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Abstract 

Monitoring post-fire vegetation dynamics is essential for understanding forest recovery processes and informing management 

strategies. UAV-based ultra-high resolution multi-temporal imagery, combined with the Structure-from-Motion and Multi-View Stereo 

(SfM-MVS) workflow, provides a cost-effective and scalable solution for forest monitoring. However, challenges remain in co-

aligning multi-temporal datasets, segmenting individual trees in dense canopies, and ensuring classification accuracy. This study 

presents a comprehensive workflow for post-fire forest monitoring using UAV imagery, covering data acquisition, co-alignment, tree 

segmentation, species classification, and biophysical parameter estimation using growth models. The workflow was tested on three 

sites in Central Yakutia, with varying post-fire regeneration scenarios. Co-alignment was applied to multi-temporal UAV datasets, and 

tree segmentation was performed using the algorithms developed for Airborne Laser Scanning (ASL) forest point clouds. Tree species 

classification relied on statistical spatial variables of point clouds, and growth models were used to estimate parameters such as tree 

height, age, canopy area, above-ground biomass, and net primary productivity. The results demonstrated that co-alignment enabled 

consistent multi-temporal analysis, but performance was sensitive to flight planning consistency and lighting conditions. Tree 

segmentation accuracy was high in open-canopy areas but decreased in dense canopies. The classification of larch and birch species 

achieved relatively high precision and recall values, while dead trees showed lower classification accuracy due to challenging lighting 

conditions. Growth models successfully estimated biophysical parameters, but further validation using dendrochronological methods 

is required. This study highlights the potential of UAV-based multi-temporal monitoring for post-fire forest assessment. Future research 

should focus on improving tree segmentation of SfM-MVS point clouds in dense canopies, optimizing co-alignment under varying 

environmental conditions, and integrating additional point cloud classification methods to improve accuracy in areas with complex 

species distribution. 

1. Introduction

Forest fires can have significant impacts on ecosystems, 

providing benefits such as encouraging reforestation (Lytkina, 

2010), as well as drawbacks such as environmental damage and 

contributing to climate change (Narita et al., 2021). The 

implementation of an effective forest fire monitoring system, 

which integrates immediate fire detection with the analysis of 

associated impacts, is critical for mitigating these negative 

consequences (Chu and Guo, 2014). In this regard, remote 

sensing has become a superior approach for tracking forest fires 

and assessing their impact, offering advantages over 

conventional field-based methods in terms of efficiency and 

geographic coverage (White et al., 2016). 

Traditional methods of forestation monitoring, which rely on the 

use of sample plots, have limitations in terms of accuracy and 

subjectivity of measurements and interpretation. These methods 

also involve significant costs associated with field monitoring. 

By contrast, remote sensing techniques can reduce the overall 

cost of research, particularly when applied to large study areas 

(White et al., 2016). There are a variety of remote sensing 

approaches that can be used for monitoring forestation, such as 

space- and airborne imaging from different sensor types, 

including optical, radar, and laser scanners. However, the data 

generated by these methods can vary significantly in terms of 

spatial and temporal coverage, resolution, spectral information, 

as well as other characteristics and challenges that should be 

taken into account when selecting a remote sensing approach 

(Chu and Guo, 2014). 

Most of the publicly available data related to the goals of 

reforestation monitoring (Potapov et al., 2022; Lesiv et al., 2022; 

Potapov et al., 2021; Karra et al., 2021; Long et al., 2019; Krylov 

et al., 2014; Hansen et al., 2013; Sexton et al., 2013) are the result 

of analyzing satellite image mosaics with global coverage, 

obtained from various medium- and low-spatial-resolution 

imaging systems, such as Landsat (NASA, United States) and 

Sentinel (European Space Agency, European Union). In some 

cases, these data are supplemented with information from 

specific systems, as is the case with the Global Forest Canopy 

Height dataset, which relies on data from the Global Ecosystem 

Dynamics Investigation (GEDI) laser scanner, located on the 

International Space Station. For these datasets, most of the data 

is based on optical systems, using medium- and low-resolution 

multispectral imaging, which provides both acceptable spectral 

and spatial resolution, while also providing global coverage. It 

should be noted that the processing of such data requires 

significant computational power, due to the large volume of the 

data involved (Kutchartt et al., 2022). As a result, the datasets 

often have a temporal resolution ranging from one year to several 

years. Furthermore, datasets from recent years often utilize 

advanced satellite image processing techniques, such as 

convolutional neural networks and other machine learning 

algorithms (Piragnolo et al., 2021). 

