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Abstract  

  
The Green-HIT project focuses on effective and efficient forest monitoring and management, which holds the promise for climate 

change mitigation, ecosystem conservation, and biodiversity loss reduction. This project is funded by the Cyprus Research & 

Innovation Foundation (CODEVELOP-GT/0322) and is currently being implemented in Cyprus. Cyprus is located in the Eastern 

Mediterranean, an area frequently affected by various incidents that impact the preservation of forests (for example, forest fires, illegal 

logging, hunting, trespassing, and other activities that are damaging to biodiversity), especially during the summer season. Specifically 

for forest fires, several factors contribute to the increased risk of fire, such as prolonged drought, hot summers, strong winds, steep 

forest slopes, and flammable vegetation. Early warning and direct management facilities are paramount to efficiently tackling such 

disastrous events. To this end, the Green-HIT project aims to develop a holistic IoT platform for supporting productivity, 

competitiveness, and growth of the economy and the promotion of digital and green technology via forest management and monitoring 

in a post-pandemic world by (a) offering support for prevention, detection and reaction to forest fires, (b) providing afforestation and/or 

reforestation recommendations, (c) protecting forests from illegal logging and hunting, (d) monitoring forests and forest areas, and (e) 

offering forest mapping and inventory facilities by collecting, combining and analyzing field and remotely sensed data. This study will 

present the deforestation and reforestation module of the Green-HIT platform, which aims to identify and suggest (to relevant 

authorities), possible areas for reforestation. This module was developed using remote sensing data. Specifically, a change detection 

technique using the Euclidean distance was used for the identification of deforested areas achieving an Overal Accuracy equal to 67.7 

%. Also, for the reforestation module, a multicriteria analysis was applied using several parameters like dNBR, land cover, fire history, 

soil erosion, etc., using the Google Earth Engine platform. For the purposes of this study,  the Argaka fire event was selected to evaluate 

the accuracy of the developed model.  

 

1. Introduction 

Forests have a vital role for the Earth, and it is important to 

determine their status both strategically and tactically. 

Mediterranean forests are critical for providing numerous 

ecosystem services that enhance human well-being. These forests 

play a pivotal role in improving food, water, and energy security 

and are instrumental in mitigating risks. Additionally, they 

contribute significantly to both local and global economic 

structures. Furthermore, Mediterranean forests are vital for the 

protection of cultural identities and facilitate personal 

development (FAO and Plan Bleu, 2018). Despite the numerous 

benefits these ecosystems provide, they face a range of 

disturbances. Notable examples include climate change and 

human population growth, which lead to consequences such as 

the conversion of forests into scrublands, wildfires, outbreaks of 

pests and diseases, overgrazing, and land abandonment. These 

factors pose serious threats to the health and sustainability of 

Mediterranean forests(UNEP/MAP and Plan Bleu, 2020). 

 

In recent decades, forest monitoring approaches in a wide range 

such as, timber production, environmental protection, 

biodiversity conservation, forest fire prevention, post-

disturbance monitoring, wilderness, and open spaces etc. have 

been improving continuously and remote sensing is increasingly 

used for the forest monitoring. On the field, measurement 

methods are important sources of information. However, in cases 

of collecting critical forest measurements on a larger scale, the 

use of these methods is limited. Because of this, forest monitoring 

has progressed to the use of remote sensing (space and airborne) 

because it can provide fast, accurate, and high-resolution 

information about the study areas. These technologies have 

favored forest monitoring in terms of capacity, scale, and detail . 

Some of the most common types of Earth Observation (EO) data 

include multispectral and synthetic aperture radar (SAR) 

systems. Apart from that, are considered also the light detection 

and ranging (LiDAR) technologies, which provide the tools to 

assess forest characteristics and can be used to monitor and 

quantify changes in forests over time . Forest disturbances like 

wildfires, insect outbreaks (e.g Thaumetopoea pityocampa), etc. 

are key factors that affect the dynamics of forest ecosystems. For 

example, they affect forest species composition, structure, above- 

and below-ground carbon storage , forest regeneration and 

successional dynamics, as well as cycle of water and energy . 

Because of this, it is important to have a continuous inventory of 

forest ecosystems.  

