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Abstract:
Under the background of global warming, the impacts of extreme climate events are becoming increasingly severe, with

drought posing particularly significant threats to both human society and the natural environment. Drought is recognized as the
second most devastating natural disaster globally. Characterized by its complexity and variability, identifying, assessing, and
predicting drought features remains challenging. The Standardized Precipitation Evapotranspiration Index (SPEI), known for its
multi-temporal scale characteristics, can represent various drought types and better reflect changes in drought dynamics. It has
been increasingly applied in climatological and hydrological studies. However, using SPEI data with a 0.5-degree resolution to
assess drought conditions in localized regions of China yields relatively low accuracy, hindering precise evaluation and prediction
of drought severity and trends. Therefore, enhancing the spatial resolution of SPEI data is critically important. This study proposes
the High Spatial-Resolution SPEI Network (HSR-SPEINet), which integrates environmental factors and remote sensing
reflectance data to generate a 1 km resolution SPEI dataset. Experimental results demonstrate its strong accuracy.
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1. Introduction

Drought is a critical natural disaster facing humanity today.
Since the 1970s, drought events have been characterized by
prolonged duration, extensive spatial coverage, and increasing
frequency [1], with growing regions affected by drought
impacts [2], making it a globally significant concern. Against
the backdrop of escalating human activities and persistent
climate change, issues such as water scarcity and global
warming have intensified, further exacerbating drought
conditions. Based on their impacts, droughts can be categorized
into meteorological, hydrological, and agricultural droughts
[3][4]. Regardless of type, droughts often lead to severe
economic, agricultural, and environmental challenges in
affected areas. For instance, in 2011, agricultural losses in
Texas, USA, due to drought reached $7.62 billion. In 2019,
extreme heat and prolonged drought in Australia fueled
wildfires that lasted for over five months, severely impacting
local economic development and social stability. Similar events
have occurred in northern China, the western United States,
India, southern Europe, and other regions [5][6]. Consequently,
drought monitoring remains a vital global task.

In China, the economic losses caused by drought are
particularly pronounced, as the country ranks among those most
severely affected by drought disasters. Recent studies indicate
an overall increasing trend in annual arid days nationwide [7][8].
The IPCC assessment report [9] reveals that the boundary
between semi-arid and semi-humid regions in China has
progressively shifted southward, accompanied by an expansion
trend in drought-prone areas [10]. A distinct aridification trend
has emerged across northern China, forming a contiguous
drying belt stretching from the northeast to the northwest. As a
major agricultural nation, China faces acute challenges from
drought impacts on crop production, particularly for rain-fed
agriculture, where drought significantly reduces yields [11].
These conditions constrain sustainable agricultural development
and further threaten economic stability, political security, and
social welfare. Since the early 21st century, drought-induced
grain losses in China have reached 37.284 million metric tons—
double the losses recorded in the 1980s and equivalent to 7.7%
of total grain production during that period. Consequently,

enhancing the accuracy of drought trend prediction and
monitoring indicators holds critical importance for drought
early warning systems, economic resilience, and regional
ecological environment protection in China [12][13].

Drought monitoring emerged in the early 20th century,
driven by the need for systematic assessment and effective
surveillance. During this period, various drought indices were
progressively developed to quantify drought characteristics
across diverse regions. Among drought types, meteorological
drought typically precedes other categories, making
meteorological indices a widely adopted tool for monitoring and
early warning. Approximately 60 meteorological drought
indices have been documented, including the Standardized
Precipitation Index (SPI) [14], Standardized Precipitation
Evapotranspiration Index (SPEI) [15], and Palmer Drought
Severity Index (PDSI) [16]. Each index exhibits unique
strengths and limitations. For instance, SPI and SPEI are
favored for their computational simplicity and multi-temporal
scalability [17], enabling robust drought characterization and
global applicability. However, SPI solely incorporates
precipitation data, limiting its utility in environmentally and
topographically complex regions [18]. In contrast, SPEI
integrates precipitation and potential evapotranspiration (PET)
through a log-logistic distribution normalization process,
providing a more comprehensive drought representation [19].
Nevertheless, SPEI demands high-quality input data and may
underperform in detecting extreme drought events compared to
more sophisticated indices. Given the inherent complexity of
drought mechanisms and nonlinear interactions among driving
factors [20], traditional meteorological indices remain
insufficient for capturing multi-dimensional drought dynamics,
necessitating methodological improvements.

