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Abstract 

Soil moisture (SM) is a critical variable for understanding the 
water cycle, climate change, and agricultural management. This 
paper reviews advanced remote sensing techniques and 
disaggregation algorithms for high-resolution SM mapping, 
focusing on environmental and agricultural applications in North 
Africa and the UAE. Remote sensing methods, including optical 
sensors (e.g., Apparent Thermal Inertia, Temperature Vegetation 
Dryness Index), active microwave sensors (scatterometers, 
Synthetic Aperture Radar), and passive microwave radiometers 
(SMOS, SMAP), are evaluated for their ability to map SM at 
varying spatial and temporal scales. Despite advancements, 
coarse resolution remains a challenge for regional applications. 
To address this, two innovative downscaling algorithms are 
presented: the SMOS Semi-Empirical Method, which fuses 
SMOS data with ECMWF skin temperature and 
MODIS/Sentinel-3 NDVI to achieve 1 km and 300 m resolutions, 
and the Artificial Neural Network (ANN) Method, leveraging 
multi-sensor data to produce 60 m resolution SM maps. These 
algorithms have been validated across diverse environments, 
demonstrating RMSE values of 0.04–0.10 cm³/cm³. The case 
studies presented highlight their operational utility in flash flood 
monitoring (Algeria, Tunisia, UAE), ecosystem dynamics (Chott 
el Djerid, Tunisia), and precision agriculture (East Oweinat, 
Egypt). Future work includes the integration of multi-sensor data, 
to enhance machine learning models, and the improvement of SM 
measurements at deeper soil layers to support applications in arid 
regions. 

Keywords: Soil moisture, remote sensing, disaggregation 
algorithms, spatial resolution, environmental monitoring. 
 
1. Introduction 
Soil moisture (SM) is a key environmental variable that plays a 
crucial role in understanding the water cycle, supporting climate 
change assessments, and enabling better agricultural and 
ecological management. Accurate soil moisture mapping is vital 
for monitoring drought, flood, and irrigation patterns, and it 
supports broader environmental and ecological research. This 
paper summarizes the state-of-the-art techniques for soil 
moisture mapping: first on the remote sensors and methods, and 
then on algorithms to enhance the spatial resolution of soil 
moisture maps. Examples of applications are provided in the 
North of Africa, and the UAE. 
 
1.1 Remote Sensing Soil Moisture Mapping Techniques 
Remote sensing technologies and techniques for soil moisture 
mapping have evolved significantly over the past several 
decades, representing a critical advancement in our ability to 
monitor one of the most important variables in the Earth's 
hydrological cycle. These technologies leverage multiple sensor 
types and platforms to overcome inherent challenges such as 
vegetation effects, atmospheric conditions including cloud cover, 
temporal sampling limitations, and spatial resolution constraints. 
The evolution from early experimental approaches to operational 
satellite missions has revolutionized our understanding of soil 

moisture dynamics at scales ranging from local agricultural fields 
to global climate monitoring systems. 
An overview of the different remote sensing approaches for 
mapping soil moisture at different spatial and temporal scales is 
given below, with each technique offering unique advantages and 
facing specific limitations that must be carefully considered in 
application design: 
1.1.1 Optical Sensors 
Optical sensors measure reflected and emitted electromagnetic 
radiation from the Earth's surface across the visible, near-
infrared, and thermal infrared portions of the spectrum, which 
can be used to estimate soil moisture indirectly through various 
physical relationships. These sensors have been among the 
earliest tools used for environmental monitoring and continue to 
play an important role in soil moisture estimation, particularly 
when integrated with other sensor types in multi-sensor 
approaches. 
Two major techniques have emerged as particularly significant 
in optical-based soil moisture estimation: 
 Apparent Thermal Inertia (ATI) 
The Apparent Thermal Inertia (ATI) method estimates soil 
moisture by analyzing diurnal variations in land surface 
temperature, building on the fundamental principle that thermal 
inertia is strongly correlated with soil moisture content [1]. The 
physical basis of this approach lies in the fact that water has a 
high specific heat capacity and thermal conductivity compared to 
dry soil minerals, meaning that wet soils exhibit smaller 
temperature fluctuations throughout the day-night cycle than dry 
soils. The ATI is calculated using the relationship: 