 

 Over the past few decades, the science of remote sensing has 

expanded in different forest applications, such as forest species 

classification (Papachristoforou et al., 2023; Prodromou, 

Theocharidis, et al., 2024) fire damage assessment (Prodromou, 

Gitas, Themistocleous, Danezis, et al., 2023; Prodromou, Gitas, 

Themistocleous, Nisantzi, et al., 2023), time series of forest 

seasonality (Theocharidis et al., 2023), fire risk (Prodromou, 

Girtsou, et al., 2024), as well as the impact of dust pollution in 

NATURA2000 regions (Themistocleous & Prodromou, 2023)  

 

The Green-HIT project focuses on effective and efficient forest 

monitoring and management, which holds the promise for 

climate change mitigation, ecosystem conservation, and 

biodiversity loss reduction. This project is funded by the Cyprus 

Research & Innovation Foundation (CODEVELOP-GT/0322) 

and is currently being implemented in Cyprus. Also the project 

aims at developing a holistic IoT platform, as shown in Figure 1 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-G-2025 
ISPRS Geospatial Week 2025 “Photogrammetry & Remote Sensing for a Better Tomorrow…”, 6–11 April 2025, Dubai, UAE

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-1215-2025 | © Author(s) 2025. CC BY 4.0 License.

 
1215

mailto:maria.prodromou@eratosthenes.org.cy
mailto:com.ca@frederick.ac.cy


 

for supporting productivity, competitiveness and growth of the 

economy and the promotion of digital and green technology via 

forest management and monitoring in a post-pandemic world by: 

(a) offering support for prevention, detection and reaction to 

forest fires, (b) providing deforested areas and reforestation 

recommendations actions, (c) protecting forests from illegal 

logging and hunting, (d) monitoring forests and forest areas, and 

(e) offering forest mapping and inventory facilities by collecting, 

combining and analyzing field and remotely sensed data. This 

study will present the deforestation and reforestation modules of 

the Green-HIT platform, which aims to identify deforested areas 

and suggest (to relevant authorities), possible areas for 

reforestation. These modules were developed using remote 

sensing data. The platform operates across three main layers: the 

Perception Layer, which collects environmental data from IoT 

sensors, UAVs, and satellite imagery, the Network layer, which 

connects IoT gateways to transmit data to cloud servers, and the 

Application layer, where data is processed and analyzed using 

API-driven intelligence modules.  

 

 
Figure 1 The architecture of the Green-HIT platform for forest 

management and monitoring. 

 

1.1 Deforestation 

Deforestation is the conversion of forests to other land use, 

primarily caused by human activities or other causes like natural 

events (FAO, 2022). Large-scale forest cleaning or removal often 

leads to forest land being converted into non-forest uses for 

human purposes, such as urban development, agriculture, 

mining, timber extraction, and infrastructure expansion. 

Agriculture is the leading cause of deforestation, according to the 

World Wildlife Fund (Timmins et al., 2023; WWF, n.d.). Only 

for 2022, more than 65,000 Km2 of forest were lost, an area 

comparable with Sri Lanka or approximately 7 times the size of 

Cyprus. Deforestation results in the loss of forests and trees and 

the displacement of wildlife, particularly in tropical rainforests 

such as the Amazon, which hosts a significant portion of the 

world's biodiversity. In the Amazon, the world’s largest forest, 

around 17% has been lost over the past 50 years, mainly due to 

cattle ranching, with lost land increasing annually. A similar 

trend is observed in the Mediterranean region. Between 2001 and 

2019, an estimated 5.80 million Km2 of forests were lost, with an 

average annual loss of 306,000 Km2. The countries with the 

highest levels of deforestation include Spain, with approximately 

12,000 Km2 lost, France, with around 11,500 Km2, and Portugal, 

with roughly 10,000 Km2. (Ciobotaru et al., 2021).   

 

The European Union has established initiatives and laws to 

contribute to preserving and protecting forests while trying to 

minimize deforestation in Europe as much as possible. One of the 

principal regulations requires all goods entering and exiting the 

EU to be ‘’deforestation-free’’. All new regulations and laws set 

by the European Union have one primary goal: to reduce 

greenhouse gas emissions by at least 55% by 2030 compared to 

1990 levels, with deforestation playing a significant role in 

achieving this target (European Council of the European Union, 

2024).  

