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Abstract 

 

Mexico, recognized for its exceptional biodiversity, is home to over 58 vegetation types and nearly 30,000 documented plant species. 

This remarkable ecological variety is influenced by the country’s complex topography, diverse climates, and varying soil conditions. 

Since 1978, the National Institute of Statistics and Geography (INEGI) has been pivotal in understanding the distribution and condition 

of Mexico's vegetation. INEGI’s methods have progressed from traditional analogue mapping to sophisticated digital formats, utilizing 

satellite imagery, other ancillary geospatial data layers and advanced photointerpretation techniques. 

The data generation process follows rigorous methodologies that are publicly accessible, and dedicated teams across Regional 

Directorates and State Coordination Offices oversee the mapping of nearly 2 million km² of territory with a lean workforce of just 30 

personnel. This information serves as a National Interest Information, mandated for use by government entities. 

Recent advancements have underscored the need for innovative modelling and processing capabilities. INEGI are currently exploring 

artificial intelligence applications, particularly the use of multilayer perceptron neural networks, to enhance vegetation and land-use 

detection. Robust quality assurance and control measures aligned with ISO-2859 standards are integrated. This article showcases how 

these initiatives leverage AI to improve data accuracy and processing efficiency, thereby revolutionizing national vegetation mapping 

and contributing to sustainable land management practices. By highlighting collaborative efforts and outcomes achieved, this work 

aims to foster a deeper understanding of ecological dynamics and resource management in Mexico. 

 

 

1. Introduction 

Mexico’s vast and diverse ecosystems, spanning nearly 2 million 

square kilometers of continental territory, present a significant 

challenge for accurate vegetation mapping. The country’s 

complex topography and wide range of vegetation types 

necessitate precise and efficient mapping techniques to support 

sustainable resource management and ecological conservation. 

The National Institute of Statistics and Geography (INEGI) has 

been instrumental in advancing vegetation mapping 

methodologies, evolving from traditional analogue approaches to 

modern digital processes that harness remote sensing 

technologies. 

 

Vegetation mapping in Mexico has been conducted for over 45 

years and is currently published every five years under the title 

"Land Use and Vegetation Map Information at a 1:250,000 

Scale" (CUSUEV), with the most recent edition corresponding to 

2018 (Series VII). 

 

The primary objective of this research is to harness deep learning 

techniques and satellite imagery to enhance vegetation mapping 

in Mexico. Specifically, this study focuses on optimizing 

workflows for satellite data processing, refining classification 

models, and evaluating the resulting improvements in 

classification accuracy. 

2. Methodology 

The expertise of fieldwork professionals was combined with the 

interpretation of remote sensing imagery to identify vegetation 

types and landscapes, along with the capabilities of artificial 

intelligence tools—particularly deep learning, in order to develop 

a supervised classification. 

 

The analysis and development of the predictive model were 

carried out using 42 individual variables, organized into raster 

bands stored in GeoTiff format. 

 

The data employed in implementing a new methodology for 

digital vegetation mapping in Mexico were obtained from various 

satellite platforms, such as Landsat-8 and Sentinel-2, which 

provide multispectral images essential for analyzing diverse 

geographic phenomena. 

 

2.1 Mexican Geospatial Data Cube (CDGM) 

The CDGM is a system that facilitates user access to satellite 

imagery of interest, based on specific locations and acquisition 

dates. Since 2018, INEGI has promoted this project, which serves 

as an implementation instance of the Open Data Cube tool 

(https://www.opendatacube.org), developed by Digital Earth 

Australia. The CDGM employs an index grid and an Albers 
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Equal Area projection with the GRS80 ellipsoid, which are well-

suited for raster data (see Figure 1). 

 

Figure 1. General grid of the CDGM, composed of 144 tiles, 

each measuring 150 km per side. 

 

Among its many advantages, this grid enables compatibility 

across various raster datasets, such as Landsat, Sentinel, and 

MODIS, by nesting their diverse resolutions. It also optimizes 

data processing times through computational parallelization 

techniques. Regarding this projection, it facilitates homogeneous 

area measurements at a semi-continental scale, which is ideal for 

the region of Mexico. 