𝐴𝑇𝐼 =
ଵି௔௟௕௘ௗ௢

୼்
,    (1) 

where ΔT represents the diurnal temperature range and albedo 
represents the surface reflectance. This technique has been 
successfully applied using data from various thermal infrared 
sensors, including the Advanced Very High Resolution 
Radiometer (AVHRR), Moderate Resolution Imaging 
Spectroradiometer (MODIS), and Landsat Thermal Infrared 
Sensor (TIRS). However, the method requires clear-sky 
conditions for accurate temperature measurements and can be 
affected by variations in surface roughness, vegetation cover, and 
atmospheric conditions [2]. 
 Temperature Vegetation Dryness Index (TVDI) 
The Temperature Vegetation Dryness Index (TVDI) represents a 
more sophisticated approach that uses the relationship between 
land surface temperature (LST) and vegetation health, typically 
represented by the Normalized Difference Vegetation Index 
(NDVI), to derive soil moisture estimates [3]. This method is 
based on the triangular or trapezoidal relationship observed in 
LST-NDVI feature space, where the distribution of pixels forms 
a characteristic pattern that reflects varying combinations of 
vegetation cover and moisture availability. 
The TVDI is calculated as: 

𝑇𝑉𝐷𝐼 =
௅ௌ்ି௅ௌ்೘೔೙

௅ௌ ೘்ೌೣି௅ௌ்೘೔೙
,   (2) 

where 𝐿𝑆𝑇௠௜௡ and 𝐿𝑆𝑇௠௔௫ represent the minimum and maximum 
land surface temperatures for a given NDVI value, derived from 
the dry and wet edges of the LST-NDVI scatter plot. Values 
range from 0 (wet conditions) to 1 (dry conditions). This 
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approach has been widely validated and applied using data from 
MODIS, AVHRR, and other optical sensors, with particular 
success in agricultural and semi-arid regions [4,5]. 
 Limitations of Optical Sensors 
However, optical sensors face significant limitations that restrict 
their applicability in certain environments and conditions. The 
primary challenge is the inability to penetrate dense vegetation 
canopies, which means that in heavily vegetated areas, the signal 
primarily reflects canopy properties rather than underlying soil 
conditions. Additionally, cloud cover completely blocks optical 
observations, creating significant gaps in temporal coverage, 
particularly in tropical and temperate regions with frequent cloud 
cover. The indirect nature of soil moisture estimation through 
optical methods also introduces uncertainties, as the relationship 
between surface temperature, vegetation indices, and actual soil 
moisture can be influenced by factors such as atmospheric 
conditions, soil type, surface roughness, and vegetation 
phenology [6]. 
1.1.2 Active Microwave Sensors 
Active microwave sensors, including scatterometers and 
Synthetic Aperture Radar (SAR) systems, represent a significant 
advancement in soil moisture remote sensing capabilities due to 
their ability to penetrate cloud cover and operate independently 
of solar illumination. These systems transmit microwave pulses 
and measure the backscattered energy, which is sensitive to the 
dielectric properties of the target surface. 
 Scatterometers 
Scatterometers, such as those aboard the European Remote 
Sensing (ERS) satellites and the Advanced Scatterometer 
(ASCAT) on MetOp satellites, provide global coverage with 
relatively coarse spatial resolution (typically 25-50 km). The 
backscatter coefficient measured by these instruments is related 
to soil moisture through the soil's dielectric constant, which 
increases significantly with water content. The relationship 
between backscatter and soil moisture has been extensively 
studied and forms the basis for operational soil moisture products 
[7,8] 
The Vienna University of Technology (TU Wien) change 
detection method represents one of the most successful 
approaches for scatterometer-based soil moisture retrieval. This 
method uses the relative position of current backscatter 
observations between historically observed wet and dry reference 
values to estimate soil moisture as a degree of saturation [9]. 
 Synthetic Aperture Radar (SAR) 
SAR systems, including those on Sentinel-1, RADARSAT, and 
ALOS PALSAR missions, offer much higher spatial resolution 
(typically 10-100 m) compared to scatterometers, making them 
valuable for regional and local applications. The relationship 
between SAR backscatter and soil moisture is complex and 
depends on multiple factors including radar frequency, 
polarization, incidence angle, surface roughness, and vegetation 
characteristics [10,11]. 
Different radar frequencies exhibit varying sensitivities to soil 
moisture: L-band (1-2 GHz) provides the deepest penetration 
into vegetation and soil, making it most suitable for soil moisture 
estimation beneath moderate vegetation cover; C-band (4-8 
GHz) is commonly used in operational missions like Sentinel-1, 
offering a balance between vegetation penetration and sensitivity 
to surface conditions, and X-band (8-12 GHz) is highly sensitive 