 

To effectively support these goals, advanced technologies such 

as remote sensing and Geographic Information Systems (GIS) 

have become essential tools for monitoring deforestation, 

assessing environmental impacts, and guiding conservation 

strategies. Geographic Information Systems combined with 

remote sensing technology can help scientists understand how 

forests around the globe have changed over the years, identify 

land use changes, and provide valuable data that can be used to 

either prevent future deforestation or help regenerate the 

forests.(Mitchell et al., 2017). Moreover, LiDAR technology 

offers detailed three-dimensional data on forest structures, 

enhancing the precision of deforestation monitoring. LiDAR 

generates accurate elevation models and canopy height maps 

using laser pulses to measure their return time. This data enables 

precise biomass measurements, canopy density, and 

topographical features. LiDAR-based analysis helps identify 

deforested areas, measure canopy loss, and assess forest 

fragmentation, which can help governments take the appropriate 

measures to minimize deforestation.(Almeida et al., 2024).   

 

As mentioned above, remote sensing is a high-priority technique 

that can be used to monitor, capture, and prevent deforestation. 

Through satellite images or aerial imagery, a change detection 

procedure can play a vital role in the defense of our forests. The 

Sentinel-2 imagery and multispectral images can provide 

valuable information, such as the NDVI index, and practical 

insights for scientists about deforestation. In general, change 

detection compares at least two images taken at different times, 

making it possible to track deforestation progress, vegetation 

health, and how time affects the forest in general. This approach 

allows for rapid and precise intervention, promoting forest 

sustainability.(Hewarathna et al., 2024). 

 

1.2 Reforestation  

Reforestation refers to the process of natural regeneration or tree 

planting that occurs after a natural disaster, such as a wildfire. 

This silvicultural practice fosters the development of forest 

structure and the many benefits that forests provide to human life. 

Reforestation encompasses all necessary actions to promote the 

natural regeneration of affected areas using ecologically 

appropriate tree seedlings (Brancalion & Chazdon, 2017; Uprety 

et al., 2012).  

 

Additionally, the European Commission places a high value on 

reforestation in its agenda and has recently published new 

"Guidelines on Biodiversity-Friendly Afforestation, 

Reforestation, and Tree Planting"(European Commission, 2023). 

These guidelines aim to provide strategies for creating new 

forests and planting trees in both urban and rural environments. 

The European Union has set a goal of planting 3 billion new trees 

by 2030, which can only be achieved through the combined 

support of authorities, forest organizations, and landowners 

(European Union, 2022).  In a world facing an increasing number 

of crises, reforestation stands out as a vital solution with 
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numerous benefits. By restoring trees to deforested or barren 

land, we can reap a multitude of advantages (IUCN, 2018; UNEP 

& FAO, 2020; UNEP/MAP and Plan Bleu, 2020).  

 

Firstly, trees are exceptional at absorbing carbon dioxide, 

providing a powerful defence against the high levels of carbon 

emissions our planet faces. This leads to a reduction in 

greenhouse gases. Secondly, forests, and thus the trees, serve as 

habitats for millions of animal species. Preserving and enhancing 

the biodiversity that Earth has to offer is our responsibility, and 

reforestation can significantly contribute to this effort (Lorenz & 

Lal, 2010; Raihan, 2023). Thirdly, healthy soil is essential for 

sustainable agriculture and thriving ecosystems, and reforestation 

plays a key role in maintaining soil health. Trees prevent erosion, 

improve soil structure through their extensive root systems, and 

reduce the risk of landslides and land degradation(Gobinath et al., 

2022). Finally, forests act as natural filters for the water that 

flows through them. Planting trees alongside waterways can 

significantly enhance water quality(Smith et al., 2013). 

 

Remote sensing can significantly advance reforestation efforts by 

providing valuable data and insights that enhance the planning, 

monitoring, and management of forest restoration projects 

(Tatem et al., 2008). Reforestation is not a simple task; for it to 

be effective, proper forest management is essential, and remote 

sensing can play a crucial role in this process(Gitas et al., 2012; 

Koch et al., 2021) .  