 

The grid's extreme coordinate specifications, expressed in 

meters, are (900 000, 300 000) for the minimum and (4 200 000, 

2 400 000) for the maximum. 

 

Through the CDGM, it is possible to generate spatiotemporal 

statistics, such as Geometric Median (Geomedian), Tasseled Cap 

Transformations (TCWBG), Normalized Difference Vegetation 

Indices (NDVI), and Water Observations from Space (WOfS), 

among others, using the datacube_stats module. Additionally, 

more specific products can be developed by creating custom 

programming codes within the CDGM to meet analytical needs. 

 

2.2 Main Variables of Analysis 

The base year was established as 2018, with the aim of comparing 

the results against the official publication of the latest version of 

the CUSUEV. Variables that exhibit a strong influence in the 

vegetation types were identified. Data derived from these 

variables were registered to the previously described 

homogeneous coordinate system and spatial resolution, thereby 

allowing the integration of inputs from diverse sources within a 

single geospatial grid. 

 

2.2.1 Surface Reflectance Spectral Data 

2.2.1.1 Landsat Geomedian 

The spectral bands from the Landsat 8 Collection 2 Level 2 

satellite were used as analysis variables, employing the 

Geomedian, which provides representative spectral values for the 

selected time period by removing "noise" (clouds, terrain or 

cloud shadows, and cirrus clouds) using the quality band 

(pixel_QA) provided by the United States Geological Survey 

(USGS), which ensures spatial consistency even at the boundaries 

between source scenes or index grid cells. 

 

The following raster bands were considered as analysis variables: 

• Coastal aerosol 

• Blue 

• Green 

• Red 

• Near-infrared (NIR) 

• Short-wave infrared 1 (SWIR1) 

• Short-wave infrared 2 (SWIR2) 

2.2.1.2 Principal Components Analysis (PCA) 

PCA is an algorithm within a group of techniques aimed at 

reducing the dimensionality of a dataset caused by the presence 

of three or more variables. The algorithm exploits the 

dependencies among the variables to represent them in a simpler 

form without significant data loss, making PCA one of the most 

widely used and robust dimensionality reduction techniques. The 

PCA algorithm was applied to the blue, green, red, NIR, SWIR1, 

and SWIR2 variables, and the first three principal components 

were extracted to be used as features in the classifier model: 

• PCA1 

• PCA2 

• PCA3 

 

2.2.2 Spectral Indices 

2.2.2.1 Normalized Difference Vegetation Index (NDVI) 

NDVI is one of the most widely employed vegetation indices 

among the extensive array of available indices. Its values range 

from -1 to 1, indicating the density of green vegetation and the 

level of photosynthetic activity. This index exploits the 

reflectance characteristics of green vegetation, which exhibits 

low reflectance in the red portion of the spectrum (RED) and high 

reflectance in the near-infrared (NIR) range. 

 

NDVI processing was conducted using the CDGM, incorporating 

all available image observations for the base year. From these 

data, the following statistical metrics (analysis variables) were 

computed: 

• Mean 

• Maximum 

• Minimum 

• Median 

• Standard Deviation 

 

These metrics enable the detection of changes in vegetation as 

well as in land cover and land use. NDVI is calculated using 

Equation (1), and subsequently, the listed statistical measures are 

derived for all satellite observations available during the study 

period. 

 

 𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅−𝑅𝐸𝐷

𝑁𝐼𝑅+𝑅𝐸𝐷
,   (1) 

 

where  𝑁𝐷𝑉𝐼 = normalized difference vegetation index 

 𝑁𝐼𝑅 = near-infrared band 

 𝑅𝐸𝐷 = red band 

2.2.2.2 Modified Normalized Difference Water Index 

(MNDWI) 

MNDWI is a metric used for the detection and assessment of 

water bodies in terrestrial landscapes. This index is based on the 

normalized difference between the GREEN and SWIR spectral 

bands of an image. 

