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Abstract 

Rapid urbanisation impacts land use and land cover (LULC), contributing to environmental challenges such as urban heat islands 

(UHIs) and air pollution. This study investigates the morphological changes in Sofia’s LULC from 1990 to 2018, predicts future LULC 

patterns, and evaluates the effectiveness of Cellular Automata-Artificial Neural Network (CA-ANN) models for LULC forecasting. 

Historical LULC data from Urban Atlas (UA) and Corine Land Cover (CLC) and predictive variable data such as population density, 

road networks, water bodies, and elevation are used to model transition potential and simulate future land cover. The analysis revealed 

a slight increase in urban areas, primarily at the expense of cropland, between 1990-2018. Simulations for 2074 suggest a continued 

urban expansion, with a significant cropland decline. Validation of CA-ANN models showed high accuracy but limited ability to 

predict small-scale transitions due to low transition potential. This study highlights the importance of input data quality and temporal 

range in predictive accuracy. Furthermore, it provides valuable insights for urban planning, sustainable development, and climate 

adaptation strategies by offering a data-driven approach to forecasting LULC changes. Future research should integrate additional 

socio-economic factors and alternative approaches to enhance prediction reliability. 

1. Introduction

Rapid urbanisation leads to changes in land use and land cover 

(LULC), adversely affecting the urban environment (Nuissl & 

Siedentop, 2021; Orlov et al., 2023). In the context of global 

climate anomalies, cities around the world face significant 

challenges, leading to phenomena such as urban heat islands 

(UHIs) (Vitanova et al., 2021; Vitanova & Kusaka, 2018), 

heatwaves and the prevalence of air pollution (Shen et al., 2022; 

Wang, 2018). To address these issues, it is essential to develop 

informed urban planning processes accounting for potential risks. 

LULC analysis is an essential field in environmental and urban 

studies (Solomon & Lukas, 2024). It is used to categorise the 

Earth's surface by how it is utilised (land use) and the natural or 

modified physical state of that surface (land cover) (Sudhakar & 

Rao, 2010). LULC information is used in diverse applications, 

including urban planning (Xie & Sun, 2021), ecological 

conservation (Cunha et al., 2021), resource management, and 

environmental impact assessment (Solomon & Lukas, 2024). By 

monitoring changes in LULC, researchers and policymakers can 

understand urban expansion, agricultural growth, and ecosystem 

shifts - insights critical for sustainable management and 

development (Cunha et al., 2021). Predictive models, like 

Cellular Automata (CA), are successfully applied to LULC 

forecasting by capturing temporal dynamics and spatial patterns, 

though often constrained by historical data and computational 

challenges (Ghosh et al., 2017; Li & Li, 2015; Santé et al., 2010).  

Although the dynamics of LULC are analysed on a European 

level (European Environment Agency, 2019), research on the 

application of LULC analysis remains underexplored in the 

context of the city of Sofia, Bulgaria. The General Urban 

Development Plan of Sofia, for example, considers the 

importance of sustainability but lacks an explicit discussion of 

how urban growth affects it (Slaev & Nedovic-Budic, 2017). The 

absence of such an analysis requires categorising the Earth's 

surface according to its utilisation or physical state to understand 

how the morphological structure has changed over the past and 

how it will change in the future (Sudhakar & Rao, 2010). 

The goal of this study is firstly to provide insights into the 

patterns of morphological change of Sofia's LULC between 1990 

and 2018, secondly to predict future LULC, and thirdly to assess 

the effectiveness of the CA-ANN models in predicting future 

development.  

The first aim is achieved by analysing the change in LULC 

classes between 1990 and 2018 and investigating the transitions 

between classes. The second goal is realised by predicting the 

transition potential of the LULC of Sofia. A standard method for 

such problems is to apply an algorithm to predict the transition 

potential of each point of the region of interest in combination 

with an algorithm that also considers the relative position of the 

fact, such as Cellular Automata (Santé et al., 2010). Using 

Artificial Neural Networks (ANN) has shown promising results 

in estimating the transition potential (Li & Li, 2015). The 

simulation results are finally validated, which provides results for 

the third aim. 

Hence, the following research questions are tackled: 

1) How did the LULC of Sofia City change between 1990 and

2018?

2) What will be the impact of urbanisation on the LULC of Sofia

City in 2078?