Remote sensing techniques are also used to collect large-scale 

data on the state of forest coverage and, consequently, for local 

monitoring of reforestation efforts (Pirotti et al., 2023). Two of 

the most widely used methods in this field are imaging from laser 

scanners mounted on UAVs and imaging from optical sensors 

also mounted on UAVs using photogrammetry techniques such 

as SfM (Cao et al., 2019; Wallace et al., 2016). 

The two survey methods exhibit a high degree of similarity in the 

data they generate, as they both produce point clouds that reflect 

the three-dimensional structure of forests at a high level of spatial 

accuracy. However, there are also some differences between 
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them. Photogrammetric optical systems, for example, are unable 

to capture information through dense stands, and therefore cannot 

obtain data on the vertical distribution of vegetation in such 

circumstances. This is in contrast to methods that utilize laser 

scanners for generating point clouds (Wallace et al., 2016). At the 

same time, however, photogrammetric techniques in open stands 

achieve comparable accuracy to laser scans, while also being 

significantly less expensive (Cao et al., 2016). The low cost of 

implementation ultimately increases the spatial coverage of 

forest surveys due to the scalable nature of UAV surveys, which 

allows for more comprehensive data collection on forest cover. 

 

Growth models provide essential information on the dynamics of 

key forest inventory indicators and form a crucial component of 

an efficient forest accounting and management system 

(Shvidenko et al., 2008). By utilizing growth models and site 

productivity data for a given forest area, it is possible to compute 

growth projections for individual tree species according to the 

specific regional forest conditions. For instance, tree height data 

can be used to estimate age and other forest inventory parameters, 

such as mean diameter, basal area, volume, and overall 

productivity. The modelling of these forest inventory indicators 

is based on the Von Bertalanffy Growth Function (VBGF), 

known in forestry literature as the Chapman-Richards function, 

which expresses inventory parameters as a function of age within 

a specific site productivity class (also known as bonitaet or site 

index) (Shvidenko et al., 2008). In addition to modelling key 

forest inventory indicators, ecological models have been 

developed to assess the ecological functions of forests, 

particularly biological productivity. The primary concept in this 

modelling framework is phytomass, expressed through two key 

metrics: net primary production (NPP), which represents the 

organic matter accumulated in plant tissues, calculated as the 

difference between gross production (total photosynthesis) and 

autotrophic respiration; and net ecosystem production (NEP), 

which is the difference between NPP and heterotrophic 

respiration of the forest ecosystem. These biological productivity 

models were also verified and validated (Shvidenko et al., 2008). 

As a result, growth modelling provides a broad range of 

applications, including estimating forest inventory parameters 

from limited data, such as remote sensing, and modelling 

ecological indicators, which is particularly significant in the 

context of global climate change. 

 

Forest fires in central Yakutia cause a wide range of 

environmental and socioeconomic problems. However, there is 

also a beneficial impact associated with the fire-causing factor, 

which is one of the major factors in the forests of central Yakutia. 

This beneficial impact has been proven by A. I. Utkin and A. S. 

Isaev as cited in (Bartalev et al., 2015), and it is determined by 

the development of forests from regeneration to decomposition. 

