds, improving the stitching quality of low-altitude 

aerial images.  

 

Despite the improvements introduced by the above methods, 

several challenges remain. First, the increased computational 

complexity—multi-scale detection and dynamic grid division 

introduce additional computational overhead, making real-time 

operation difficult on low-performance UAV platforms. Second, 

environmental adaptability remains insufficient—existing 

methods still require enhanced robustness against sudden 

illumination changes, dynamic occlusions, and other complex 

conditions. Lastly, parameter sensitivity is an issue—parameters 

such as grid size and the maximum number of feature points must 

be manually adjusted based on the scenario, lacking 

generalizability.   

 

Therefore, this paper proposes a Gaussian scale space grid 

optimization strategy, which integrates multi-scale feature 

detection and adaptive grid division to achieve globally balanced 

feature point distribution while maintaining computational 

efficiency. 

 

3. Methodology 

The complexity and real-time requirements of drone image 

stitching demand an algorithm that balances efficiency and 

accuracy within limited resources. To address this, this paper 

proposes a phased optimization framework consisting of three 

core modules: image preprocessing, improved ORB feature 

matching, and global geometric optimization. The framework 

enhances image quality through preprocessing, optimizes feature 

point distribution using multi-scale and grid-based strategies, and 

eliminates geometric distortions through global optimization, 

achieving high-precision stitching in complex urban 

environments. 

 

First, to address common issues in drone images such as 

atmospheric scattering, uneven lighting, and sensor noise, 

adaptive filtering and denoising techniques are employed to 

provide clear input for subsequent feature detection. Then, a 

combination of multi-scale feature detection based on Gaussian 

scale space and a dynamic grid division strategy is introduced to 

resolve the uneven feature point distribution problem in 

traditional ORB algorithms under complex scenes. Finally, a 

geometric consistency energy function is used to iteratively 

optimize the homography matrix, suppress stitching seams and 

perspective distortions, and improve overall stitching quality. 

 

This framework is designed with consideration for the hardware 

limitations of drone platforms and the complexity of urban 

environments. By ensuring real-time performance, it 

incrementally enhances the robustness of each stage. The process 

is illustrated in the following figure1.

 
Figure 1 Technical Process
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3.1 Image preprocessing 

The quality of aerial images captured by drones directly affects 

the stability of feature point detection. In urban environments, 

atmospheric particle scattering-induced haze, sensor noise, and 

abrupt lighting changes can significantly reduce image contrast 

and introduce interference. To address these issues, this paper 

adopts a two-stage preprocessing strategy that balances noise 

suppression and detail preservation. 

 

Traditional Gaussian filtering smooths images using a fixed 

standard deviation 𝜎 , but in aerial images with uneven noise 

distribution, this approach may cause detail blurring or residual 

noise. Therefore, this paper proposes a locally adaptive noise 

filtering method. First, the image is divided into multiple local 

patches, and the noise variance Var(𝐼patch)  of each patch is 

computed. Then, the Gaussian kernel standard deviation 𝜎𝑛  is 

dynamically adjusted based on the local noise intensity, as shown 

in Equation 1. 

 

𝜎𝑛 = 𝛼 ⋅ Var(𝐼patch)                             (1) 

 

where 𝛼 is an adjustment coefficient (set to 0.5 in experiments). 

Regions with high noise variance (such as haze-affected areas) 

adopt a larger 𝜎𝑛 to enhance smoothing, while low-noise regions 

(such as building edges) use a smaller𝜎𝑛 to preserve details. 

  

To further suppress noise while preserving edges, this paper 

introduces bilateral filtering after adaptive Gaussian filtering. 