 

Remote sensing simplifies reforestation management, and high-

resolution satellite images offer invaluable data to scientists, 

helping to ensure successful reforestation initiatives. As time 

goes on, the costs associated with these efforts are increasing. By 

incorporating satellite and remote sensing data into our 

inventory, we can reduce costs for potential reforestation areas, 

especially in challenging locations (Cavalcante et al., 2022).  

 

Additionally, multispectral and hyperspectral imaging facilitate 

the monitoring and detection of vegetation health, moisture 

levels, and overall ecosystem recovery alves(Alves de Almeida 

et al., 2021). Analytical models and advanced intelligence are 

necessary to achieve successful reforestation plans with long-

term sustainability in mind.  Finally, the effort to combat 

deforestation and promote reforestation is a worldwide initiative 

that requires collaboration between governments, organizations, 

and local communities (UNEP & FAO, 2020; UNEP/MAP and 

Plan Bleu, 2020). 

 

2. Study Area 

The proposed methodology was implemented in Cyprus island.  

which is located in the Eastern Mediterranean, an area frequently 

affected by various incidents that impact the preservation of 

forests (for example, forest fires, illegal logging, hunting, 

trespassing, and other activities damaging to biodiversity), 

especially during the summer season. Specifically for forest fires, 

several factors contribute to the increased risk of fire, such as 

prolonged drought, hot summers, strong winds, steep forest 

slopes, and flammable vegetation. The deforestation model was 

implemented over the whole region of Cyprus, and the 

reforestation model was only for the Argaka fire event (Figure 2).  

 

The fire in Argaka area (Paphos region), erupted on June 18, 

2016, with an estimated burned area of 763.3ha. The predominant 

vegetation in these regions consists of Pinus Brutia forests with 

an understory comprising herbaceous plants and shrubs. The 

climate in these areas is typical of the Mediterranean, 

characterized by hot, dry summers and mild, rainy winters.  

 

 
Figure 2 Argaka fire event that was examined for this study 

 

 

3. Materials and Methods 

The proposed methodology is divided into two sections: the first 

part describes the approach used for developing the deforestation 

module of the Green-HIT platform, while the second part focuses 

on the reforestation module. For both modules, the Google Earth 

Engine (GEE) platform was utilized for the process development.  

 

The GEE is a planetary-scale platform for scientific analysis and 

visualization of geospatial datasets. In this platform, the open-

source images acquired by several satellites are accessible and 

can be efficiently imported and processed in the cloud without 

the necessity of downloading (Gorelick et al., 2017; Mutanga & 

Kumar, 2019) 

 

 

3.1 Deforestation module 

A change detection technique was implemented to identify 

deforestation areas. Specifically, the model is based on the 

difference in reflectance values between two images, one is the 

reference, and the other is the target. The user specifies a date in 

the model, and the algorithm detects changes between the 

selected dates based on the previous year.  

 

The change detection uses the spectral bands of Sentinel-2 

imagery and additional spectral indices to enhance the detection 

of the changes. ESA launched the Sentinel-2 mission, an optical 

platform equipped with a multispectral instrument that includes 

two satellites (Sentinel-2A and Sentinel-2B). Furthermore, this 

mission enables the acquisition of data in 13 spectral bands 

presented in Table 1 indifferent spatial resolutions (10m, 20m 

and 60m) every five days on average (Drusch et al., 2012; Spoto 

et al., 2012). The Sentinel-2A satellite was launched on 23 June 

2015, and 2B on 7 March 2017. As a result, the developed 

modules operate only on data collected after 2015.  Is highlighted 

that only the bands with spatial resolution at 10 and 20m were 

used. 

 

In the analysis used in the study, the spectral indices that are 

presented in Table 2 were incorporated as new layers to create 

image composites for the abovementioned datasets. The spectral 

indices were used since each can provide additional information 

for the analysis. One example is the use of NDVI, one of the most 

widely used vegetation indicators that highlight the vegetation 
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condition (Tucker, 1979) and the SAVI, which considers the 

terrain and, in cases with low vegetation cover, corrects the 

effects of soil brightness. For the leaves' water content, the NDMI 

index was used, which is based on the ratio of NIR and SWIR 

(HUNTJR & ROCK, 1989). The NDRE index based on the 

NDVI formula was used; however, the Red Edge instead of Red 

(Barnes et al., 2000). 