Based on the early research conducted by forestry researchers in 

Central Yakutia on the impact of forest fires on forests (Lytkina, 

2010), it appears that the role of forest fire in forest ecosystems 

is beneficial for larch. After fires, the position of larch is 

strengthened and relatively good regrowth of the original forest 

vegetation is observed. Forest fires also lead to alterations in the 

morphology of forest soil after the fires, as well as a lowering of 

the permafrost by tens of centimetres. Additionally, forest fires 

within the area of recurring ice spread contribute to the activation 

of thermokarst processes, which can lead to subsidence and slope 

failures, potentially delaying reforestation efforts for decades and 

centuries (Lytkina, 2010). At the same time, in regions with 

permafrost, where it is difficult for specialized forest fire 

prevention services to control, it is virtually impossible to prevent 

forest fires, as under conditions of inadequate mineralization of 

organic material in the soil and insufficient decomposition of 

plant debris, a sufficient accumulation of flammable material in 

forests in permafrost areas occurs to cause forest fires during 

periods of dry weather throughout the year (Lytkina, 2010). It 

should be noted that forest fires tend to occur cyclically, which is 

related to fluctuations in climate conditions from year to year, 

and this is particularly evident in central regions of Yakutia that 

are arid from a climatic standpoint (Lytkina, 2010). Therefore, 

taking into consideration both the positive aspect of forest fires 

under specific physiographic conditions in the forests of Central 

Yakutia, which act as a stimulant for reforestation in dense stand 

canopies, and the negative aspect for ecological communities 

resulting from the activation of thermokarst processes, which 

delay the reforestation process for decades and centuries, there is 

an urgent need for more in-depth monitoring of the reforestation 

process following pyrogenic impacts, including periodic 

monitoring. 

 

The objective of this work is to analyze forest characteristics 

within the context of post-pyrogenic forest restoration. The 

primary method employed was multi-temporal UAV-based 

imaging, utilizing co-alignment procedure (Feurer and Vinatier, 

2018), Structure-from-Motion (SfM) and Multi-View Stereo 

(MVS) methods to generate multi-temporal point clouds of the 

forest. The co-alignment method, which involves the 

simultaneous processing of images from different years during 

the Structure-from-Motion step, helps reduce the relative error 

between point clouds from different years (Nota et al., 2021). 

These point clouds were segmented down to the level of 

individual trees. The point clouds corresponding to individual 

trees were then classified according to species composition for 

the subsequent application of growth models, which enabled the 

estimation of other forest characteristics, such as age, diameter at 

breast height (DBH), stock volume, aboveground biomass, and 

net primary production (NPP). The obtained data were 

aggregated into a regular grid and then compared across different 

years. The goal of this study is to contribute to research on forest 

monitoring at the individual tree level through the use of optical 

multi-temporal UAV imaging and the results derived from these 

datasets. 

 

2. Methodology 

2.1 Study area 

The model monitoring sites were selected from three areas in 

Central Yakutia (Figure 1a). The first site, “Viluy,” located 50 

km west of Yakutsk, features a mixed species composition, 

primarily consisting of pine and larch, with a small proportion of 

birch (Figure 1b). In the larch forests of the "Viluy" site, a clear 

division into various age classes is observed, with a 

predominance of young growth. In the pine forests of “Viluy,” 

signs of low-intensity ground fires are evident. The second site, 

“Suola,” situated on the right bank of the Lena River in the 

Megino-Kangalassky district of the Sakha Republic, contains an 

area of burned forest with dead larch, as well as birch and larch 

young growth, along with sections of intact mature larch forests 

— the original forest type of this area (Figure 1c). The third site, 

“Alas,” located 1.5 km north of “Suola,” is distinguished by the 

presence of recent burn areas from 2021 (Figure 1d). Thus, the 

selected sites represent different forest types typical of Central 

Yakutia and various scenarios of pyrogenic disturbance. 
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Figure 1. a) Study area; selected key sites with ground control 

points (GCPs): b) “Viluy” site, c) “Suola” site, d) 

“Alas” site. The coordinates of sites map are given in 

the CRS WGS84 UTM Zone 52N 

 

2.2 Data acquisition 

UAV surveys were conducted in 2019, 2021, and 2022. For the 

site “Viluy”, the imaging was performed in all of the listed years; 

for the site “Suola”, imaging took place in 2021 and 2022; and 

for the site “Alas”, imaging was conducted only in 2022. The 

UAV used for the imaging was a DJI Phantom 4 Pro V2.0. In 

2019, the flight was conducted manually, while in 2021 and 

2022, it was performed in automatic mode. Across all surveys, 

the flight altitude was consistently set to 100 m. Additionally, the 

2021 imaging was conducted with a slight overlap between the 

image groups and under specific lighting, featuring long object 

shadows of the objects, to test the co-alignment method’s ability 

to link such groups during the Structure-from-Motion alignment 

phase. 

 

To spatially reference the images, a network of ground control 

points (GCPs) was established to enhance the accuracy of spatial 

referencing (Figure 1b, 1c, 1d). The ground control points were 

set up prior to the 2022 imaging, so they only appeared in the 

images for one specific epoch. According to Nota et al. (2021), 

the presence of control points in just one dataset, processed 

through co-alignment, is sufficient to improve the absolute 

accuracy of spatial referencing. A total of 11, 10, and 8 control 

points were established for the “Viluy”, “Suola”, and “Alas” 

sites, respectively. The location data of the control points were 

collected using a Prince i30 PRIN. At the “Viluy” and “Alas” 

sites, a connection to the YKTS base station was established to 

obtain precise coordinates, while no such connection was 

available at the “Suola” site. 