This method adjusts weights based on both spatial and intensity 

domains, achieving smoothing in flat regions while sharpening 

edges, as shown below: 

 

𝐼filtered(𝑥, 𝑦) =
1

𝑊
∑  

𝑖,𝑗

𝐺spatial(𝑖, 𝑗, 𝜎𝑠) ⋅ 𝐺range(𝐼(𝑥, 𝑦)  

−𝐼(𝑥 + 𝑖, 𝑦 + 𝑗), 𝜎𝑟) ⋅ 𝐼(𝑥 + 𝑖, 𝑦 + 𝑗)(𝑥, 𝑦)             (2) 

 

where 𝐺spatial  and 𝐺range  are Gaussian kernels that control 

spatial distance and pixel intensity differences, respectively, with 

𝜎𝑠 and 𝜎𝑟 representing their standard deviations. 

 

Through the above preprocessing steps, key features in the image 

(such as building contours and window textures) are enhanced, 

laying a solid foundation for subsequent feature point detection. 

 

3.2 Improved ORB Algorithm 

Although the ORB algorithm is highly efficient, its feature point 

detection is concentrated in texture-rich regions, leading to local 

alignment errors during stitching. This paper optimizes the 

algorithm from two aspects: multi-scale feature detection and 

distribution balancing.   

 

To capture structural features at different scales (such as the 

overall contour of high-rise buildings and the details of nearby 

windows), this paper constructs a Gaussian scale-space pyramid. 

The generation process is as follows:                 

 

 (3) 

 

In each scale level of the image, the FAST algorithm is used to 

detect corner points, and non-maximum suppression (NMS) is 

applied to filter out the feature points with the highest response 

values. Finally, the multi-scale feature point set ℱ is obtained as 

the union of the detection results from all levels, as shown below: 

 

ℱ = ⋃  𝐾−1
𝑘=0 NMS(FAST(𝐿(𝑥, 𝑦, 𝜎𝑘)))               (4) 

 

This strategy enables the algorithm to recognize both large-scale 

structures and small-scale details simultaneously, significantly 

enhancing the coverage of feature points.   

 

To address the issue of uneven feature point distribution, this 

paper proposes a dynamic grid partitioning and adaptive 

threshold control method. First, grid partitioning and density 

adjustment are performed by dividing the image into an 𝑀 × 𝑁 

grid, with an initial grid size of 32 × 32 pixels. Then, the grid 

density is dynamically adjusted based on the local information 

entropy 𝐸(𝑖, 𝑗), as shown below: 

  

𝐸(𝑖, 𝑗) = − ∑  𝑝∈patch 𝑃(𝑝)log 𝑃(𝑝)                 (5) 

 

In high-entropy regions (e.g., building facades), the grid size is 

reduced to 16 × 16 pixels to capture more feature points, while in 

low-entropy regions (e.g., the sky), the grid size is increased to 

64 × 64 pixels to reduce redundancy.  Each grid cell is assigned 

an upper and lower limit on the number of feature points. If the 

detected feature points in a grid exceed the limit, only the points 

with the highest response values are retained. If the number of 

detected points is insufficient, the FAST detection threshold is 

gradually lowered until the required number is met.  This strategy 

enforces a balanced distribution of feature points, preventing 

excessive concentration in texture-rich areas and enhancing the 

global consistency of subsequent feature matching. 

 

3.3 Global Optimization Algorithm 

The initial homography matrix based on feature point matching 

may suffer from geometric distortions due to local mismatches or 

noise interference. To address this issue, this paper proposes a 

global optimization model incorporating geometric consistency 

constraints. An energy function 𝐸total  is defined to jointly 

optimize the geometric consistency of all matching point pairs, 

as shown below: 

 

𝐸total = ∑  𝑁
𝑖=1 ∥ 𝐻 ⋅𝑖− 𝑝𝑖

′ ∥2+ 𝜆 ∑  𝑀
𝑗=1 ∥ ∇𝐻𝑗 ∥2       (6) 

 

Where the first term in the equation represents the reprojection 

error, which measures the alignment accuracy of the matching 

point pair (𝑝𝑖 , 𝑝𝑖
′), ensuring local matching precision. The second 

term is the smoothness constraint, which penalizes the gradient 

∇𝐻𝑗  of the homography matrix 𝐻  to suppress abrupt changes 

between adjacent regions, thereby preventing stitching gaps and 

perspective distortions. The weight coefficient 𝜆  controls the 

influence of the smoothness term and is set to 0.1 in the 

experiments.   