to surface roughness and shallow soil properties, but limited 
vegetation penetration. 
 Challenges with Active Microwave Sensors 
Despite their advantages, active microwave sensors face several 
significant challenges. Speckle noise is inherent to all coherent 
radar systems and can significantly degrade measurement 
accuracy, requiring sophisticated filtering and processing 

techniques. The sensitivity to surface roughness can be both an 
advantage and a limitation, as it provides information about 
surface conditions but also introduces variability that must be 
accounted for in soil moisture retrieval algorithms. Additionally, 
while these systems can penetrate light to moderate vegetation, 
dense canopies still present challenges for accurate soil moisture 
estimation [12]. 
The temporal coverage limitation is another significant 
constraint, with most SAR systems providing revisit times of 6-
12 days for full coverage, which may be insufficient for capturing 
rapid soil moisture dynamics associated with precipitation events 
or irrigation practices. 
1.1.3 Microwave Radiometers 
Microwave radiometers represent the current state-of-the-art for 
global soil moisture monitoring from space, offering direct 
sensitivity to soil moisture through measurement of naturally 
emitted microwave radiation. The physical principle underlying 
this approach is based on the strong contrast in dielectric 
properties between water and dry soil, which significantly affects 
the soil's microwave emissivity. 
 SMOS Mission 
The European Space Agency's Soil Moisture and Ocean Salinity 
(SMOS) mission was launched in 2009 and it was the first 
dedicated soil moisture satellite mission. SMOS carries the 
Microwave Imaging Radiometer using Aperture Synthesis 
(MIRAS), an L-band (1.4 GHz) interferometric radiometer that 
measures brightness temperature with global coverage every 2-3 
days [13]. The L-band frequency was specifically chosen because 
it represents an optimal balance between sensitivity to soil 
moisture and minimal interference from vegetation and 
atmospheric effects. 
The SMOS retrieval algorithm is based on the τ-ω model, which 
accounts for vegetation effects through the vegetation optical 
depth (τ) and single scattering albedo (ω) parameters. Despite its 
groundbreaking capabilities, SMOS faces challenges including 
radio frequency interference (RFI) from human activities, 
particularly in developed regions, and spatial resolution 
limitations [14]. 
 SMAP Mission 
NASA's Soil Moisture Active Passive (SMAP) mission, 
launched in 2015, represents the most advanced soil moisture 
satellite currently in operation. SMAP was originally designed to 
combine L-band radiometer and radar measurements to achieve 
both high accuracy and improved spatial resolution. Although the 
radar component failed early in the mission, the radiometer 
continues to provide high-quality global soil moisture data with 
2-3 day revisit time [15]. 
SMAP's radiometer operates at 1.41 GHz (L-band) with 
horizontal and vertical polarizations, measuring brightness 
temperature that is converted to soil moisture using sophisticated 
retrieval algorithms. The mission has achieved remarkable 
accuracy, with soil moisture estimates typically within 0.04 
cm³/cm³ of ground-based measurements under optimal 
conditions [16]. 
 