 

 𝑀𝑁𝐷𝑊𝐼 =
𝐺𝑅𝐸𝐸𝑁−𝑆𝑊𝐼𝑅

𝐺𝑅𝐸𝐸𝑁+𝑆𝑊𝐼𝑅
,   (2) 
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where  𝑀𝑁𝐷𝑊𝐼 = modified normalized difference water 

index 

 𝐺𝑅𝐸𝐸𝑁 = green band 

 𝑆𝑊𝐼𝑅 = short-wave infrared band 

 

The resulting MNDWI value is obtained using Equation (2) and 

ranges from -1 to 1, where positive values indicate the presence 

of water, since water absorbs radiation in the SWIR bands and 

reflects radiation in the GREEN band. Conversely, negative 

values typically represent terrestrial areas, which tend to reflect 

more radiation in GREEN than SWIR. 

2.2.2.3 Normalized Difference Tillage Index (NDTI) 

The NDTI is a metric employed for the detection of tilled soil 

areas. Its incorporation as an analysis variable has contributed to 

distinguishing agricultural zones from bare soil. The index is 

calculated using Equation (3), which employs the SWIR1 and 

SWIR2 bands from Landsat mission sensors, demonstrating 

enhanced performance in identifying silt and clay soils. 

 

 𝑁𝐷𝑇𝐼 =
𝑆𝑊𝐼𝑅1−𝑆𝑊𝐼𝑅2

𝑆𝑊𝐼𝑅1+𝑆𝑊𝐼𝑅2
    (3) 

 

where  𝑁𝐷𝑇𝐼 = normalized difference tillage index 

 𝑆𝑊𝐼𝑅1 = short-wave infrared 1 band 

 𝑆𝑊𝐼𝑅2 = short-wave infrared 2 band 

2.2.2.4 Bare Soil Index (BSI) 

BSI is used to assess the extent of bare soil areas within a 

landscape. This metric is defined by Equation (4). 

 

 𝐵𝑆𝐼 =
(𝑅𝐸𝐷+𝑆𝑊𝐼𝑅)−(𝑁𝐼𝑅+𝐵𝐿𝑈𝐸)

(𝑅𝐸𝐷+𝑆𝑊𝐼𝑅)+(𝑁𝐼𝑅+𝐵𝐿𝑈𝐸)
    (4) 

 

where  𝐵𝑆𝐼 = bare soil index 

 𝑅𝐸𝐷 = red band 

 𝐵𝐿𝑈𝐸 = blue band 

 𝑆𝑊𝐼𝑅 = short-wave infrared band 

 𝑁𝐼𝑅 = near-infrared band 

 

The resulting BSI value ranges from -1 to 1, where negative 

values indicate the presence of bare soil, since surfaces lacking 

vegetation reflect more radiation in the NIR band than in the RED 

band. Conversely, positive values suggest the presence of 

vegetation cover, as vegetation reflects similarly in both the NIR 

and RED bands. 

 

2.2.3 Topography 

 

For the topographic analysis, the NASA Shuttle Radar 

Topography Mission (SRTM) Version 3 (V3, 2014) was 

employed. One of the most notable features of the SRTM mission 

is its capability to acquire global-scale topographic elevation 

data. From the SRTM data, a Digital Elevation Model (DEM) of 

the Earth was generated with an approximate spatial resolution 

of 30 m for most regions. The DEM provides detailed 

information about the terrain, including mountains, valleys, and 

land surfaces, and is used in various applications ranging from 

cartography and natural resource management to urban planning 

and scientific research. 

 

Vegetation species are distributed across specific elevation 

intervals, which, to some extent, determine their access to 

moisture, precipitation, temperature, solar exposure, and 

groundwater depth. Likewise, the presence of steep slopes can 

limit water retention from precipitation and result in higher soil 

erosion rates, leading to shallow and poorly developed soils. For 

this reason, the variables selected for analysis include slope, 

topographic position index, roughness, and illumination, with 

elevation serving as the central datum.   

2.2.3.1 Slope 

Slope is derived from the DEM using surface analysis techniques. 

At each point in the DEM, the slope is determined as the change 

in elevation along a specific direction. The resulting slope value, 

expressed in degrees, facilitates the interpretation of terrain 

inclination. This information is crucial for identifying 

mountainous regions and areas with limited water retention, 

among other applications. 

2.2.3.2 Topographic Position Index (TPI) 

TPI evaluates the relative position of a point based on its 

elevation compared to that of its surroundings. It is calculated by 

subtracting the elevation of the point from the average elevation 

of its neighbouring points (see Equation 5), with positive values 

indicating elevated positions (peaks) and negative values 

representing depressions. This index is useful in 

geomorphological studies, terrain classification, and canyon 

detection, providing key insights into landscape structure. 