 

 

Table 1 Spatial resolution and central wavelength for Sentinel-2 

bands. 

 

 

Also, to ensure consistency across datasets, each image 

composite was normalized using the minimum and maximum 

pixel values within the selected area. Additionally, to avoid any 

impacts from the cloud cover in the analysis, the images were 

filtered to have <10% cloud cover across the entire scene, 

especially above the area, using the 

CLOUDY_PIXEL_PERCENTAGE metadata to reduce the 

impact of clouds. Also, the cloud masking was performed using 

the QA60 band, where the pixels affected by clouds and cirrus 

were masked out.  

 

Change detection was performed following the band selection 

and the computation of the spectral indices for the two satellite 

image composites (reference/target). In detail, a pixel-based 

differencing approach was applied to detect changes in surface 

reflectance. Specifically, the difference between the reference 

and target imagery was calculated using the Euclidean Distance 

(ED) method based on the Eq.1. The normalized image 

composites were subtracted, squared, and summed across bands, 

followed by the square root to compute the final change 

magnitude. Higher ED values indicate more significant spectral 

differences suggesting greater changes in vegetation.  

 

𝐸𝐷 =  √∑ 𝑋2
𝑖 − 𝑋1

𝑖𝑛
𝑖=1   (Eq. 1) 

Where X represents the spectral bands (including spectral 

indices) 

 

Moreover, in order to automatically binarize the difference, the 

Otsu’s thresholding method (Otsu, 1979) is used, and then the 

changes are represented by pixels assigned a value of 1, and those 

with values of 0 are masked out to distinguish between changed 

and unchanged areas. This technique computes an adaptive 

threshold based on the histogram of changed magnitudes and 

ensures an optimal separation between changed and unchanged 

regions.  

 

After the identification of the changes, they were categorized 

using ancillary data. Specifically, land cover data provided by the 

Copernicus Land Monitoring Service was used to classify the 

detected changes into specific categories: changes in forest areas 

that indicate potential areas for deforestation, changes in rural 

areas, changes in urban environments, and changes in water 

bodies. In addition, fire-induced changes were determined using 

the burnt area datasets derived from MODIS Burned Area 

Product (MCD64A1).  

 

Finally, for the validation of the results, the fire events data from 

EFFIS service. Specifically, the evaluation was made based on 

the identification of known fire events in comparison with the 

change detection model that develop for the identification of the 

deforestation.  

 

 

Table 2. Vegetation Indices Equations based on Sentinel-2 data. 

Satel-

lite 

Vegetation Indices Abbrevia-

tion 

Equation Reference 

S2 

Normalised Difference Vegetation In-

dex 
NDVI 

𝑵𝑰𝑹 − 𝑹𝑬𝑫

𝑵𝑰𝑹 + 𝑹𝑬𝑫
 (Tucker, 

1979) 

Normalised Difference Red Edge Index 

 
NDRE 

𝑵𝑰𝑹 − 𝑹𝑬𝑫 𝑬𝑫𝑮𝑬

𝑵𝑰𝑹 + 𝑹𝑬𝑫 𝑬𝑫𝑮𝑬
 

(Gitelson et 

al., 2003) 

Enhanced Vegetation Index 

 

 

EVI 
𝟐. 𝟓(𝑵𝑰𝑹 − 𝑹𝑬𝑫)

 𝑵𝑰𝑹 +  𝟔 𝑹𝑬𝑫 −  𝟕. 𝟓𝑩𝑳𝑼𝑬 +  𝟏
 

(A. Huete 

et al., 2002) 

Soil-Adjusted Vegetation Index 

 

 

SAVI 
𝟏. 𝟓(𝑵𝑰𝑹 − 𝑹𝑬𝑫)

 𝑵𝑰𝑹 +  𝑹𝑬𝑫 + 𝟎. 𝟓
 

(A. R. 