 

Additionally, four test plots were established, where data on the 

heights of individual trees and their diameters at breast height 

was collected using a laser rangefinder and manual 

measurements for validation purposes. 

 

2.3 Data processing 

The data processing was carried out using Agisoft Metashape 

Professional software (v. 1.7.1). The processing followed the 

sequence outlined below: 1) all images from different epochs 

were loaded into a single block during the alignment process, 

according to the co-alignment method (Feurer and Vinatier, 

2018) and the image altitudes were adjusted using the relative 

altitude from metadata and the known absolute altitude of the 

flight start; 2) ground control points were included on all images 

they were fully visible, according to Nota et al. (2021); 3) the 

bundle adjustment step was performed (Optimize Cameras in 

Agisoft Metashape); 4) points of tie point cloud were filtered 

based on the parameters from Nota et al. (2021) using Gradual 

Selection in Agisoft Metashape — (i) present in less than three 

images, (ii) with a reconstruction uncertainty larger than 20, (iii) 

with a projection accuracy greater than 8, and (iv) a reprojection 

error larger than 0.5; 5) dense point clouds were generated. After 

the successful completion of the image alignment step (1–4), the 

tie point clouds were divided into separate blocks for the 

construction of dense point clouds (5). The following parameters 

were used during the image alignment step: Accuracy: High, 

Generic Preselection, Reference Preselection: Source, Key Point 

limit: 40,000 (default), Tie point limit: 4,000, Exclude stationary 

tie points, Adaptive camera model fitting. For the dense point 

cloud generation step, the following parameters were selected: 

Quality: High, Depth filtering: Mild, Calculate point colors. 

 

During the processing of images for the “Suola” site, it was 

discovered that images from different years did not align when 

processed in a single block during the alignment step. To resolve 

this issue, the following method was proposed: 1) a set of images 

from a single year with GCPs (2022) was processed; 2) alignment 

was performed without bundle adjustment; 3) object coordinates 

were obtained from the aligned images for objects present in both 

years of imaging and unchanged in relation to nearby objects 

(fallen tree trunks, logs); 4) these objects were used as control 

points for the set of images which could not undergo co-

alignment; 5) the alignment step was performed on this set of 

images using the obtained natural control points; 6) the alignment 

blocks were merged into a single block; 7) a bundle adjustment 

step was conducted on the merged block. Although this 

processing method does not fully replicate the co-alignment 

approach, the use of control points and the common bundle 

adjustment step still allows for a reduction in relative error. 

 

2.4 Tree segmentation 

The tree segmentation process was performed using the open-

source R library lidR (Roussel et al., 2020), which implements 

most of the algorithms for processing airborne laser scanning 

(ALS) point clouds. Additionally, it supports point cloud 

processing by tiles, which reduces the hardware requirements. 

The process of generating individual point clouds for trees was 

divided into several steps. Initially, ground point clouds were 

classified using the Cloth Simulation Filtering (CSF) method 

(Zhang et al., 2016), with optimal parameters selected through 

experimentation: sloop_smooth = False, class_threshold = 0.2, 

rigidness = 3, as listed in lidr library. Subsequently, the point 
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clouds were normalised relative to the ground level using ground-

class point cloud interpolation via the Inverse Distance 

Weighting (IDW) method. On the normalized point cloud, the 

tops of individual trees were identified using a local maximum 

filter. A dynamic window size was applied: a window size of 1 

meter for points below 5 meters in height, a window size defined 

by the function 𝑦 = 𝑥 × 0.15 + 1, for points between 5 and 20 

meters (where x is the height of the point and y is the window 

size), and a window size of 4 meters for points above 20 meters. 

The normalized point clouds served as the foundation for 

constructing a canopy height model (CHM). The tree tops, in 

conjunction with the CHM, were employed to segment individual 

trees, employing the approach proposed in (Dalponte and 

Coomes, 2016). 

 

2.5 Tree species classification 

For each individual tree, the point cloud was classified into 

species using the CatBoost supervised machine learning 

algorithm (Prokhorenkova et al., 2019). The model's input 

parameters included spatial distribution characteristics of points 

within the cloud, as well as photogrammetric data on brightness. 