1.2 Soil Moisture Disaggregation Algorithms to Enhance the 
Spatial Resolution  
1.2.1 Soil Moisture Downscaling Algorithms: From 
Coarse Satellite Observations to High-Resolution Mapping 
To address the fundamental limitations of the coarse spatial 
resolution inherent in current operational soil moisture satellite 
missions, novel disaggregation algorithms have been specifically 
designed and rigorously developed to downscale low-resolution 
satellite data into high-resolution soil moisture maps. These 
advanced methodologies are essential to bridge the gap between 
the capabilities of current spaceborne sensors and the detailed 
spatial information requirements of specific applications such as 
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precision crop management, localized flood monitoring, drought 
forecasting at agricultural scales, irrigation scheduling, and 
ecosystem monitoring. 
The challenge of spatial resolution enhancement in soil moisture 
remote sensing stems from the fundamental physics of 
microwave radiometry, where larger antenna apertures or 
interferometric techniques are required to achieve finer spatial 
resolution. Since physical constraints limit the practical size of 
spaceborne antennas, mathematical and algorithmic approaches 
to spatial disaggregation have become crucial for extracting 
maximum value from existing satellite observations. These 
downscaling techniques leverage the complementary strengths of 
multiple sensor systems and exploit the spatial relationships 
between soil moisture and various environmental variables that 
can be observed at higher spatial resolution. 
1.2.2 Theoretical Foundation of Soil Moisture 
Downscaling 
The theoretical framework underlying soil moisture downscaling 
is based on the assumption that, while coarse-resolution soil 
moisture observations provide accurate absolute values over 
large areas, soil moisture exhibits spatial patterns that are 
correlated with other observable environmental variables at finer 
spatial scales. These relationships can be exploited through 
various mathematical approaches, ranging from simple linear 
regressions to complex machine learning algorithms. The 
fundamental principle is that while coarse-resolution soil 
moisture observations provide accurate absolute values over 
large areas, the spatial variability within these areas can be 
estimated using auxiliary high-resolution data that correlate with 
soil moisture patterns. 
The effectiveness of downscaling approaches depends on several 
critical factors: a) Scale Relationships refer to the degree to 
which soil moisture patterns at fine scales are predictable from 
coarse-scale observations and auxiliary variables, b) Auxiliary 
Data Quality in terms of spatial resolution, temporal 
consistency, and physical relevance of supporting datasets, 
c) Environmental Homogeneity refers to the spatial variability 
of soil properties, topography, and land cover within the coarse-
resolution pixels, and the d) Temporal Stability refers to the 
consistency of relationships between soil moisture and auxiliary 
variables across different seasons and weather conditions 
Two innovative algorithms developed by the research 
community, which are currently operational and widely used in 
scientific and operational applications, demonstrate different 
approaches to this challenge: 
 SMOS Semi-Empirical Downscaling Method 
The SMOS Semi-Empirical Method represents a sophisticated 
statistical approach that downscales soil moisture data from the 
native SMOS resolution of approximately 40-50 km (gridded at 
25 km) to significantly finer resolutions of 1 km and, in recent 
implementations, down to 300 m. This method exemplifies the 
power of multi-sensor data fusion and has been continuously 
refined and validated since its initial development [16,17,18]. 
The algorithm combines data from multiple complementary 
sources, each contributing unique information to the downscaling 
process: 
- SMOS Brightness Temperature and Soil Moisture Data: 

The foundation of the method relies on SMOS Level 1 
brightness temperature observations and Level 2 soil 
moisture retrievals at their native resolution (~50 km, 
gridded at 25 km). The brightness temperature data provides 
the fundamental microwave emission measurements that are 
directly related to soil dielectric properties, while the Level 
2 soil moisture products incorporate sophisticated retrieval 
algorithms that account for vegetation effects, surface 
roughness, and atmospheric corrections. 

- ECMWF Skin Temperature Data: High-resolution skin 
temperature data from the European Centre for Medium-
Range Weather Forecasts (ECMWF) reanalysis provides 
crucial information about surface thermal conditions at 
spatial resolutions of approximately 9 km. Skin temperature 
serves as a proxy for surface moisture conditions and energy 
balance, exploiting the well-established relationship 
between surface temperature and soil moisture availability. 
This relationship is particularly strong in water-limited 
environments where evapotranspiration is constrained by 
soil moisture availability. 

- MODIS and Sentinel-3 NDVI Data: The Normalized 
Difference Vegetation Index (NDVI) from both the 
Moderate Resolution Imaging Spectroradiometer (MODIS) 
at 250-1000 m resolution and Sentinel-3 Ocean and Land 
Colour Instrument (OLCI) at 300 m resolution provides 
high-resolution information about vegetation vigor and 
coverage. Vegetation indices serve as indicators of water 
stress and are strongly correlated with soil moisture 
conditions, particularly during the growing season. The 
integration of both MODIS and Sentinel-3 NDVI allows for 
improved temporal coverage and spatial consistency, with 
Sentinel-3's finer spatial resolution being particularly 
valuable for the 300 m downscaling implementation. 