3)How practical is the CA-ANN approach in predicting future

LULC in Sofia City?

The findings of this research could contribute to more informed 

decision-making in urban planning and prevention of climate 

change effects on human well-being and the environment. 

Moreover, they can serve as a stepping stone for further research 

on the urban climate, UHI, thermal environment and mobility.   

The paper is structured as follows. Section 2 outlines the 

methodology used. The experimental results are described in 

section 3. A discussion and conclusion are given in sections 4 and 

5, respectively. 

2. Methodology

The structure of the methodology is as follows: the first step is 

data collection, which involves obtaining historical LULC and 
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predictive variable data. Then, the data is prepared into maps 

used in subsequent analysis. This is achieved by exploring the 

accuracy of the LULC data, reclassifying it into broad categories 

and transforming the four supporting datasets. In addition, all 

maps are standardised to ensure consistency. The data processing 

included correlation analysis and area change detection to 

understand past and current LULC developments. This is 

followed by transition potential modelling using an ANN, the 

output of which serves as an input to a CA algorithm. First, the 

CA generates a simulation of a LULC map that can be compared 

to an actual LULC map of the same year for validation. If the 

results are satisfactory (< 85 %), the algorithm is used to simulate 

a LULC map in the far future (the 2070s).  This methodology is 

applied in 4 different experiments. The QGIS environment 

(QGIS Development Team, 2024) is used for data preparation 

and processing. Simulations are produced through the 

MOLUSCE plug-in (NextGIS, 2024). 

 

2.1 Study Area 

This study examines Sofia, Bulgaria's capital, and its surrounding 

region. Since 2000, the city's population has experienced a steady 

increase, reaching nearly 1.3 million inhabitants as of 2024 

(World Population Review, 2024), which accounts for 

approximately one-fifth of the country's total population. 

Geographically, Sofia is situated within the Sofia Valley, which 

supports agricultural activities in the adjacent areas. The city is 

encircled by mountainous terrain, where forests constitute the 

predominant land use and land cover (LULC) category. The 

diverse landscape, encompassing variations in land use, natural 

cover, elevation, and population distribution, renders the region 

well-suited for the objectives of this study. 

 

2.2 Data Collection 

The study utilises historical LULC data alongside predictive 

variables encompassing population density, road networks, water 

bodies, and elevation metrics. More information for each type of 

data is provided below.  

 

Corine Land Cover (CLC): The CLC is raster data with 100m 

resolution in the EPSG:4326 projection, derived by classifying 

satellite images (Copernicus Land Monitoring Service, 2024a). 

Each data contains 48 classes of LULC. All available years 

(1990, 2000, 2006, 2012 and 2018) are analysed.  

 

Urban Atlas (UA): The UA is vector data, which provides a high 

level of detail (Copernicus Land Monitoring Service, 2024b). 

The available data spans only three years (2006, 2012, and 2018), 

constraining its applicability for change analysis. The UA dataset 

assesses the input data's influence on the simulation and evaluates 

its accuracy compared to the CLC. Preliminary validation 

indicates that the classification accuracy is superior. 

 

Water bodies: Water bodies and wetness data are provided by 

Copernicus (Copernicus Land Monitoring Service, 2024c). 

Similarly to CLC ones, the data is in raster format with 100m 

resolution in the EPSG:4326 projection. It derives proximity to 

water bodies as a supporting predictor of LULC change. 

 

Population density: Population density data is derived from the 

Google Earth Engine using a script that shows the population 

density for a specific year and region (Schiavina M. et al., 2023). 

For this case, the 2018 data is taken as a raster file in the EPSG: 

32634 projections with the resolution set to 100m.  

 

Road network: The road network data is obtained by the 

TomTom Traffic Stats (TomTom, 2024). The data includes a 

road network dataset of eight functional road classes to categorise 

segments based on their functional importance. 

 

Elevation: The DEM is a tool for generating slope maps within 

the specified area of interest (Copernicus Land Monitoring 

Service, 2024c). It is provided as a raster dataset with a resolution 

of 90 meters, adhering to the EPSG:4326 projection standard. 

 

2.3 Data preparation 

The accuracy of historical LULC data is explored before being 

transformed. A few instances of misclassification are identified 

during the initial validation process in the CLC data. The 

misclassifications are considered during the reclassification step. 