The parameters were calculated as follows: 1) vertical 

distribution parameter – the ratio of the standard deviation of the 

Z coordinate to the maximum value of the Z coordinate; 2) planar 

distribution parameter – the ratio of the standard deviation of the 

X and Y coordinates to the difference between the maximum and 

minimum values of the respective coordinates; 3) maximum 

height parameter – the maximum value of the Z coordinate; 4) 

canopy area parameter – the concave hull geometry area of 

points; 5) brightness indicator – the mean normalized value of the 

Red, Green, and Blue channels in the range from 0 to 1 (Dalponte 

et al., 2023). 

 

The labels datasets for the model were collected during field 

research. Three main species were identified: larch, pine and 

birch, which differed in their spatial distribution of points, 

determining their shape and size. An additional category of 

standing deadwood was also included to enhance the model's 

precision. The data was randomly split into training, validation, 

and test sets with a 60/20/20 ratio. The training set was used 

independently for hyperparameter tuning using the Random 

Search method (Bergstra and Bengio, 2012: Gazzea et al., 2022). 

The validation set was used to evaluate the accuracy of the 

selected hyperparameters, while the combined training and 

validation sets were used for the final model training with the best 

hyperparameter values. The test set was used to calculate the final 

performance metrics of the classification model. Each model was 

trained on separate datasets, differing in surveying year and site, 

to compensate for variations in images acquisition. 

 

2.6 Growth models 

The species composition was then used in growth models 

(Shvidenko et al., 2008) to determine the age of the trees through 

the inverse growth function and tree height values. The growth 

(yield) models corresponding to the forest types of the studied 

area also require information on general bonitaet (site index), 

which was obtained during fieldwork. The obtained age values 

were used to calculate biophysical parameters using growth 

models and models of biological production: diameter at breast 

height (m), growing stock (m3), above-ground biomass (t), and 

net primary production (NPP, tC·year-1).  

 

3. Results 

3.1 Validation using field data 

In this section, the results of point cloud acquisition, individual 

tree segmentation, tree species classification based on point 

clouds, and the application of growth models for obtaining stand 

parameters will be considered. 

 

 
 

Figure 2. Validation plots. Green, orange, and blue points 

indicate the tree tops of pine, larch, and birch, 

respectively, as derived from segmented UAV point 

clouds. Pink points represent undetected tree tops. 

Yellow lines depict the concave hull geometry of the 

detected tree point clouds, while orange lines show 

the refined canopy boundaries based on field data. 

 

The data obtained during fieldwork were employed to validate 

the measurement of tree height using SfM-MVS, tree 

segmentation approaches and tree species classification. General 

range of heights of detected trees was from 2.5 to 17.5 m, which 

is typical for larch and pine trees in study area. A comparison 

between the field data and the segmented tree point cloud from 

UAV imagery revealed that the root mean squared error (RMSE) 

of tree heights was slightly less than 1 m, and the mean absolute 

error (MAE) amounted to -0.016 m. It is worth noting that only 

half of the trees were identified based on the validation data due 

to the limited sample size used for validation purposes. Besides, 

some trees were mistakenly identified as existing trees, especially 

in the trees with wide crowns or a continuous canopy. 

 

The species composition of the study area was verified using a 

field data label dataset on the test set, which was not used in 

hyperparameter tuning or model training. The larch and birch 

classes at the Suola site, where reforestation processes are 

ongoing and species boundaries are well-defined, exhibited high 

classification quality metrics (precision and recall: 0.85–0.9). In 

contrast, at the “Viluy” site, which has a dominant larch and pine 

composition with a mixed spatial distribution, lower 

classification quality values were observed. Additionally, the 

birch class at the “Viluy” site showed the lowest classification 

quality metrics due to its very low abundance in pine-larch 

forests. 
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Figure 3. Tree species classification of segmented UAV tree 

point clouds. Size of the points depicts its normalized 

heights. 

 

Dead trees (snags) also had low classification quality metrics, 

particularly in the 2021 datasets (Figure 3), likely due to 

challenging lighting conditions that resulted in long shadows, 

making snag identification more difficult. However, this class 

was used only as an auxiliary category and was not included in 

growth models applying. Given the high recall metrics for the 

main larch and birch classes, the low classification quality of this 

class can be considered negligible. 