The SMOS Semi-Empirical Method employs a multi-step 
approach that combines linear regression models with spatial 
interpolation techniques to generate higher-resolution soil 
moisture maps. The core algorithm architecture consists of 
several key components: 
The method establishes empirical relationships between coarse-
resolution SMOS observations and the spatial patterns observed 
in auxiliary high-resolution datasets. These relationships are 
typically expressed as: 

𝑆𝑀௙௜௡௘(𝑥, 𝑦) = 𝑓൫𝑆𝑀௖௢௔௥௦௘(𝑥, 𝑦), 𝐿𝑆𝑇(𝑥, 𝑦),

𝑁𝐷𝑉𝐼(𝑥, 𝑦), auxiliary variables (𝑥, 𝑦)൯, 

(3) 

where 𝑆𝑀௙௜௡௘ represents the high-resolution soil moisture 
estimate, 𝑆𝑀௖௢௔௥௦௘ is the coarse SMOS observation, and the 
auxiliary variables are evaluated at the target fine resolution. A 
critical innovation in the method is the implementation of spatial 
consistency constraints that ensure the downscaled high-
resolution estimates, when aggregated back to the original coarse 
resolution, match the original SMOS observations. This “mass 
conservation“ principle is essential to maintain the radiometric 
accuracy of the original satellite observations while adding 
spatial detail. The algorithm also incorporates temporal filtering 
and stability checks to ensure that the relationships between soil 
moisture and auxiliary variables remain consistent over time. 
This includes seasonal adjustments and detection of anomalous 
conditions that might invalidate the established regression 
relationships. 
Recent implementations have incorporated an adaptive moving 
window technique that adjusts the spatial extent of the regression 
analysis based on local environmental conditions and data 
availability [17]. This approach improves the robustness of the 
method in heterogeneous landscapes and reduces artifacts at the 
boundaries between different land cover types. 
The accuracy and reliability of the SMOS Semi-Empirical 
Method have been extensively validated across multiple 
European soil moisture networks, including sites from the 
International Soil Moisture Network (ISMN) and regional 
monitoring networks such as the Spanish REMEDHUS network, 
the French SMOSMANIA network, and various sites across 
central Europe. Validation studies have consistently 
demonstrated: 
- Root Mean Square Error (RMSE) values typically ranging 

from 0.04 to 0.08 cm³/cm³ for 1 km resolution products, 
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meeting or exceeding the accuracy requirements for most 
agricultural applications. The 300 m resolution products 
show slightly higher RMSE values (0.06-0.10 cm³/cm³) but 
still maintain acceptable accuracy for local-scale 
applications. 

- High correlation coefficients (typically >0.7) between 
downscaled products and independent high-resolution soil 
moisture measurements, indicating good preservation of 
spatial patterns and gradients. 

- Stable performance across different seasons and weather 
conditions, with particular strength during periods of 
moderate vegetation cover and clear-sky conditions. 

- Successful application of the method across different 
European climatic zones, from Mediterranean to temperate 
continental conditions, demonstrating the robustness of the 
underlying physical relationships. 

The SMOS Semi-Empirical Method has been successfully 
implemented in operational frameworks and is currently used in 
various applications, including agricultural decision support, 
hydrological modeling, climate monitoring, and environmental 
management. 
 Artificial Neural Network (ANN) Method  
The Artificial Neural Network (ANN) Method represents a 
paradigm shift toward machine learning-based approaches for 
soil moisture downscaling, leveraging the power of deep learning 
and advanced pattern recognition to generate exceptionally high-
resolution soil moisture maps with spatial resolutions 
approaching 60 m. This technique demonstrates the potential of 
artificial intelligence in environmental remote sensing and has 
shown remarkable success in creating highly detailed, accurate 
soil moisture products that approach the spatial resolution 
requirements of field-scale agricultural applications. 
The ANN method employs a sophisticated multi-layer neural 
network architecture specifically designed for spatial 
downscaling applications. The network architecture typically 
consists of: a) input layer designed to accommodate multiple 
input variables with different spatial and temporal characteristics, 
including both continuous variables (temperature, precipitation, 
spectral reflectances) and categorical variables (land cover, soil 
type), b) hidden layers: Multiple hidden layers with varying 
numbers of neurons, typically employing rectified linear unit 
(ReLU) activation functions to capture non-linear relationships 
between input variables and soil moisture. The number of hidden 
layers and neurons is optimized through systematic testing and 
cross-validation procedures. And c) output layer: a single 
neuron with linear activation function that produces the soil 
moisture estimate, with values constrained to physically realistic 
ranges (typically 0-0.5 cm³/cm³). 
Regularization techniques include the implementation of dropout 
layers, batch normalization, and L2 regularization to prevent 
overfitting and improve generalization capabilities across 
different environmental conditions. 
The ANN method distinguishes itself through the integration of 
a diverse range of data sources, each contributing unique 
information about the environmental conditions that influence 
soil moisture patterns: 
- ERA5-Land Precipitation Data: High-resolution (9 km, 

hourly) precipitation data from the ERA5-Land reanalysis 
provides crucial information about water inputs to the soil 
system. The algorithm incorporates not only instantaneous 
precipitation values, but also accumulated precipitation over 
various time periods (1, 3, 7, and 30 days) to capture the 
temporal dynamics of soil moisture response to rainfall 
events. 