Huete, 

1988) 

Sentinel-2 MSI 

Band Wavelength

(mm) 

Resolution 

(m) 

1 Coastal aerosol 433-453 60 

2 Blue (B) 458-523 10 

3 Green (G) 543-578 10 

4 Red (R) 650-680 10 

5 Red edge 1 (RE1) 698-713 20 

6 Red edge 2 (RE2) 733-748 20 

7 Red edge 3 (RE3) 773-793 20 

8 Near Infrared (NIR) 785-900 10 

8a 8 Near Infrared 

narrow (NIRn) 

855-875 20 

9 Water vapour 935-955 60 

10 Shortwave infrared / 

cirrus 

1360-1390 60 

11 Shortwave infrared 1 

(SWIR1) 

1565-1655 20 

12 Shortwave infrared 2 

(SWIR2) 

2100-2280 20 
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Normalised Difference Moisture Index 

 

 

NDMI 
𝑺𝑾𝑰𝑹 − 𝑵𝑰𝑹

𝑺𝑾𝑰𝑹 + 𝑵𝑰𝑹
 

(HUNTJR 

& ROCK, 

1989) 

 

3.2 Reforestation module 

The Reforestation module was developed based on a multi-

criteria decision-making approach using remote sensing data to 

prioritize post-fire reforestation efforts within deforested areas as 

described by (Prodromou et al., 2025). For the identification of 

the parameters, discussions were conducted with the forest 

department in Cyprus and based on the literature. Based on this 

approach, the selected factors for the development of the model 

were the fire severity, tree canopy density, elevation, slope, 

aspect, temperature, precipitation, and the fire frequency. With 

these factors the Analytical Hierarchy Process (AHP) proposed 

by (Saaty, 1980) is implemented in order to determine the 

importance of each factor, resulting in a priority reforestation 

map with three classes: low, medium, and high. Low and medium 

priority correspond to areas that have the potential for natural 

recovery, while high-priority areas require artificial restoration 

actions. AHP compares all factors against each other based on 

their importance on a scale of 1 to 9, as shown in Table 3. 

 

Table 3 Saaty Rating Scale 

Intensity of importance Remark 

1 Equal importance 

3 Moderately more important 

5 Strongly more important 

7 Very strongly more important 

9 Extremely more important 

2,4,6,8 Intermediate values 

 

 

After that, we retrieved the necessary data that corresponded to 

each factor. The Sentinel-2 imagery was used for the estimation 

of fire severity, while Corine Land Cover data was used to 

classify the land cover types, identifying the forested areas that 

have higher restoration needs. Additionally, topographic factors 

are incorporated using the SRTM DEM, and climate parameters, 

including LST from MODIS and precipitation from CHIRPS, are 

integrated to assess the potential recovery. Tree density data and 

fire history are also considered in the analysis. 

 

All factors were standardized in order to be in the same scale of 

value, where the original values were transformed into 

comparable units [59] from 1 up to 3, where the values of each 

factor that have low importance were taken the value 1, and the 

values with higher importance take values up to 3.    

 

Finally, the aggregation was performed using the weighted linear 

summation method. Specifically, the raster layer for each factor 

is multiplied by their respective criterion weight, and after that, 

they are summed. based on this, the final map about the 

prioritization of the areas for reforestation actions was developed 

and reclassified into reforestation priority classes. 

  

4. Results and Discussion  

4.1 Deforestation module 

The proposed methodology was conducted for the development 

of a deforestation module for the Green-HIT platform. 

Specifically, it was applied to specific regions to analyze land 

cover changes for a selected timeframe. The detected changes 

were categorized into four major classes - Forest, Water Bodies, 

Agriculture, and Urban based on Corine Land Cover (CLC) 

provided by Copernicus. The changes emphasize monitoring 

changes within forested areas. To ensure a more accurate 

evaluation, this study emphasized only the changes that were 

detected within forests, shrublands, and grasslands as defined by 

the CLC dataset. The urban areas, croplands, water bodies, etc, 

were excluded from the analysis.  

 

Figure 3 have presented some characteristic changes that are 

identified by the proposed methodology.  

 

 
Figure 3 Comparison between the changes detected by the 

change detection model with EFFIS burned areas. 