Additionally, CLC is simplified into five broad classes: urban, 

cropland, forests, bare land, and water (Figure 1).  

 

 
Figure 1. Reclassified 2018 CLC LULC map  

 

The aggregation of UA data is conducted similarly to that of 

CLC. Notably, the bare lands classification is underrepresented 

in this context (Figure 2). This dataset is transformed to enhance 

the efficacy of the algorithms and the ensuing analysis. 

Furthermore, multiple iterations of the maps are developed to 

serve various objectives. 

 

 
Figure 2. Reclassified 2018 UA LULC map 

 

The preprocessing of the road network involves reducing the 

network to the main roads by filtering the attributes of the vector. 

Then, the vector is rasterised using the “Rasterize” function in 

QGIS. The resulting raster layer is transformed into a proximity 
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map through the “Proximity” function, where black indicates 

high proximity (Figure 3). 

 

 
Figure 3. Road Proximity Map of Sofia City in 2022 

 

The water bodies and wetness data are cleaned by removing 

wetness areas and leaving only the water bodies. Like the road 

data, it is transformed into a water proximity map (black indicates 

high proximity) (Figure 4).  

 

 
Figure 4. Water Proximity Map of Sofia City in 2018 

 

The population density map has already been prepared during the 

data collection phase, as it is extracted from the Google Earth 

engine in the required format (Figure 5).  

 

Figure 5. Population Density Map of Sofia City in 2018 

 

The DEM is transformed into a slope map by assessing the 

terrain's angle of inclination (white indicates high elevation) 

(Figure 6). This enhancement introduces an additional dimension 

to the input data. 

 

 
Figure 6. Elevation map of Sofia City between 2011-2015 

 

All raster layers are standardised to have a matching extent of 

567:586 and pixel values of 100.565x100.565 meters. In 

addition, the datasets are reprojected to the EPSG: 32634 - WGS 

84 / UTM 34N Coordinate Reference System. 

 

2.4 Data processing 

This section presents the correlation evaluation and area change 

detection.  

 

Evaluating Correlation: The correlation between the predicting 

variables is explored once the data is consistent. This step is 

required to understand the relationship between the predictive 

variables, which can bring additional insight into the patterns of 

change in the area. The findings are presented in section 3.1. 

 

Area Change Analysis: The changes in the area of interest from 

1990 to 2018 are quantified by calculating the differences in 

LULC proportions over this period and developing transition 

matrices to monitor changes among the various classes. This 

timeframe is chosen based on data availability, representing the 

longest span identified for the region. The total area and the 

extent of change for each of the five LULC classes are estimated. 

Additionally, a transition matrix is constructed to illustrate the 

proportional transitions of each LULC type to the others. The 

CLC maps are used for this analysis, as the UA maps do not cover 

the entire timespan. The findings are presented in section 3.2. 

 

2.5 Transition Potential Modelling 

The transition potential modelling is the first part of the future 

LULC simulation, achieved with a single-layer ANN. The input 

consists of two historical LULC maps and the four predictive 

variable maps (Water proximity, road proximity, elevation and 

population density maps). The following hyperparameters are 

tuned to achieve optimal performance of the model for each 

experiment:  

 

Sampling: The sampling method can be random or stratified. 

The latter option allows for a more balanced class distribution in 

the input sample, but the resulting simulation is unrealistic. In 

addition, the number of samples can be chosen. A larger sample 

size would take more time and could lead to overfitting.  

 

Neighbourhood: This parameter defines the number of 

surrounding pixels to be considered when estimating the 
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transition potential, as the value of each pixel is determined by 

its relative position. Therefore, 1 pixel means a 3x3 region or 9 

pixels. Given that our resolution is 100 meters, it is assumed that 

1 pixel is an adequate value for this parameter; otherwise, the 

estimation would be based on a too-broad area.  

 

Learning rate and momentum: The learning rate and the 

momentum are subject to a trade-off between the learning 

process's stability and the training speed. Large values for these 

parameters result in unstable but fast learning, while smaller 

values provide a stable but slow learning process. 

 

The performance of the model’s training is measured in 

minimum error and validation Kappa.  

 

2.6 CA-ANN Validation  

The underlying model’s ability to predict correctly is tested 

before generating a simulation of future land use. This is done by 

feeding the results of the transition potential modelling to the CA 

algorithm and creating a simulation of a LULC map, which can 

be compared to its real counterpart (also called a reference map). 