-  MODIS Land Surface Temperature Data: Daily land 
surface temperature observations from MODIS Terra and 
Aqua satellites at 1 km resolution provide information about 

surface energy balance and thermal conditions. The method 
incorporates both daytime and nighttime temperature 
observations, as well as derived metrics such as diurnal 
temperature range and thermal amplitude, which are related 
to surface moisture conditions through thermal inertia 
effects. 

Sentinel-2 Multi-Spectral Reflectances: The method leverages 
the full spectral capability of Sentinel-2 MSI (Multispectral 
Instrument) observations, incorporating reflectance values from 
all relevant spectral bands at 10-20 m spatial resolution. This 
includes: a) Visible bands for surface composition analysis, 
b) Near-infrared bands for vegetation structure and vigor 
assessment, c) Short-wave infrared bands for moisture content 
estimation in vegetation and exposed soil, d) Red-edge bands 
for detailed vegetation stress and chlorophyll content analysis 
Vegetation and Soil Indices: A comprehensive suite of spectral 
indices derived from Sentinel-2 data, including: a) Vegetation 
Indices: NDVI, Enhanced Vegetation Index (EVI), etc., 
b) Water Content Indices: Normalized Difference Water Index 
(NDWI), etc., c) Soil Indices: Bare Soil Index (BSI), Normalized 
Difference Soil Index (NDSI), e) Topographic Data: High-
resolution digital elevation models (DEM) and derived 
topographic parameters that influence soil moisture patterns 
through their effects on drainage, solar radiation, and water 
accumulatio, such as elevation, slope, aspect, curvature... f) Solar 
Radiation Indices, g) Soil Composition Data (not always 
available)  
The development and optimization of the ANN model involves 
sophisticated training procedures to maximize performance 
while ensuring robust generalization. The ANN method was 
initially developed and extensively validated over Spain's Central 
Plateau region, which provides an ideal testbed due to its diverse 
environmental conditions, ranging from agricultural areas to 
natural ecosystems, and varying topographic and climatic 
conditions. The validation process involved: a) Ground truth 
data collection through extensive field campaigns and 
permanent monitoring networks (e.g. REMEDHUS) providing 
high-quality soil moisture measurements at multiple depths and 
scales for model training and validation, b) Performance 
metrics including root mean square error (RMSE), mean 
absolute error (MAE), correlation coefficient, and bias, as well as 
spatial metrics assessing pattern fidelity and edge preservation, 
and c) Seasonal and interannual validation: Long-term 
validation studies demonstrating consistent performance across 
different years and seasons, including extreme events such as 
droughts and flood conditions. 

The successful application of the ANN method to North African 
regions represents the demonstration of the technique's 
transferability and robustness across different climatic and 
environmental conditions. 

2. Sample Applications of Advanced Soil Moisture 
Downscaling in North Africa: Case Studies in North Africa 
and the UAE and Operational Implementations 
The disaggregation algorithms developed and refined since 2008 
have been applied to several critical practical scenarios across 
North Africa and the Middle East, demonstrating their utility and 
operational value for a range of environmental monitoring, 
agricultural management, and disaster response applications. 
These real-world implementations serve as proof-of-concept 
demonstrations that bridge the gap between advanced remote 
sensing research and practical societal benefits, while 
highlighting the transformative potential of high-resolution soil 
moisture information for addressing pressing challenges in 
water-limited environments. 
The selection of North African study sites was motivated by 
several factors: the region's vulnerability to extreme weather 
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events, water scarcity challenges, the presence of unique 
ecosystems under environmental stress, and ambitious 
agricultural development projects in arid lands. These 
applications collectively demonstrate the versatility and 
robustness of the downscaling algorithms across diverse 
environmental conditions, from coastal Mediterranean climates 
to hyperarid desert environments, and across various temporal 
scales from rapid flood events to seasonal ecosystem dynamics. 
 