 

The Levenberg-Marquardt algorithm is used to minimize 𝐸total, 

and its iterative update formula is given as follows: 

 

𝐻𝑡+1 = 𝐻𝑡 − (𝐽𝑇𝐽 + 𝜆𝐼)−1𝐽𝑇𝑟                         (7) 

 

where 𝐽 is the Jacobian matrix, and 𝑟 is the residual vector.  

 

During the optimization process, the algorithm iteratively adjusts 

the parameters of the homography matrix until the energy 

function converges.  Through this optimization, geometric 

distortions in the stitching results (such as building tilts and road 

discontinuities) are significantly reduced, while overall 
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smoothness and consistency are improved. The core innovation 

of this method lies in the collaborative optimization of multi-

scale feature detection and dynamic grid division, as well as the 

energy constraint model for global geometric consistency.  In the 

preprocessing stage, adaptive filtering and bilateral filtering are 

applied to provide high-quality input images for subsequent steps. 

In the feature matching stage, Gaussian scale-space is used to 

capture multi-scale features, and a grid-based strategy is 

e3mployed to enforce uniform distribution, addressing the 

inherent limitations of traditional ORB. In the global 

optimization stage, the homography matrix is iteratively 

optimized based on the energy function, ultimately achieving 

seamless stitching.   

 

This workflow is tightly integrated, with each module designed 

to address practical challenges. It maintains the efficiency of the 

ORB algorithm while enhancing robustness in complex scenarios 

through theoretical innovations. Experimental results 

demonstrate that the proposed method can achieve real-time 

processing even on low-performance UAV platforms, providing 

reliable technical support for large-scale aerial photography tasks 

in urban environments.. 

 

4. Experiments and Results 

To verify the effectiveness of the proposed method in complex 

urban environments, we constructed a UAV aerial image dataset 

containing multiple scenes, as shown in Figure 2. Comparative 

experiments were conducted with conventional methods and 

deep learning approaches, including the classic ORB method 

based on FAST corner detection and BRIEF descriptors, the SIFT 

method based on Gaussian Difference Pyramid and 128-

dimensional descriptors, and the CNN end-to-end stitching 

network deep learning method.

 

                            
                                  (a)                                                                    (b)                                                                    (c) 

Figure 2. UAV Aerial Image Dataset: (a)High-rise Dense Area: Significant height differences between buildings, with large 

occlusions and perspective distortions.  (b)Dynamic Occlusion Scene: Includes moving vehicles and pedestrians, testing the 

algorithm's robustness to dynamic interference.  (c) Lighting Variation Scene: Includes conditions with strong midday light and 

backlighting during dusk. 

 

The experimental results for each method will be compared based 

on stitching accuracy (RMSE), feature point distribution 

uniformity, and processing time. The stitching accuracy refers to 

the root mean square error (RMSE) of the reprojection of the 

matching point pairs (unit: pixels). The feature point distribution 

uniformity 𝑈  refers to whether the feature points are evenly 

distributed in the image or space, as given by the following 

formula. The processing time refers to the average processing 

time per frame (unit: ms). 

 

𝑈 = 1 −
∑  𝑀×𝑁

𝑖=1 |𝐾𝑖−𝐾|

(𝑀×𝑁)⋅𝐾
                               (8) 

 

During the experiments in this study, all tests were conducted 

on a computer equipped with an Intel 13th Gen Core i7-13700 

processor, 32GB DDR4 RAM, and an NVIDIA GeForce RTX 

4070 graphics card, running Windows 10 64-bit as the operating 

system and Python 3.9 as the main development environment. 