The advent of artificial intelligence has facilitated
breakthroughs in drought research, particularly in addressing
nonlinear relationships among drought drivers. Machine
learning (ML) algorithms—such as Support Vector Machines
(SVM) [21], Random Forest (RF) [22], Light Gradient Boosting
Machine (LightGBM) [23], and Extreme Learning Machines
(ELM) [24]—have demonstrated efficacy in drought monitoring.
Shen et al. [25] developed an integrated drought monitoring
framework using RF, while Achite et al. [26] combined
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vegetation, precipitation, and topographic factors via
classification and regression methods to formulate a Synthetic
Drought Index (SDI). Despite these advances, ML-based
approaches face challenges, including stringent data quality
requirements, dependency on large training datasets, and limited
generalizability in data-scarce drought monitoring scenarios.
Additionally, ML models struggle to extract high-level features
when processing high-dimensional input parameters [27][28].

Deep learning (DL), a neural network-driven subset of
machine learning, has surpassed conventional ML methods in
numerous applications. Prodhan et al. [28] employed a Deep
Feedforward Neural Network (DFNN) with remote sensing data
to predict agricultural drought in South Africa, outperforming
distributed RF and gradient boosting models. Similarly, Balti et
al. [29] demonstrated the superiority of Long Short-Term
Memory (LSTM) networks over ARIMA and Prophet models in
forecasting SPEI for Jiangsu Province, China. DL addresses key
limitations in drought monitoring through techniques such as
data augmentation [30][31] and transfer learning [32], which
mitigate data scarcity issues. Furthermore, attention
mechanisms [33][34] enhance feature extraction capabilities,
enabling DL models to capture intricate drought-related patterns
from complex datasets. The hierarchical architecture of DL
networks also facilitates the modeling of nonlinear interactions
among drought drivers.

Given the multi-factor, nonlinear, and data-intensive nature
of drought dynamics, traditional meteorological indices and ML
methods exhibit inherent constraints in monitoring tasks. This
study focuses on investigating the application of deep learning
methodologies to advance drought monitoring capabilities,
addressing existing gaps through innovative computational
frameworks.

2. Related Work

The computational procedure for SPEI is as follows:
Step 1: Calculate potential evapotranspiration (PET). The

modified Hargreaves method was employed to compute PET.
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Step 2: Calculate the monthly difference between
precipitation and evapotranspiration. The specific formula is
defined as:

i i iD P PET  (2)

where iD represents the difference between precipitation

and evapotranspiration, iP denotes monthly precipitation,

and iPET is monthly evapotranspiration.
Step 3: Fit the water balance time series D using a three-

parameter log-logistic probability distribution. The probability
density function of the log-logistic distribution is expressed as:
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 ,  ,  represent the scale parameter, shape parameter,
and location parameter, respectively. These parameters are
estimated using the L-moments method, formulated as:
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Where  represents the gamma function. 0w , 1w , 2w
denote the probability-weighted moments of the original data
series. The calculation method is defined as follows:
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where N denotes the number of months involved in the
calculation.

Step 4: Standardize the cumulative probability density:
1 ( )P F x  (9)
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where c0=2.515517, c1=0.802853, c2=0.010328,
d1=1.432788, d2=0.189269, d3=0.001308.
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3. Proposed Method

Deep learning achieves the extraction of features from
external input data from low-level to high-level by establishing
and simulating the hierarchical structure of the human brain,
thereby interpreting external data. Compared to traditional
learning structures, deep learning emphasizes greater depth in
model architecture, typically containing multiple hidden layers.
In deep learning, feature learning is crucial, where predictions
and recognitions are accomplished through layer-by-layer
transformations of features.

Deep learning possesses advantages such as strong
learning capability, broad coverage and adaptability, high data-
driven potential, excellent portability, direct feature extraction
from data, continuous performance improvement with
increasing data scale, and applicability to various scenarios.
Extensive research has shown that deep learning has achieved
outstanding performance in computer vision tasks.

During model training, sample balancing is necessary to
improve the model’s goodness-of-fit. Since the distribution of
SPEI ground-truth values is highly uneven in reality, exhibiting
a pattern where intermediate values are more frequent while
extreme values are sparse, imbalanced samples can lead to
biased learning in algorithms. Therefore, sample balancing
before model training is essential. This project adopts a minority
oversampling approach: under the condition of uneven SPEI
value distribution, underrepresented data samples are repeated,
ensuring similar quantities of samples across all severity levels.