The deforestation detection module effectively identified 

deforested areas with high accuracy, 67.7%, as validated against 

burned areas from European Forest Fire Information System 

(EFFIS) data. The high agreement between the predicted 

deforestation areas and burned areas data highlights the 

robustness of the methodology in accurately capturing forest 

disturbances. This agreement suggests that the proposed 

approach is particularly effective in distinguishing fire-induced 

deforestation from other types of land cover changes. Moreover, 

the results indicate a distinct increase in deforestation areas 

during the summer months due to the increase in the number of 

fires. 

  

4.2 Reforestation module 

Multicriteria decision-making (MCDM) techniques are widely 

utilized and are highly effective for managing large volumes of 

complex information. These techniques can be categorized into 

various approaches depending on their specific applications.  

 

In the field of reforestation, several studies have employed the 

Analytic Hierarchical Process (AHP), as it can be effectively 

integrated with Geographic Information Systems (GIS) to 

determine the relative importance of different criteria. For 

example, AHP has been used to assess ecological suitability in 

land evaluation and natural resource management (Malczewski, 

2004; Ownegh et al., 2006). It has also been applied to identify 

optimal locations for the afforestation of endangered species 

(Alemi et al., 2014) and to evaluate afforestation efforts in Darab 
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Kola, Miandorud County, Mazandaran Province, Iran 

(Gholizadeh et al., 2020). 

 

The prioritization of reforestation actions for the Argaka fire 

event was determined using the AHP method, categorizing the 

burned area into three main priority levels: low, medium, and 

high, as shown in Figure 4. These priorities were then translated 

into either artificial or natural restoration actions. Specifically, 

low and medium-priority areas correspond to regions with 

potential for natural recovery, while high-priority areas require 

artificial restoration actions. Moreover, Figure 3 highlights in the 

boxes some characteristic regions that are in full agreement with 

practices conducted by the Department of Forests.  

The model was implemented to the selected polygon where 

results indicate that the area is primarily classified as low priority 

(80%), with high priority and medium priority areas representing 

11% and 9%, respectively. However, when focusing solely on the 

burned area, the majority (52%) falls into the high-priority 

category, followed by medium-priority (40%) and low-priority 

(8%). Moreover, according to the restoration efforts implemented 

after the Argaka fire event by the DoF, only 0.59% of the burned 

area remained unburned. Regarding the restoration action, a 

small portion (4.62%) was selected for natural recovery, while 

the remaining burned area (94.79%) was subject to restoration 

efforts. 

By comparing the predicted reforestation strategies with the 

permanent sample points established by the Department of 

Forests to assess restoration efforts, the preliminary results 

indicate that the model achieves an Overall Accuracy (OA) of 

approximately 74.5%, demonstrating strong agreement with 

actual restoration outcomes. 

 
Figure 4 Priority of reforestation actions in Argaka fire event/ 

 

5. Conclusions 

Overall, the findings demonstrate that the proposed methodology 

for the identification of deforestation areas provides an accurate 

and reliable framework for detecting and monitoring 

deforestation, offering valuable insights for policymakers and 

stakeholders in managing and preventing forested ecosystems.  

 

Also, regarding the restoration module successfully prioritized 

reforestation actions based on burn severity and ecological 

recovery potential. The model demonstrated a strong agreement 

with actual restoration efforts, achieving an Overall Accuracy of 

74.5% when compared to field data. This approach effectively 

distinguished areas suitable for natural recovery from those 

requiring artificial restoration, providing a valuable decision-

support tool for post-fire management. The Green-HIT project 

successfully demonstrates the integration of remote sensing 

techniques for effective forest management and is highlighted 

that is the first tool in Cyprus that uses these technologies. The 

deforestation module accurately identifies the deforested areas 

and similarly, the reforestation module accurately prioritizes the 

restoration actions in burned areas. Also, the use of multi-

temporal remote sensing data and geospatial analysis enables 

continuous monitoring, ensuring a proactive approach to forest 

conservation. These findings highlight the platform’s capabilities 

to support forest monitoring, biodiversity conservation, and 

climate change mitigation, providing a valuable tool for 

sustainable environmental management.  

 

Our future steps focus on the time series analysis for the 

investigation of the recovery of deforested areas as well as to 

exploit the effectiveness of restoration actions in the burned 

areas.   
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