 

 𝑇𝑃𝐼 = 𝑍 − 𝑍𝑎𝑣𝑔,   (5) 

 

where  𝑇𝑃𝐼 = topographic position index 

 𝑍 = elevation of the point in question 

 𝑍𝑎𝑣𝑔 = average elevation of the neighbouring points in 

a given area 

2.2.3.3 Terrain Roughness 

This variable, calculated according to Equation (6), measures the 

variability of the topography in an area by determining the 

standard deviation of the elevations within a region of the DEM. 

High values indicate rugged terrain with variable elevations, 

whereas low values reflect smoother, more uniform surfaces. 

 

 𝑅 = √∑(𝑍𝑖−𝑍𝑎𝑣𝑔)
2

𝑁
,   (6) 

 

where  𝑅 = terrain roughness 

 𝑍𝑖 = elevation of each pixel within the area of interest 

 𝑍𝑎𝑣𝑔 =  average elevation of all the pixels in the area of 

interest 

 𝑁 = total number of pixels within the area of interest 

2.2.3.4 Terrain orientation (Illumination) 

To approximate terrain orientation, hillshade derived from the 

DEM was employed using a light source set at 180° (from the 

south) with a 45° elevation angle, utilizing the GDAL tool. 

Although hillshade is typically used for visual terrain analysis, it 

was adopted in this study as a quantitative expression of terrain 

orientation (i.e., aspect or exposure). 

 

Terrain orientation significantly influences local and 

microclimatic conditions, particularly on slopes. In the northern 

hemisphere, south-facing slopes receive more solar radiation, 

resulting in warmer and drier conditions, whereas north-facing 

slopes tend to be cooler and more humid, thus promoting more 

robust vegetation development. This variation may determine the 
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presence of distinct vegetation types, making terrain orientation 

a relevant variable for the analysis. 

 

2.2.4 Climatology 

2.2.4.1 Cloud cover percentage 

Using the quality band (pixel_QA) from Landsat images, the 

percentage of cloud presence per pixel was quantified according 

to Equation (7). This value was calculated by dividing the 

number of cloud detections by the number of valid observations 

and multiplying by 100. This analysis resulted in the product 

termed Cloud Observations from Space (COfS), derived through 

CDGM. 

 

 𝐶𝑂𝑓𝑆 =
𝑐𝑙𝑜𝑢𝑑

𝑡𝑜𝑡𝑎𝑙
× 100,    (7) 

 

where  𝐶𝑂𝑓𝑆 = cloud cover percentage 

 𝑐𝑙𝑜𝑢𝑑 = number of cloud detections 

 𝑡𝑜𝑡𝑎𝑙 = number of valid observations 

2.2.4.2 Temperature 

Environmental temperature is a crucial factor in the biological 

processes of plants, influencing transpiration, respiration, and 

growth with both immediate and long-term effects. 

 

In technologically managed agriculture, such as in greenhouses, 

thermal conditions are controlled because the temperature of the 

plant does not always match that of the surrounding 

environment—plants can cool through evaporation or warm via 

irradiation. Specific temperature intervals can either promote or 

limit the development of plant species. 

 

To evaluate the thermal conditions of a pixel, four statistical 

variables were integrated into the model: 

• Annual mean temperature 

• Maximum temperature of the warmest month 

• Minimum temperature of the coldest month 

• Coefficient of variation 

2.2.4.3 Precipitation 

Precipitation is a key climatic factor for vegetation, as it regulates 

the availability of water for plants. Plant species exhibit diverse 

water requirements, ranging from those that thrive in high-

precipitation regions to those adapted to seasonal or permanent 

water scarcity, which ultimately defines their distribution across 

various vegetation types. Precipitation is influenced by 

atmospheric humidity, condensation temperature, and the 

transport of moisture by prevailing winds. Considering the water 

needs of the plant species present in Mexico, vegetation classes 

were delineated based on precipitation value intervals by 

integrating the following four variables into the model: 

• Annual total precipitation 

• Precipitation of the driest month 

• Precipitation of the wettest month 

• Annual precipitation variability 

2.2.4.4 Martonne Aridity Index 

Developed in 1926 by Philippe Martonne, the Martonne Aridity 

Index is a key metric for assessing aridity and classifying climatic 

conditions based on the availability of water in the soil. It is based 

on the relationship between annual precipitation and the average 

temperature of the warmest month, as defined by Equation (8). 