2.1 Flash Flood Monitoring and Emergency Response 
Systems 
2.1.1 Flash Flood Events in Algeria and Tunisia (May 
2021) 
The catastrophic flash flood events that occurred in May 2021 
across northern Algeria and Tunisia provided a critical 
opportunity to evaluate the operational potential of high-
resolution soil moisture data for disaster response and emergency 
management applications (Fig. 1). These events, characterized by 
intense rainfall rates exceeding 50 mm/hour over periods of 2-6 
hours, resulted in significant economic damages, infrastructure 
destruction, and unfortunately, loss of life across multiple urban 
and rural areas. 
The disaggregation algorithms were rapidly deployed to process 
SMOS observations and generate 1 km resolution soil moisture 
maps covering the affected regions during the pre-flood, flood, 
and post-flood periods. The enhanced spatial resolution proved 
crucial for several aspects of the emergency response: 
The high-resolution maps revealed that antecedent soil moisture 
conditions varied significantly across the landscape, with some 
areas showing saturation levels approaching 0.3-0.4 m³/m³ due to 
earlier spring rainfall, while others remained relatively dry (<0.1 
m³/m³). This spatial variability in initial conditions was invisible 
in coarse-resolution products, but is critical to understand flood 
susceptibility patterns. 
During the flood events, algorithms identified areas experiencing 
rapid soil moisture increases, with maximum detected values 
reaching 0.5 m³/m³ in valley bottoms and urban areas with poor 
drainage. The 1 km spatial resolution allowed the identification 
of specific areas at high risk. 
Following the flood events, the continued monitoring revealed 
the spatial patterns and temporal dynamics of soil moisture 
recession, providing valuable information for assessing ongoing 
landslide risks, planning reconstruction activities, and 
understanding the hydrological impacts on local water resources. 
2.1.2 United Arab Emirates Flash Flood Monitoring (July 
2022) 
The flash flood events that occurred during July 27-29, 2022, in 
the eastern Emirates of Fujairah and the Kalba region provided 
an additional validation opportunity in a different climatic and 
topographic setting (Fig. 2). These events were particularly 
significant due to their occurrence in typically hyperarid 
environments where annual rainfall averages less than 100 mm, 
making the region highly vulnerable to flash flooding when 
intense precipitation does occur. 
The application of the downscaling algorithms in this context 
revealed several unique insights:  
- Desert Soil Response Characteristics: The high-resolution 

soil moisture maps revealed that desert soils in the UAE 
exhibit extremely rapid response to precipitation inputs, 
with soil moisture levels increasing from near-zero baseline 
conditions (<0.02 m³/m³) to saturation levels (>0.4 m³/m³) 
within hours of rainfall initiation. This rapid response time 
has critical implications for flood warning systems in arid 
regions. 

- Topography Controls on Soil Moisture Distribution: The 
1 km resolution maps clearly delineated the strong 
topographic controls on soil moisture distribution, with dry 

riverbed systems showing the highest moisture 
accumulation and longest retention times.  

- Urban-Rural Differences: The enhanced spatial resolution 
allowed for clear differentiation between urban and rural 
soil moisture responses, due to impermeable urban surfaces, 
while agricultural areas showed more complex patterns. 

- Identification of critical infrastructure elements (roads, 
telecommunications, power systems) in areas of high soil 
moisture accumulation, supporting post-event damage 
assessment and future resilience planning efforts. 
 

2.2 Ecosystem Monitoring and Environmental 
Conservation 

2.2.1 Chott el Djerid Ecosystem Dynamics 
Chott el Djerid, Tunisia's largest salt lake and one of the most 
distinctive ecosystems in the Sahara Desert, represents a unique 
environmental monitoring challenge due to its extreme temporal 
variability, harsh environmental conditions, and ecological 
significance. This ephemeral salt lake system, covering 
approximately 7,000 km² at maximum extent, exhibits dramatic 
seasonal and interannual fluctuations in water levels, salinity, and 
biological activity that are closely coupled to regional climate 
patterns and groundwater dynamics. 
The application of 300 m resolution soil moisture mapping to 
Chott el Djerid monitoring (Fig. 3) represents a significant 
advancement in understanding the complex hydro-ecological 
processes governing this unique ecosystem: 
- Seasonal Water Balance Dynamics: The high-resolution 

soil moisture maps revealed seasonal spatial patterns, 
micro-topographic controls on water retention, revealing 
that small variations in elevation influence local hydrology 
and ecosystem structure. 

- Evaporation Process Characterization: During the 
intense summer evaporation period (June-September), soil 
moisture maps documented the spatial progression of 
desiccation across the lake bed. The maps revealed that 
evaporation rates vary significantly across the lake surface 
due to variations in salt crust thickness, substrate 
composition, and micro-meteorological conditions. 