Therefore, a simulation of the LULC of Sofia City from 2018 

would be compared to an actual one from 2018. The model's 

predictive performance is estimated using two metrics: 

percentage of correctness and Kappa coefficient. The threshold 

for satisfactory results is >85% on the percentage of correctness 

and >0.75. In addition, the transition potential across the region 

is inspected for further insight. The transition potential can range 

between 0 and 100. The validation step helps understand the 

predictive performance of the algorithms and tune the 

hyperparameters if needed.  

 

2.7 Future Cellular Automata Simulation 

The CA algorithm is applied twice in this methodology: firstly, 

in the validation step, and secondly, if the validation results are 

satisfactory, to derive a simulation map of the future LULC. This 

algorithm has gained popularity in the spatial domain in the past 

two decades, as, in combination with advancements in remote 

sensing technologies, it offers many applications (Ghosh et al., 

2017). One notable application is the prediction of LULC 

changes. The algorithm simulates spatial transformations over 

time by utilising established transition rules and considering 

neighbourhood effects (Ghosh et al., 2017; Santé et al., 2010). 

The study area is a grid where each cell's future state depends on 

its current state, surrounding cells, and transition probabilities 

derived from historical data. The model updates the landscape 

through multiple iterations, capturing urban expansion, land 

conversions, and environmental shifts, making it a powerful tool 

for LULC forecasting and urban planning. A single iteration 

equals the timespan between the years of the LULC input.  

 

2.8 Simulation experiments 

The study uses four simulation experiments as follows. The first 

experiment (Experiment 1) takes the CLC maps from 2006 and 

2012 as input, as the magnitude of change between these two 

years is the highest. Thus, it is assumed that the model would 

yield simulations with higher confidence. The experiment is 

conducted using a random sampling method of 10000 samples. 

The neighbourhood is set to 1 pixel and the learning rate to 0.005 

with a momentum of 0.010.  

 

The second experiment (Experiment 2) repeats the methodology 

of the first one - the input includes the predictive variable maps. 

The UA maps of 2006 and 2012 are used instead of the CLC ones 

to see if the lack of change is attributed to the source. It uses a 

random sampling method with 10000 samples. Neighbourhood is 

set to 1 pixel, the learning rate to 0.001 with a momentum of 

0.001.  

 

The third experiment (Experiment 3) aims to understand if the 

map's level of detail, measured in a number of classes, could 

influence the output. Therefore, a different classification is used. 

This experiment divides the UA LULC maps into six classes: 

high urban, low urban, cropland, forests, water and urban green 

areas. The input includes the four predictive variable maps and 

the newly reclassified LULC maps of 2006 and 2012. It uses a 

random sampling method with 20000 samples. Neighbourhood is 

set to 1 pixel, the learning rate to 0.001 with a momentum of 

0.001. 

 

Finally, the fourth experiment (Experiment 4) focuses on the 

importance of the input timespan. In the previous experiments, 

the timespan is 6 years. Therefore, this experiment uses the four 

predictive variables and the CLC data from 1990 and 2018, the 

largest available timespan. A random sampling method is 

applied, sampling 10000 instances. The neighbourhood is set to 

1 pixel, and the learning rate is 0.005 with a momentum of 0.01. 

 

3. Results 

This section presents results from the correlation evaluation, area 

change analysis, CA-ANN validation and future simulations, 

including four experiments.  

 

3.1 Correlation evaluation 

Table 1 shows Pearson’s correlation between the predictive 

variables. Population density has a weak negative correlation 

with road proximity (-0.24) and elevation (-0.22), indicating 

areas with higher population density are closer to roads and 

flatter. Road proximity and elevation have a moderate positive 

correlation (0.46), suggesting roads are more likely to be in less 

steep areas. Water proximity has a weak correlation with 

population density (0.01) but moderate correlations with road 

proximity (0.49) and elevation (0.39), suggesting that water areas 

are often near roads and less steep land. 

 

 
Population 

Density 

Road 

Proximity 

Water 

Proximity 
Elevation 

Population 

Density 
- -0.24 0.01 -0.22 

Road 

Proximity 
-0.24 - 0.49 0.46 

Water 

Proximity 
0.01 0.49 - 0.39 

Elevation -0.22 0.46 0.39 - 

Table 1. Correlation Between Variables. 