 

For each tree with height value and classified species all 

biophysical parameters were calculated: diameter at breast 

height, growing stock, above-ground biomass, and net primary 

production. The only biophysical parameter that could be 

compared was the diameter of tree trunk at the breast height, 

which was also collected during fieldwork. The analysis revealed 

a slight overestimation of the values of diameter by the model. 

The RMSEs, with a total spread of values ranging from 5 to 30 

cm, were approximately 5 cm. 

 

3.2 Maps of structural and biophysical parameters of forest 

For each epoch and site, individual tree parameters calculated 

using growth models were aggregated into a regular grid for 

visualization purpose. These parameters are as follows: 1) Tree 

height defined as a maximum Z coordinate value of the points in 

the segmented tree point cloud; 2) Tree age estimated using a 

reverse growth model; 3) Tree cover calculated as the concave 

hull geometry area normalized by grid size; 4) Tree stock, 5) Tree 

above-ground biomass (AGB), 6) Tree Net Primary Productivity 

(NPP) – the last three parameters were estimated based on tree 

age value using growth models. Figure 4 present example of 

generated map with estimated parameters, illustrating clear 

spatial differentiation in the values of different tree species. 

Using the 2022 data for the “Suola” site as an example, the map 

illustrates a similarity between tree growth and age, as well as 

between timber stock and above-ground biomass (AGB). In 

contrast, net primary productivity (NPP) values differ from these 

patterns. Thus, the maps provide a clear representation of spatial 

differentiation and quantitative indicators of the structural and 

biophysical parameters of the forest stand. 

 

 

 
Figure 4.  Individual tree structural and biophysical parameters aggregated on a 10 m regular grid at the “Suola” site (2022). 

 

 

4. Discussion 

The results of the full workflow for estimating tree parameters 

using multi-temporal UAV imagery lead to several assumptions 

and challenges. 

 

In this study, we did not calculate relative errors between co-

aligned multi-temporal datasets. However, based on the visual 

consistency of point clouds, these relative errors are assessed as 

acceptable. It was identified as crucial for UAV-SfM to maintain 

consistent survey planning, particularly ensuring similar image 

overlap across all datasets. In the “Suola” and “Viluy” UAV 

imagery datasets, insufficient overlap between image groups 

resulted in poor-quality outcomes. Additionally, similar lighting 

conditions are assumed to be an essential requirement for a 

successful co-alignment procedure. In cases where the co-

alignment process is not feasible, our technique of linking images 

from different epochs using natural control points present in both 

datasets can be applied. 
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Tree segmentation algorithms, originally developed for 

processing airborne laser scanning (ALS) point clouds of forests 

(e.g., in Pirotti et al., 2017), have demonstrated high accuracy in 

areas with sufficient spacing between trees and open canopies, as 

observed through visual examination. However, in regions where 

canopies overlap or form a fully closed canopy, these algorithms 

may introduce significant errors. Addressing this limitation 

requires further research. 

 

Tree species classification based on statistical variables of point 

cloud spatial distribution has shown relatively high accuracy for 

the main species classes. However, further research is needed to 

assess the significance of different variables and explore the 

potential use of more complex methods for point cloud 

classification. 

 

The use of growth models demonstrated strong potential for 

estimating forest biophysical parameters. However, these 

estimates require validation using dendrochronological methods 

for tree age and bio-ecological methodologies for the remaining 

parameters. It is also important to note that the accuracy of 

growth model predictions in our workflow depends on the 

precision of tree height measurements obtained during tree 

segmentation and the accuracy of species classification. 

 

5. Conclusion 

This study presents a complete workflow for monitoring post-fire 

vegetation dynamics using UAV ultra-high-resolution multi-

temporal imagery and the SfM technique. We identified 

challenges and areas for future research in the use of multi-

temporal UAV imagery with the co-alignment approach. With 

improvements in key workflow steps, such as tree segmentation 

in closed-canopy areas, the proposed workflow has the potential 

to be applied for large-scale forest monitoring of post-fire 

vegetation processes. 

 

Acknowledgements 

The work was carried out with partial support from the state task 

FMWS-2024-0009 #1023032700199-9. 

 

References 

Bartalev S.A., Stytsenko F.V., Egorov V.A., Loupian E.A., 2015. 

Satellite-Based Assessment of Russian Forest Fire Mortality. 

Lesovedenie. 2, 83–94. 