 

 𝑀𝐴𝐼 =
𝑃

𝑇
+ 10,     (8) 

 

where  𝑀𝐴𝐼 = Martonne Aridity Index 

 𝑃 = annual precipitation in millimetres 

 𝑇 = average monthly temperature of the warmest 

month in degrees Celsius 

 

A higher index value indicates more humid climatic conditions, 

while lower values reflect arid conditions. The climatic 

categories include arid, semi-arid, sub-humid, humid, and super-

humid zones, allowing for a detailed analysis of climatic regimes 

across different regions. 

 

2.2.5 Vegetation structure (Canopy height) 

The forest canopy height was estimated using data obtained from 

NASA’s Global Ecosystem Dynamics Investigation (GEDI) 

mission. This system employs Light Detection and Ranging 

(LiDAR) technology mounted on the International Space Station 

to capture the three-dimensional structure of vegetation in forest 

ecosystems worldwide. Data for the national territory were 

downloaded and processed for analysis. 

 

2.2.6 Radar Backscatter Data 

As a complement to the optical Landsat imagery, products 

derived from the radar scenes of the Sentinel-1 satellite were 

utilized. These scenes were pre-processed to the Radiometric 

Terrain Correction (RTC) level using the On-demand platform 

of the Alaska Satellite Facility (HyP3). Subsequently, a weighted 

composite of the available scenes from both orbits was 

generated—known as the Local Resolution Weighted Composite 

(LRW)—using the sensor’s dual polarization. To represent the 

composite in RGB format, a new band was created based on the 

ratio between the gamma polarizations. 

 

The following bands were considered as variables: 

• 𝛾𝑉𝑉
𝜃 𝐿𝑅𝑊 (Vertical-Vertical) 

• 𝛾𝑉𝐻
𝜃 𝐿𝑅𝑊 (Vertical-Horizontal) 

• 𝛾𝑉𝑉
𝜃 /𝛾𝑉𝐻

𝜃 𝐿𝑅𝑊 

 

2.2.7 Geospatial location 

 

Geospatial location is fundamental for the classification of 

vegetation and land-use, as it determines the climatic, 

geographic, and topographic conditions that influence their 

distribution. Factors such as latitude and longitude shape unique 

patterns that explain the predominance of certain vegetation types 

and land uses in different regions. 

 

2.3 Sampling sites 

2.3.1 Geospatial database 

 

Both the training and validation points used for the generation 

and evaluation of the model are stored in a relational PostgreSQL 

database. This database incorporates tables, views, triggers, 

domains, rules, functions, and extensions that optimize data 

management and manipulation, ensuring the integrity, 

centralization, uniformity, and availability of records. 

 

The database includes the PostGIS extension, which enables the 

storage, indexing, and querying of geospatial data, facilitating its 

visualization and analysis through Geographic Information 

Systems (GIS) such as QGIS, which is employed in this case 

study. 
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2.3.2 Training points 

 

The sampling plan implemented for field data collection followed 

a stratified random approach, in which strata were delineated 

based on the vegetation formations classification proposed by 

INEGI in 2014. The spatial distribution of the strata was 

determined by considering the area occupied by each formation 

within the national territory, ensuring the sampling of all 

ecosystems—including those with restricted distribution and 

subject to intense disturbances, such as the Mountain Mesophilic 

Forest (Gual-Díaz and Rendón-Correa, 2014). 

 

Random sampling within each vegetation formation was 

designed to capture a wide range of conditions, including: 

 

a) Variability in land use and vegetation, ranging from 

primary areas to disturbed or secondary sites, as well as 

agricultural and built-up zones. 

b) Ecologically significant sites, such as protected natural 

areas, recharge zones, and priority conservation areas. 

c) Human settlements and urbanized zones. 