 

3.2 Area Change Analysis 

Table 2 summarises the area change analysis results in km2 by 

showing the proportions of each LULC type based on all 

available years from the CLC. Croplands and forests take up 

more than 75% of the total area.  

 

 1990 2000 2006 2012 2018 

Urban 253.26 254.04 258.60 264.8 266.73 

Cropland 523.79 522.75 519.18 513.33 510.15 
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Forests 544.72 545.3 544.64 543.02 544.2 

Bare 

lands 
8.76 8.05 4.88 5.14 5.14 

Water 33.57 33.95 36.78 37.80 37.87 

Table 2. Area Change 1990-2018 

 

The transition matrix for the period 1990-2018 is shown in Table 

3: 

 Urban 
Cropla

nd 
Forests 

Bare 

lands 
Water 

Urban 0.9155 0.0549 0.0118 0 0.0179 

Cropland 0.0566 0.9074 0.0340 0 0.0020 

Forests 0.0084 0.0356 0.9545 0.0007 0.0007 

Bare 

lands 
0 0.0704 0.3880 0.5416 0.0000 

Water 0.0190 0.0283 0.0024 0 0.9503 

Table 3. Transition Matrix 1990-2018 

 

Tables 2 and 3 reveal the following trends: firstly, the urban area 

increased by 13.47 km2, by 5.32% growth. The most significant 

development occurred between 2006 and 2012, by 6.2 km2. The 

transition to other classes is limited, with 91% of the urban class 

remaining unchanged. Furthermore, the cropland class 

continuously decreases, which aligns with urban expansion. The 

area is reduced by 13.64 km2 or 2.6%. The most significant loss 

occurred between 2006 and 2012. On the other hand, forests have 

remained relatively stable with minor fluctuations over the 28 

years. The class showed a decreasing trend between 2000 and 

2012 but grew afterwards. Total loss is 0.52 km2, or 0.1%. 

Moreover, the bare lands experienced significant reductions until 

2006, after which they stabilised. The class lost 41.32% of its area 

and is the least represented among the five broad classes. The 

transition matrix suggests that most losses are due to conversion 

into forests. Finally, the water area gradually rises, with minor 

losses to other area types. The most significant gains occurred 

between 2000 and 2006 when the area grew by 2.83 km2. By 

2018, the water class has increased by 12.81%. 

 

The area changes in terms of the difference between two periods 

of the year in km2 (expressed as delta) can be observed in Table 

4. The delta is calculated per LULC class for each period, and the 

overall change is calculated as the sum of their absolute values. 

The overall delta shows the magnitude of change over the years. 

The transition between classes varies over the years. The most 

dynamic period is between 2000 and 2012, specifically between 

2006-2012, mainly due to significant urbanisation and reduction 

of cropland. The results are supported by Figure 7 showing the 

total area change over the period between 1990-2018.  

 

 1990-2000 2000- 2006 2006-2012 2012-2018 

Urban 0.78 4.56 6.20 1.93 

Cropland -1.04 -3.57 -5.85 -3.18 

Forests 0.58 -0.66 -1.62 1.18 

Bare lands -0.71 -3.17 0.26 0 

Water 0.38 2.83 1.02 0.07 

Total 

Delta 
3.49 14.79 14.95 1.93 

Table 4. Area Change Magnitudes 

 

 
Figure 7. Area Change Map 1990-2018 

 

3.3 CA-ANN Validation 

The validation results of Experiment 1 demonstrate an 

exceptionally high level of accuracy, with a correctness of 99% 

and an overall Kappa coefficient of 0.99, indicating near-perfect 

agreement (Figure 8).  

 

 
Figure 8. Results of Validation of Experiment 1.  

 

The results indicate that the map is identical to the area change 

map between 2012 and 2018 (Figure 9). The identified errors are 

localised precisely in the regions that experienced transitions 

during this period. 

 

 
Figure 9. Area Change Map 2012-2018. 
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Furthermore, the transition potential analysis shows that there are 

instances where the model predicts a potential up to 11, although 

the majority remains close to 0 (Figure 10). Only Experiment 1’s 

validation is visualised as Experiment 2 and Experiment 3 have 

similar outcomes.  