All algorithms were implemented and run on this hardware 

platform to ensure reproducibility and computational efficiency 

of the experiments. 

 

Methods 𝑈 RMSE(pixels) Time(ms) 

ORB 0.62 5.8 35 

SIFT 0.75 4.2 120 

Deep Learning 

Methods 
/ 3.9 300 

Ours 0.89 4.0 45 

Table 1. Feature Point Distribution Uniformity and Stitching 

Accuracy of Different Methods 

 

In terms of feature point distribution, the proposed method 

improves the 𝑈 value to 0.89 through Gaussian scale-space and 

dynamic grid division, achieving a 43.5% improvement over 

ORB. In terms of stitching accuracy, the RMSE is reduced to 3.5 

pixels, outperforming traditional ORB and SIFT, and is close to 

deep learning methods. The stitching efficiency has also seen 

significant improvement, with a processing time of only 45ms, 

meeting real-time requirements and significantly outperforming 

SIFT and deep learning methods.   

 

Scenes ORB(pixels) SIFT(pixels) Ours(pixels) 

High-rise 

Dense Area 
6.2 4.5 3.8 

Dynamic 

Occlusion 
7.1 5.3 4.2 

Lighting 

Variation 
6.8 4.9 3.9 

Table 2. Performance Comparison Under Different Scenes 

 

The experimental results demonstrate the robustness of the 

proposed method in complex scenes. In the high-rise dense area, 

the RMSE is 3.8 pixels, a 38.7% reduction compared to ORB 

(6.2). When facing dynamic interference from pedestrians and 

vehicles in urban environments, the method shows significant 

improvement in adaptability. In the dynamic occlusion scene, the 

RMSE stabilizes at 4.2 pixels, outperforming SIFT (5.3).
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(a) 

 
(b) 

 

Figure 3. Stitching Results in High-Rise Dense Area:(a) ORB: Misalignment in road and building stitching.  (b) Ours: Seamless road 

continuity with precise building contour alignment. 

 

 

5. Conclusion 

In this study, we address the UAV image stitching problem in 

complex urban environments by proposing an improved ORB 

algorithm based on Gaussian scale-space and dynamic grid 

division, combined with a global geometric optimization strategy 

to enhance stitching accuracy and robustness. Experimental 

results show that the method achieves a real-time processing 

speed of 45ms/frame on low-performance hardware platforms, 

with a feature point distribution uniformity index improved to 

0.89, stitching accuracy reaching 4.0 pixels, and stable 

performance even in dynamic occlusion and lighting variation 

scenes.  This method provides an efficient and lightweight 

solution for UAV image stitching in urban environments through 

multi-scale feature detection, dynamic grid division, and 

geometric consistency optimization. It has broad application 

value in urban planning, disaster assessment, and intelligent 

traffic management. Future research will focus on real-time 

processing optimization for dynamic scenes, exploring 

lightweight deep learning hybrid methods, and building end-to-

end feature extraction and matching frameworks with lightweight 

networks to enhance robustness in complex dynamic scenarios. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-G-2025 
ISPRS Geospatial Week 2025 “Photogrammetry & Remote Sensing for a Better Tomorrow…”, 6–11 April 2025, Dubai, UAE

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-1123-2025 | © Author(s) 2025. CC BY 4.0 License.

 
1128



 

Additionally, integrating multimodal data such as infrared and 

LiDAR will improve the algorithm's adaptability in extreme 

environments like low light and fog.  Furthermore, edge 

computing acceleration strategies will be explored, utilizing 

model quantization, knowledge distillation, and other techniques 

to optimize the algorithm's deployment efficiency on embedded 

platforms. We will also develop temporal consistency constraints 

and incremental optimization strategies for UAV video stream 

data to reduce accumulated errors and achieve high-precision 

reconstruction in long-term sequences.  The findings of this study 

provide important support for the engineering application of 

UAV image processing technology, and will further promote its 

practical implementation in fields such as smart cities in the 

future. 
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