 

Sampling intensity was defined based on the area of each 

vegetation formation within the national territory, adjusted using 

Equation (9) to optimize point distribution. Key environmental 

variables were considered to minimize territorial heterogeneity 

and maximize sampling representativeness (Priego-Santander et 

al., 2013; Díaz et al., 2012). 

 

 𝐼 =
𝑛

𝑁
× 100,    (9) 

 

where  𝐼 = sampling intensity expressed as a percentage 

 𝑛 = sample size 

 𝑁 = population size 

 

Each sampling site covered 900 m² (30 x 30 m), equivalent to the 

coverage of a Landsat sensor pixel. To date, 231,000 sampling 

sites have been generated, distributed proportionally to the area 

occupied by each vegetation type, and used for training through 

photointerpretation of satellite images (see Table 1). 

 

2.3.3 Training point labels 

 

The assignment of labels to the training points consisted of 

classifying each sampling site according to the vegetation type, 

its condition, or the land use present. This classification was 

performed through a combined visual interpretation of Landsat 

imagery and very high-resolution images, such as those provided 

by Maxar or Google Earth. This approach enables a precise and 

contextualized assignment of labels in the classification model. 

 

Key Vegetation Type 
National 

Area (%) 

Number of 

Samples 

ACUI Aquaculture 0.1 140 

AGR_AN Annual Agriculture 15.8 36 603 

AGR_PER Permanent 

Agriculture 

0.9 2 148 

AH Human Settlements 1.1 2 565 

BC Cultivated Forest 0.0 88 

BCO/P Primary Coniferous 

Forest 

6.5 15 025 

BCO/S Secondary 

Coniferous Forest 

2.0 4 712 

BE/P Primary Oak Forest 5.4 12 585 

BE/S Secondary Oak 

Forest 

2.6 6 035 

BM/P Primary Mountain 

Mesophilic Forest 

0.7 1 524 

BM/S Secondary Mountain 

Mesophilic Forest 

0.3 588 

EOTL/P Primary Special 

Woody Other Types 

0.1 282 

EOTL/S Secondary Special 

Woody Other Types 

0.1 208 

EOTnL/P Primary Special 

Non-Woody Other 

Types 

0.1 180 

EOTnL/S Secondary Special 

Non-Woody Other 

Types 

0.0 1 

H2O Water Bodies 1.3 3 107 

MXL/P Primary Xerophytic 

Woody Shrubland 

9.3 21 487 

MXL/S Secondary 

Xerophytic Woody 

Shrubland 

1.2 2 699 

MXnL/P Primary Xerophytic 

Non-Woody 

Shrubland 

17.1 39 490 

MXnL/S Secondary 

Xerophytic Non-

Woody Shrubland 

1.6 3 624 

OT Other Lands 0.5 1 224 

P Grassland 15.7 36 273 

SC/P Primary Deciduous 

Tropical Forest 

5.4 12 523 

SC/S Secondary 

Deciduous Tropical 

Forest 

3.6 8 416 

SP/P Primary Evergreen 

Tropical Forest 

4.1 9 407 

SP/S Secondary Evergreen 

Tropical Forest 

1.0 2 287 

SSC/P Primary Semi-

Deciduous Tropical 

Forest 

1.4 3 281 

SSC/S Secondary Semi-

Deciduous Tropical 

Forest 

0.6 1 406 

VHL/P Primary Woody 

Hydrophilic 

Vegetation 

0.6 1 290 

VHL/S Secondary Woody 

Hydrophilic 

Vegetation 

0.0 99 

VHnL/P Primary Non-Woody 

Hydrophilic 

Vegetation 

0.7 1 697 

VHnL/S Secondary Non-

Woody Hydrophilic 

Vegetation 

0.0 6 

Table 1. Samples assigned for each vegetation type. 
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2.4 Implementation of Deep Learning in image classification 

2.4.1 Deep Learning 

 

Deep Learning (DL) is a specialized subfield of Machine 

Learning (ML) focused on the progressive extraction of 

hierarchical representations from data. It is distinguished by the 

construction of multiple successive layers, each capturing 

increasingly significant patterns and features within the dataset. 