 

 
 

Figure 10. Transition Potential Map Experiment 1. 

 

Regarding Experiment 2, the simulated 2018 LULC map reached 

99.5% correctness and 0.99 overall Kappa. However, no change 

is predicted between 2012 and 2018. Similar to Experiment 1, the 

validation map errors cover the areas that have transitioned 

between 2012 and 2018. The highest potential in experiment 2 is 

21, again in very few cases.  

 

The validation results of the 2018 simulation within Experiment 

3 are 99.4% correctness and 0.99 overall Kappa for the latter. 

Again, the errors on the validation map cover the areas that have 

transitioned between 2012 and 2018. Similar to previous 

experiments, the highest transition potential is low (17), and the 

instances where it can be observed are outliers.  

 

Finally, the output of Experiment 4 cannot be validated as the 

simulation cannot be compared to any existing map. A single 

iteration of the CA algorithm, in this case, would equal 28 years, 

which is too far into the future to be able to gather such data. 

Therefore, the only way to assess the output is to compare it to 

the trends from the period on which it is based (1990-2018) and 

determine if it follows them. In addition, the transition potential 

reaches 65, and, unlike the previous experiments, it is high 

throughout most of the region, especially around the urban area 

(Figure 11). 

 
Figure 11. Transition Potential Map for Experiment 4. 

 

3.4 Future Simulations 

This section describes the future simulations, and area changes 

for the experiments. Regarding Experiment 1, the obtained 

validation Kappa for the ANN model is 0.971 with a minimum 

error of 0.007. The simulation of the 2078 LULC has the same 

properties as the 2012 LULC and does not predict any change. 

The obtained validation Kappa of the ANN model training within 

Experiment 2 is 0.988 with a minimum error of 0.004. Like 

Experiment 1, the 2078 simulation does not expect any changes. 

The obtained validation Kappa of the ANN model training within 

Experiment 3 is 0.89 with a minimum error of 0.007. However, 

the results did not differ from the previous experiments. Finally, 

the obtained validation Kappa of the ANN model training within 

Experiment 4 is 0.87 with a minimum validation overall error of 

0.02. The output of the simulation of the LULC in 2074 is shown 

in  

Figure 12.  

 

 
 

Figure 12. Simulation of the 2074 LULC Map. 

 

According to the results, the urban area is expected to grow by 

21.35 km2, an increase of 8.01%, while the cropland will decline 

by 17.88 km2. The forest and the water area will drop by 2.31 and 

1.16 km2, respectively, and no change is expected for the bare 

lands. Most of the urban growth can be expected in the southern 

part of the city, as shown in Figure 13.  

 

 
Figure 13. Area Change between 2018-2074. 
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4. Discussion 

The area changes analysis shows that the urban area experienced 

an increase of 13.47 km2 (5.32%) over the study period, primarily 

driven by growth between 2006 and 2012, when 6.2 km2 of land 

was urbanised. This period represents the most dynamic phase, 

likely caused by infrastructure development and population 

growth. Cropland, however, decreased, losing 13.64 km2 (2.60%) 

over the 28 years. The most pronounced reduction occurred 

between 2006 and 2012, coinciding with the peak of urban 

growth. This relationship could be explained by the direct 

conversion of agricultural land into urban areas, a common trend 

in urbanising regions, especially in Eastern Europe (Kuemmerle 

et al., 2016). The forest class remained relatively stable, with a 

total loss of 0.52 km2 (0.1%). Although there was a temporary 

decline between 2000 and 2006, forests showed signs of recovery 

in subsequent years. Bare lands experienced a substantial 

reduction of 41.32% in their total area, with the most significant 

losses occurring before 2006. The transition matrix reveals that a 

significant portion of bare lands transitioned into forests, 

suggesting a process of natural or deliberate reforestation efforts. 

Finally, water bodies increased by 12.81%. This growth could be 

attributed mainly to water management consequences such as 

reservoir construction. The relative stability observed in forest, 

water, and bare lands after 2006 indicates a slowdown in land 

cover changes, with slow but steady urban growth becoming the 

dominant trend. The findings of SOER 2020 (European 

Environment Agency, 2019) align with the observed LULC 

changes in Sofia, confirming that urban expansion is a steady but 

not dominant land transformation trend in Europe. Between 2000 

and 2018, artificial surfaces in Europe increased by 7.1%, 

primarily at the expense of cropland, which mirrors the 5.32% 

urban growth in Sofia. Additionally, the report highlights stable 

forest areas across Europe, consistent with Sofia’s minimal forest 

loss and signs of regeneration. These similarities suggest that 

Sofia’s urbanisation patterns reflect broader European trends of 

moderate urban growth, cropland decline, and relative forest 

stability. 