- Groundwater-Surface Water Interactions: The 
continuous monitoring capability provided by the 
downscaling algorithms enabled the detection of 
groundwater discharge zones around the lake periphery, 
where slightly elevated soil moisture levels persist even 
during dry periods. These zones are habitat areas for 
specialized halophytic vegetation communities and serve as 
refugia for wildlife during extreme dry periods. 

- Ecological Habitat Mapping: The detailed soil moisture 
information, combined with optical satellite data, enabled 
mapping of distinct ecological zones within the Chott el 
Djerid system: permanent brine pools, seasonal wetlands, 
salt flats and transition zones. 

- Climate Change Impact Assessment revealing trends 
toward longer dry periods, more intense, but briefer wet 
periods, and shifts in the spatial patterns of water retention 
that have implications for ecosystem resilience. 

- Conservation Management Applications: The detailed 
ecosystem monitoring data supports several critical 
conservation management applications.Broader Ecosystem 
Monitoring Applications. 
 

2.3 Agricultural Resource Management and Food Security 

2.3.1 East Oweinat Agricultural Development Project 
The East Oweinat region of Egypt represents one of the most 
ambitious agricultural land reclamation projects in the world, 
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involving the transformation of over 200,000 hectares of 
hyperarid desert land into productive agricultural areas through 
groundwater irrigation from the Nubian Sandstone Aquifer. This 
project, initiated in the 1980s and continuing today, presents 
unique challenges for water resource management due to the 
extreme aridity (annual rainfall <5 mm), high evapotranspiration 
rates (>2000 mm/year), and the finite nature of the groundwater 
resource. 
The application of 60 m resolution soil moisture maps generated 
by the ANN method has provided insights into agricultural water 
management practices and has become an integral component of 
precision agriculture implementation in this challenging 
environment (Fig. 4): 
- Irrigation System Optimization: The ultra-high spatial 

resolution of the soil moisture maps enables monitoring of 
individual irrigation pivots (typically 50-125 hectares each) 
and detection of within-field variability that was previously 
invisible to farm managers. Key applications include the 
detection of mechanical problems in center pivot irrigation 
systems through identification of under-irrigated sectors, 
assessment of irrigation uniformity, identification of areas 
with different soil hydraulic properties that require modified 
irrigation management. 

- Crop Water Stress Monitoring: The combination of high-
resolution soil moisture data with vegetation indices enables 
early detection of crop water stress conditions. 

- Water Use Efficiency Analysis for the analysis of 
agricultural water use efficiency, and Soil Salinity 
Management.  

- Precision Agriculture Implementation: The 60 m 
resolution soil moisture maps will enable precision 
agriculture applications such as variable rate irrigation, 
precision fertilizer application, or harvest planning. 
Economic and Environmental Impact Assessment 
 

3. Conclusion and Future Directions 
The importance of combining innovative remote sensing 
technologies and data analytics to improve soil moisture 
monitoring has been presented. Advanced remote sensing 
techniques such as microwave radiometry provide nowadays 
valuable soil moisture data at the global scale. In a near future, 
possibly GNSS-R will be a gap filler between current ESA 
SMOS and NASA SMAP, and future ESA CMIR missions. 
However, limitations such as coarse resolution remain a 
challenge for regional applications. These limitations can be 
overcome by using disaggregation algorithms to downscale low-
resolution satellite data into high-resolution soil moisture maps. 
These algorithms have significant implications for agriculture, 
flood management, and environmental monitoring, where high-
resolution data can support more precise decision-making. 
Looking ahead, the integration of multiple sensor types, 
improved machine learning models, and better regional 
calibration will be essential for advancing soil moisture mapping 
capabilities.  
Future developments will likely focus on enhancing the accuracy 
of soil moisture measurements at deeper soil layers, improving 
the resolution of global datasets, and refining the tools needed to 
apply these technologies in real-world applications, particularly 
in arid and semi-arid regions. 
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Figure 1. 1 km 3-day SMOS SM over the Chott el Djerid lake. 

 
 

 
Figure 2. Rain rate and 1 km 3-day SMOS SM over the UAE. 
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Figure 3. 300 m 3-day SMOS SM over the Chott el Djerid lake. 

 
 

 
Figure 4. (left) CCI SM at 60 m over East Oweinat, (b) and (c) successive zooms over a specific region on April 1, 2021
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