The depth of a model refers to the number of layers involved in 

its architecture. Unlike shallow learning, which typically works 

with one or two layers, deep learning models can incorporate 

dozens or even hundreds of layers, all learned automatically 

through exposure to training data. This hierarchical approach 

enables a rich and contextualized representation of information, 

facilitating advanced applications in complex tasks such as 

computer vision, natural language processing, and pattern 

recognition. 

 
Figure 2. Land Use and Vegetation Mapping in Mexico Using Deep Learning Techniques. 

2.4.2 Construction of the Prediction Model 

 

In the context of DL, classifying each pixel in an image to assign 

it a specific category is known as semantic segmentation. This 

approach typically employs architectures based on Convolutional 

Neural Networks (CNNs). For generating geospatial data on 

vegetation and land-use, a supervised classification approach was 

adopted. However, due to the limitation of having only point-

based training data, the application of CNNs was not feasible. 

 

Given that each training point contained relevant features related 

to vegetation, a fully connected neural network, or multilayer 

perceptron, was employed. This model consists of five hidden 

layers with 325 neurons each and an output layer for classifying 

into 123 categories, resulting in a total of 477,548 parameters. 

 

The deep neural network was implemented using the Python 

programming language and features an input layer composed of 

a vector containing the 41 normalized variables defined earlier in 

this study. Throughout the successive layers, these variables are 

progressively transformed until reaching the output layer, which 

is configured with 123 elements corresponding to the 

classification categories. Each output element represents the 

probability that a pixel belongs to a specific category. The final 

label is assigned based on the category with the highest 

probability. 

During model training, a loss function is applied that returns a 

value of "0" in the case of a correct classification; if the label is 

incorrect, the model adjusts its parameters using gradient descent 

and regularization until stability is achieved. To prevent 

overfitting, regularization techniques were implemented, such as 

the Adam optimizer and dropout, which randomly deactivates 

50% of the neurons at the output of each layer during training. 

This improves the model's generalization ability when 

encountering new data. The trained model was then applied to the 

144 tiles covering the country, classifying each pixel. The 

process execution was optimized using Python tools such as 

GDAL, Keras-TensorFlow, and NumPy, along with the use of 

GPUs. This allowed the entire national mosaic to be processed in 

approximately four hours. 

 

This approach followed an agile development scheme, constantly 

integrating advanced techniques and methodological adjustments 

through trial and error and the discovery of new results, ensuring 

the model's adaptability to national geospatial data. 
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3. Results 

Figure 2 presents a graphic representation of the results obtained 

from the application of the predictive model for vegetation and 

land use classification in Mexico. 

 

3.1 Validation of Results 

The validation of the classified images constitutes a crucial stage 

within the production analysis design of INEGI's Statistical and 

Geographical Process Model (MPEG). This process not only 

involves evaluating the classification performed but also 

measuring the performance of the adjusted model in terms of 

accuracy and precision, using an independent validation set 

distinct from the training data. 

 

To ensure robust and reliable results, the validation set must 

adhere to the same classification schema used for the training 

points, thereby enabling the generation of relevant metrics for 

assessing model performance. The primary objectives of this 

phase are: 

 

• Overall Accuracy: Evaluating the percentage of the area 

that has been correctly classified at the national level. 

• Class Accuracy: 

o User Accuracy: For the i-th class, defined as the 

proportion of the area classified as class i that truly 

belongs to class i. 

o Producer Accuracy: For the j-th class, defined as the 

proportion of the area that is currently class j and was 

correctly classified as class j. 

• Spatial Domain Accuracy: For example, assessing 

classification accuracy at the state level. 

 

3.1.1 Model Performance Evaluation 

 

The performance of a machine learning model is measured by its 

ability to generalize correctly on test and validation data while 

maintaining low error levels. Among the metrics used is the 

misclassification rate, which varies according to the importance 

assigned to different types of errors, particularly in critical 

applications such as defining conservation policies in protected 

natural areas. The model errors can be categorized as true 

negatives, false negatives (also known as omission errors), true 

positives, and false positives (also known as commission errors). 

 

To identify these errors, various metrics and techniques were 

employed to evaluate the constructed classification model: 

confusion matrix, overall accuracy, omission and commission 

errors, the Kappa Statistic, and F1 evaluation. The confusion 

matrix is structured with rows representing the actual class and 

columns representing the class assigned by the classifier. From 

this matrix, it is possible to calculate metrics such as false 

positive rates, false negative rates, sensitivity (the ability to detect 

positive cases), and specificity (the ability to correctly identify 

negatives). The generation of the Receiver Operating 

Characteristic (ROC) curve provides a detailed visualization of 

the balance between the model’s sensitivity and specificity. 