 

Based on the metrics, Experiments 1 and 2 accurately predict the 

2018 LULC of the study area. However, upon closer 

investigation, the output imitates perfectly the map of 2012. The 

simulation does not predict any changes in the future. The low 

transition potential explains this phenomenon, which indicates 

that the model performance can be improved. These experiments 

showed that the input data source does not affect the transition 

potential in the absence of a large timespan. However, the 

classification accuracy during the generation of historical LULC 

maps matters, as it affects both the area change analysis and the 

prediction of future LULC. For example, some water bodies are 

incorrectly classified as landfills in 2006 and then correctly 

classified as water bodies in 2012, which is considered an area 

change. Therefore, the quality of the input determines the quality 

of the output. Although Experiment 3 failed to produce better 

results, the increase in the level of detail of the input map gives 

more clarity and makes the output more explainable. Real-life 

application of such methodology would benefit from a higher 

level of detail. Finally, the results of Experiment 4 prove that the 

large timespan is an essential factor when projecting the future 

LULC. Even without validation, the simulation aligns with 

current and past trends in the region’s LULC development, 

making it a plausible scenario for future studies.  

 

An essential point of consideration is that landscape change is a 

subject not only to natural causes but also urban planning 

decisions, which can hardly be predicted (Santé et al., 2010). 

However, if these decisions can be represented as variables, they 

could increase the accuracy of the prediction, thus making the 

results more reliable. 

 

5. Conclusion and Future Work 

5.1 Main Conclusions 

This study demonstrates how LULC analysis and predictive 

modelling can provide valuable insights into urban expansion and 

environmental changes. The following conclusions are 

considered:  

 

• The urban areas in Sofia grew consistently between 1990 

and 2018, increasing by 5.32%, mainly at the expense of 

croplands, which decreased by 2.6%. The change is in line 

with the general trends in Europe.   

• Overall, the simulations of the future land use in 2074 show 

that the urban area is expected to grow by 21.35 km2, which 

is an increase of 8.01%, while the cropland will decline by 

17.88 km2. The forest and the water area will drop by 2.31 

and 1.16 km2, respectively, and no change is expected for 

the bare lands.  

• The simulation experiments found that two aspects of the 

input play a key role in the reliability of the output – firstly, 

the quality of the data, which affects both the area change 

analysis and the subsequent predictions, and secondly, the 

timespan between input maps.  

• A short input timespan (6 years) might not capture the 

magnitude of change and, therefore, produce weaker 

simulations. Thus, a combination of the CLC data's 

timespan (28 years) and the UA's accuracy is required to 

simulate the future LULC successfully.  

 

5.2 Limitations and Future Work 

More steps can further improve the findings of this research. 

Firstly, using LULC data from a more distant past can increase 

the input timespan, thus leading to better results. This might 

require gathering historical satellite images and transforming 

them into LULC maps through classification algorithms. 

Secondly, the study could include more predictive variable maps, 

as more factors might influence an area's development. As the 

development of a region is a consequence of economic and 

natural changes, both need to be captured to achieve reliability.  

 

In addition, a more detailed classification of the input data could 

increase the explainability of the changes. The complexity of the 

input data would contribute to both the area change analysis and 

the simulation output. Another future step would be to use 

alternative algorithms and compare their performance to find an 

optimal one. Logistic regression is one potential candidate. 

(Salem et al., 2021). Finally, the findings of this study will offer 

adaptable methodologies and insights that can be applied to cities 

facing comparable developmental challenges. 

 

Understanding a region’s past and current state helps project the 

consequences of the LULC development in future scenarios. This 

approach supports the development of scenario-based planning, 

where stakeholders assess various "what-if" situations based on 

different inputs and determine the optimal outcome. By applying 

the methodology suggested in this study, policymakers and urban 

designers can leverage the power of remote sensing and machine 

learning to adapt their strategies to account for economic growth, 

environmental sustainability, and societal well-being. 
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