 

Burrell, A.L., Sun, Q., Baxter, R., Kukavskaya, E.A., Zhila, S., 

Shestakova, T., Rogers, B.M., Kaduk, J., Barrett, K., 2022. 

Climate change, fire return intervals and the growing risk of 

permanent forest loss in boreal Eurasia. Science of The Total 

Environment, 831, 154885. 

 

Cao, L., Liu, H., Fu, X., Zhang, Z., Shen, X., Ruan, H., 2019. 

Comparison of UAV LiDAR and Digital Aerial Photogrammetry 

Point Clouds for Estimating Forest Structural Attributes in 

Subtropical Planted Forests. Forests, 10(2), 145. 

 

Chu, T., Guo, X., 2014. Remote Sensing Techniques in 

Monitoring Post-Fire Effects and Patterns of Forest Recovery in 

Boreal Forest Regions: A Review. Remote Sensing, 6(1), 470-

520. 

 

Dalponte, M., Coomes, D.A., 2016. Tree-centric mapping of 

forest carbon density from airborne laser scanning and 

hyperspectral data. Methods in Ecology and Evolution, 7(10), 

1236-1245. 

 

Dalponte, M., ... Frizzera, L., Gianelle, D., 2023. Spectral 

separability of bark beetle infestation stages: A single-tree time-

series analysis using Planet imagery. Ecological Indicators 153. 

https://doi.org/10.1016/j.ecolind.2023.110349 

 

Gazzea, M., Kristensen, L.M., Pirotti, F., Ozguven, E.E., 

Arghandeh, R., 2022. Tree Species Classification Using High-

Resolution Satellite Imagery and Weakly Supervised Learning. 

IEEE Trans. Geosci. Remote Sensing 60, 1–11. 

https://doi.org/10.1109/TGRS.2022.3210275 

 
Hansen, M.C., Potapov, P.V., Moore, R., Hancher, M., 
Turubanova, S.A., Tyukavina, A., Thau, D., Stehman, S.V., 
Goetz, S.J., Loveland, T.R., Kommareddy, A., Egorov, A., Chini, 
L., Justice, C.O., Townshend, J.R.G., 2013. High-Resolution 
Global Maps of 21st-Century Forest Cover Change. Science, 
342(6160), 850–853. 
 
Karra, K., Kontgis, C., Statman-Weil, Z., Mazzariello, J.C., 
Mathis, M., Brumby, S.P., 2021. Global land use / land cover 
with Sentinel 2 and deep learning. 2021: IEEE International 
Geoscience and Remote Sensing Symposium IGARSS, 4704–
4707. 
 
Krylov, A., McCarty, J.L., Potapov, P., Loboda, T., Tyukavina, 
A., Turubanova, S., Hansen, M.C., 2014. Remote sensing 
estimates of stand-replacement fires in Russia, 2002–2011. 
Environmental Research Letters, 9(10), 105007. 
 
Kutchartt, E., Pedron, M., Pirotti, F., 2022. Assessment of 
Canopy and Ground Height Accuracy from Gedi Lidar Over 
Steep Mountain Areas. ISPRS Annals of the Photogrammetry, 
Remote Sensing and Spatial Information Sciences V-3–2022, 
431–438. https://doi.org/10.5194/isprs-annals-V-3-2022-431-
2022 
 
Lesiv, M., Schepaschenko, D., Buchhorn, M., See, L., Dürauer, 
M., Georgieva, I., Jung, M., Hofhansl, F., Schulze, K., Bilous, 
A., Blyshchyk, V., Mukhortova, L., Brenes, C.L.M., 
Krivobokov, L., Ntie, S., Tsogt, K., Pietsch, S.A., Tikhonova, E., 
Kim, M., … Fritz, S., 2022. Global forest management data for 
2015 at a 100 m resolution. Scientific Data, 9(1), 199. 
 
Long, T., Zhang, Z., He, G., Jiao, W., Tang, C., Wu, B., Zhang, 
X., Wang, G., Yin, R., 2019. 30 m Resolution Global Annual 
Burned Area Mapping Based on Landsat Images and Google 
Earth Engine. Remote Sensing, 11(5), 489. 
 
Lytkina, L., 2010: Forest restoration on the burned areas of the 
Lena-Amga interfluve: Central Yakutia. Nauka, Novosibirsk.  