This study leverages satellite remote sensing combined
with artificial intelligence algorithm libraries to train a high-
precision SPEI prediction model using deep learning. Through
data gridding and sample balancing, a balanced sample set with
0.5°×0.5° resolution is established. Based on this, regression
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relationships between 16 input variables and SPEI values are
constructed.

3.1 High Spatial-Resolution SPEI Network (HSR-SPEINet)

The input of the HSR-SPEINet model comprises 16
environmental factors, divided into three components: 8
indices and 7 reflectance values provided as time series inputs

1 2 t[x ,x ,...,x ] and Elevation. The environmental factors

tx consist of vectors [ET, PET, NDVI, EVI, LST, FPAR, LAI,
GPP] formed by 8 indices and 7 reflectance values
[sur_refl_b01, sur_refl_b02, sur_refl_b03, sur_refl_b04,
sur_refl_b05, sur_refl_b06, sur_refl_b07] at time step t, with
a monthly time scale, as shown in figure 1. The temporal length
is defined based on drought occurrence periods in China
from 2004 to 2023, specifically as 1, 3, 6, 9, 12, and 24 months,
thereby supplying multi-temporal-scale environmental factor
information to the HSR-SPEINet model.

(a)

(b)

(c)

(d)

(e)

(f)

(g)
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(p)

(q)
Fig.1 16 feature data on a one-month time scale in June 2021. (a)
NDVI (b) LST (c) LAI (d) GPP (e) FPAR (f) EVI (g) ET (h)
PET (i) elevation (j) sur_ref_b01 (k) sur_ref_b02 (l)
sur_ref_b03 (m) sur_ref_b04 (n) sur_ref_b05 (o) sur_ref_b06 (p)
sur_ref_b07 (q) SPEI.

3.2 Spatiotemporal Feature Extraction Module

Unlike traditional deep learning methods, which typically
use a single neural network for feature extraction of all inputs,
this study employs different network structures for feature
extraction based on the input of "8 indices + 7 reflectance
values + elevation." For the time-series input of "8 indices + 7
reflectance values," the HSR-SPEINet model uses ALSTM
(Attention-based Long Short-Term Memory) to extract temporal
features. For the elevation input, the HSR-SPEINet model
applies an Artificial Neural Network (ANN) to extract static
spatial features.

The proposed ALSTM comprises 3 LSTM layers and 1
attention layer constructed by a fully connected neural network.
The three LSTM layers enable the model to hierarchically
extract high-level abstract temporal features from the input
time-series data. Due to its unique gating mechanism, LSTM
selectively extracts effective information from sequential inputs,
propagates it temporally, and outputs features, thereby
achieving robust temporal feature extraction. Compared to
traditional RNNs, LSTM effectively mitigates issues such as
gradient vanishing and explosion, demonstrating superior
capability in time-series feature extraction. The computational
process for the "8 indices + 7 reflectance values" input at time
step t through the LSTM layers is described as follows:

f 1( [ , ] )f
t t t fg W h x b    (13)

i 1( [ , ] )i
t t t ig W h x b    (14)
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In the equations above, fW , iW , oW , fb , ib , ob and

cb are learnable weight matrices and bias parameters.  和

tanh are nonlinear activation functions. f
tg , i

tg ,
o
tg represent the Forget Gate, Input Gate, and Output

Gate vectors, respectively, responsible for selective information
filtering. tS and 1tS  denote the cell state vectors at time
steps t−1 and t, which store and propagate temporal features
extracted by the LSTM from the input time series.

The attention weights and attention-weighted hidden
features are calculated as follows:

max( )t AT t ATsoft W h b    (18)

In the equation, ATW and ATb are learnable parameter
matrices in the Attention layer. softmax is the nonlinear
activation function, ensuring that the attention weights ( 1 to

t ) sum to 1 across all time steps. Th is the hidden feature
vector output by the ALSTM, representing the temporal features
extracted by the HSR-SPEINet model from the meteorological
factor time series.