 

3.1.2 Field Evaluation and Evaluation of Geospatial Data 

 

The geospatial data generated by the model undergo a rigorous 

accuracy evaluation protocol, which estimates the percentage of 

correctly classified area at various levels. To achieve this, a team 

of interpreters verifies the classifications of the resulting dataset 

following a probabilistic, stratified sampling design, as 

implemented by INEGI. 

 

This process was complemented by field campaigns, during 

which the model's results were validated through comparison 

with direct observations, allowing for the identification of certain 

weaknesses in the model regarding label assignment in the 

training points. 

 

3.2 Limitations 

3.2.1 Geomedian Image Quality: In regions with frequent or 

persistent cloud cover, the quality of Geomedian images is 

compromised, which hinders the precise extraction of 

information. 

 

3.2.2 Errors in Training Data: A rate of up to 50% incorrect 

labels has been detected in the training points, necessitating 

conceptual and strategic adjustments in data interpretation by 

specialists. 

 

3.2.3 Spatial Sampling Imbalance: Although it is not 

feasible to achieve a completely balanced sample for all 

vegetation categories—due to the vast extent of some formations 

(spanning tens of thousands of square kilometres)—a local 

balance can be achieved to improve the representativeness of less 

extensive categories. 

 

3.2.4 Heterogeneity in Accuracy and Separability: Some 

categories, such as mangroves and certain types of tropical 

forests, exhibit high classification reliability (>90%), while 

others demonstrate greater difficulty in being accurately 

identified. 

 

3.2.5 Limitations in Class Separability: These difficulties 

are attributable both to spectral similarity between some 

categories and to issues in the initial label assignment, which 

affects the overall precision of the model. 

 

In summary, the integration of deep learning (DL) improved the 

accuracy of digital vegetation mapping in Mexico, achieving an 

overall accuracy of 77%, representing a notable improvement 

over traditional cartographic classification method. The thematic 

accuracy, which measures the correct classification of vegetation 

types, was evaluated using ISO-2859 standards and reached 

53.1%, indicating misclassification challenges in certain 

vegetation categories. 

 

4. Conclusions 

1. Integrating remote sensing data, fully connected neural 

network algorithms, and GPU processing enabled the 

development of a methodology with high expectations for 

efficiency and scalability in geospatial classification across 

Mexico. This represents a significant advancement that is 

expected to replace conventional methods in the medium term. 

 

2. Compared to other supervised classification techniques 

used in previous exercises, DL techniques provide a significant 

improvement in the accuracy of vegetation and land use mapping 

in Mexico. 

 

3. There is a need for further refinement in class 

differentiation and label consistency. The integration of stratified 

random sampling and key environmental variables enabled the 

capture of a diverse range of vegetative conditions, thereby 

enhancing the model’s predictive performance. However, 

additional refinements are necessary, particularly in the use of 

Geomedian, NDVI, MNDWI, and other spectral indices derived 
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from HLS (Harmonized Landsat-Sentinel) imagery, aiming to 

improve both input resolution and output accuracy. Furthermore, 

incorporating vegetation-related variables, such as canopy height 

and cover—obtainable from the LiDAR sensor aboard the 

International Space Station—has been identified as a critical 

improvement. These advancements would lead to enhance 

classification accuracy and a more representative depiction of 

vegetation dynamics. 

 

4. An assessment employing confusion matrices, Kappa 

statistics, and field validation campaigns strengthened the 

reliability of the model’s outcomes while also revealing potential 

areas of refinement in its implementation. 

 

5. Issues such as low quality of Geomedian in regions 

with persistent cloud cover and errors in training data labelling 

underscore the need to optimize data collection and preparation 

processes, including the validation of labels assigned by the 

teams of specialists. 

 

6. Integrating variables enabling the monitoring of 

seasonal vegetation dynamics is recommended, along with the 

exploration of advanced neural network architectures to improve 

the identification of categories with low spectral separability. 
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