Narita, D., Gavrilyeva, T., Isaev, A., 2021. Impacts and 

management of forest fires in the Republic of Sakha, Russia: A 

local perspective for a global problem. Polar Science, 27, 

100573. 

 

Piragnolo, M., ... Grigolato, S., 2021. Responding to Large-Scale 

Forest Damage in an Alpine Environment with Remote Sensing, 

Machine Learning, and Web-GIS. Remote Sensing 13, 1541. 

https://doi.org/10.3390/rs13081541 

 

Pirotti, F., Kobal, M., Roussel, J.R. 2017. A comparison of tree 

segmentation methods using very high density airborne laser 

scanner data. The International Archives of the Photogrammetry, 

Remote Sensing and Spatial Information Sciences, XLII-2-W7, 

285–290. doi.org/10.5194/isprs-archives-XLII-2-W7-285-2017 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-G-2025 
ISPRS Geospatial Week 2025 “Photogrammetry & Remote Sensing for a Better Tomorrow…”, 6–11 April 2025, Dubai, UAE

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-1189-2025 | © Author(s) 2025. CC BY 4.0 License.

 
1194



 

 

Pirotti, F., Adedipe, O., Leblon, B., 2023. Sentinel-1 Response to 

Canopy Moisture in Mediterranean Forests before and after Fire 

Events. Remote Sensing 15, 823. 

https://doi.org/10.3390/rs15030823 

 
Potapov, P., Hansen, M.C., Pickens, A., Hernandez-Serna, A., 
Tyukavina, A., Turubanova, S., Zalles, V., Li, X., Khan, A., 
Stolle, F., Harris, N., Song, X.-P., Baggett, A., Kommareddy, I., 
Kommareddy, A., 2022: The Global 2000-2020 Land Cover and 
Land Use Change Dataset Derived From the Landsat Archive: 
First Results. Frontiers in Remote Sensing, 3, 856903. 
 
Potapov, P., Li, X., Hernandez-Serna, A., Tyukavina, A., 
Hansen, M.C., Kommareddy, A., Pickens, A., Turubanova, S., 
Tang, H., Silva, C.E., Armston, J., Dubayah, R., Blair, J.B., 
Hofton, M., 2021. Mapping global forest canopy height through 
integration of GEDI and Landsat data. Remote Sensing of 
Environment, 253, 112165. 
 

Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A. V., 

Gulin, A., 2018. CatBoost: Unbiased boosting with categorical 

features. Advances in Neural Information Processing Systems, 

31, 6639-6649. 

 
Sexton, J.O., Song, X.-P., Feng, M., Noojipady, P., Anand, A., 
Huang, C., Kim, D.-H., Collins, K.M., Channan, S., DiMiceli, C., 
Townshend, J. R., 2013. Global, 30-m resolution continuous 
fields of tree cover: Landsat-based rescaling of MODIS 
vegetation continuous fields with lidar-based estimates of error. 
International Journal of Digital Earth, 6(5), 427–448. 
 

Shvidenko, A.Z., Schepaschenko, D.G., Nilsson, S., Buluy, 

Y.I., 2008. Tables and Models of Growth and Productivity of 

Forests of Major Forest Forming Species of Northern Eurasia 

(Standard and Reference Materials). Federal Agency of Forest 

Management, Moscow, Russia. 

 

Wallace, L., Lucieer, A., Malenovský, Z., Turner, D., & 

Vopěnka, P. 2016. Assessment of Forest Structure Using Two 

UAV Techniques: A Comparison of Airborne Laser Scanning 

and Structure from Motion (SfM) Point Clouds. Forests, 7(12), 

62. 

 
White, J.C., Coops, N.C., Wulder, M.A., Vastaranta, M., Hilker, 
T., Tompalski, P., 2016. Remote Sensing Technologies for 
Enhancing Forest Inventories: A Review. Canadian Journal of 
Remote Sensing, 42(5), 619–641. 
 

Zhang, W., Qi, J., Wan, P., Wang, H., Xie, D., Wang, X., Yan, 

G., 2016. An Easy-to-Use Airborne LiDAR Data Filtering 

Method Based on Cloth Simulation. Remote Sensing, 8(6), 501. 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-G-2025 
ISPRS Geospatial Week 2025 “Photogrammetry & Remote Sensing for a Better Tomorrow…”, 6–11 April 2025, Dubai, UAE

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-1189-2025 | © Author(s) 2025. CC BY 4.0 License.

 
1195