The formula for hidden features Sh extracted by the ANN
from static elevation input is as follows:

1 1
1 ( )S
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2 2
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where 1
AW , 2

AW , 3
AW , 1

Ab , 2
Ab and 3

Ab are the learnable
parameter matrices of the first, second, and third layers of the
ANN, respectively; ReLU is the nonlinear activation
function; 1

Sh is the hidden feature vector extracted by the first

ANN layer from the elevation input Sx , 2
Sh is the hidden

feature vector extracted by the second ANN layer from 1
Sh ,

and Sh is the hidden feature 2
Sh extracted by the third ANN

layer, which is also the final hidden feature output by the ANN
from the elevation input.

Finally, the features extracted by the ALSTM and ANN
are concatenated, and the MSE loss function is computed using
a fully connected layer with the ground-truth SPEI values.

4. Experimental Results

This study employs deep learning techniques to acquire
high-resolution environmental factors related to drought and
constructs the HSR-SPEINet model. Using deep learning, high-
resolution spatiotemporal drought distribution maps across
China over nearly two decades and multiple temporal scales are
generated.

The HSR-SPEINet model improves the spatial resolution
of SPEIbase from 0.5° to 1 km. To validate the accuracy of the
high spatial-resolution SPEI, data from 49 national
meteorological stations in central, eastern, southern, and
western China were collected. Multi-temporal-scale SPEI
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values for June 2021 at these stations were calculated using the
same methodology as SPEIbase. The results were compared
with SPEIbase, RF SPEI from the Science Data Bank (SDB),
and resampled 0.5° data from HSR-SPEINet and RF SPEI.

Accuracy metrics—Pearson Correlation Coefficient (PCC), R²,
and Root Mean Square Error (RMSE)—were computed. The
evaluation results are summarized in the table below:

Table 1. Accuracy evaluation for June 2021
1 month 3 month 6 month 9 month 12 month 24 month

PCC

SPEIbase 0.8509 0.7972 0.8959 0.8939 0.9073 0.8661
HSR-SPEINet 0.8523 0.8257 0.9026 0.8972 0.9144 0.8811
RF SPEI 0.8725 0.6638 0.6475 0.659 0.6533 0.47
HSR-SPEINet(0.5degree) 0.8457 0.8109 0.8931 0.9098 0.9178 0.8794
RF SPEI(0.5degree) 0.8784 0.7647 0.7639 0.7546 0.741 0.5752

R2

SPEIbase 0.6063 0.3958 0.6513 0.6081 0.6925 0.5961
HSR-SPEINet 0.6773 0.5913 0.7157 0.7223 0.793 0.7182
RF SPEI 0.7593 0.4236 0.3935 0.3662 0.3444 0.0603
HSR-SPEINet(0.5degree) 0.6747 0.5811 0.7504 0.7605 0.8038 0.7297
RF SPEI(0.5degree) 0.7693 0.5763 0.5752 0.5671 0.5365 0.208

RMSE

SPEIbase 0.6707 0.6436 0.5457 0.5455 0.54 0.5468
HSR-SPEINet 0.6072 0.5294 0.4927 0.4592 0.4431 0.4568
RF SPEI 0.5244 0.6287 0.7196 0.6937 0.7885 0.8341
HSR-SPEINet(0.5degree) 0.6097 0.5359 0.4616 0.4264 0.4314 0.4473
RF SPEI(0.5degree) 0.5134 0.539 0.6022 0.5733 0.663 0.7657

The accuracy metrics indicate that after enhancing spatial
resolution, the HSR-SPEINet model achieves slightly higher
PCC and R² and lower RMSE compared to SPEIbase across
most temporal scales. This improvement suggests that higher
spatial resolution enables the model to capture more localized
environmental characteristics at specific station locations,
thereby better reflecting drought conditions at those sites.
However, the RF SPEI dataset from SDB exhibits significant
deviations from ground-truth station SPEI values. While RF
SPEI shows some advantages at the 1-month time scale, its
accuracy degrades sharply as the temporal scale increases.

5. Conclusions

To address the limitations of low spatial resolution in the
SPEIbase dataset for high-precision drought monitoring, this
study proposes the High Spatial-Resolution SPEI Network
(HSR-SPEINet), a deep learning-based framework. By
integrating 8 environmental factors, 7 reflectance factors, and 1
elevation dataset, the model generates a 1 km resolution SPEI
product. Experimental results demonstrate that the proposed
method achieves superior accuracy compared to existing public
datasets when validated against ground-truth SPEI values.
Future research aims to further optimize the HSR-SPEINet
framework to deliver global high-resolution, high-accuracy
drought monitoring products.
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