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Abstract 

Australia's terrestrial ecosystems are critical to the global carbon cycle, yet they face numerous environmental pressures such as forest 

degradation and biodiversity loss. Accurate monitoring of vegetation dynamics is crucial to mitigating these challenges and informing 

sustainable management strategies. Individual Tree Segmentation (ITS) methods, powered by deep learning, enable large-scale 

mapping of tree crowns, which is vital for assessing above-ground biomass and carbon stocks across vast landscapes. Despite their 

promise, inconsistencies in algorithmic performance arise due to varying vegetation types, point cloud densities, and dataset-specific 

characteristics, which limit the generalizability of supervised models. 

This study evaluates the performance of different ITS and Canopy Height Model (CHM) algorithms for generating large tree crown 

datasets using LiDAR-derived data from across Australia. We applied these methods to 37 representative airborne LiDAR point clouds 

across 15 vegetation classes, representing a range of ecosystems from rangelands to tropical forests. 

Our analysis reveals that the effectiveness of tree detection and crown delineation varies significantly across vegetation types and point 

cloud densities. The Pit-Free CHM algorithm generally outperforms others, yielding higher match rates in the delineation of tree 

crowns. Additionally, the DalPonte ITS algorithm provides the most accurate results, especially in sparsely vegetated areas such as 

rangelands, which are critical for mapping and monitoring. In contrast, closed-canopy forests present challenges, particularly due to 

crown clumping and multi-layered vegetation structures. This study highlights the importance of selecting the appropriate ITS and 

CHM methods for different vegetation types and emphasizes the need for algorithm optimization in complex environments, such as 

tropical and eucalypt forests. Ultimately, these findings provide valuable insights into enhancing large-scale vegetation monitoring and 

improving model generalization for tree crown detection. 

 

 

 

1. Introduction 

Australia's terrestrial ecosystems play a pivotal role in the global 

carbon cycle and are facing increasing environmental and 

anthropogenic pressures, including forest degradation, habitat 

fragmentation, and biodiversity loss (Lindenmayer, 2023). 

Accurate monitoring of vegetation dynamics is crucial to mitigate 

these challenges and inform sustainable management strategies. 

 

Individual Tree Segmentation (ITS) methods enable high-

resolution mapping of tree crowns. Deep learning (DL) models 

trained on individual tree crown delineations can segment 

billions of crowns from multispectral imagery across entire 

continents. This facilitates large-scale monitoring of landscape 

changes and provides critical insights into above-ground biomass 

and carbon stocks. Such capabilities are essential for evaluating 

national or continental carbon sequestration rates and assessing 

the effectiveness of carbon management strategies (Oehmcke et 

al., 2024). When coupled with canopy height models (CHM), 

these datasets facilitate the estimations of above-ground biomass 

and carbon stocks, potentially at regional to continental scales 

(Oehmcke et al., 2024). 

 

However, the diversity of vegetation types, varying point cloud 

densities, and algorithmic approaches introduce inconsistencies 

that limit the generalizability of supervised models built on these 

delineations. Additionally, selecting the most appropriate ITS 

method for specific datasets and regions is vital (Wallace et al., 

2014), as tree detection and crown delineation accuracy can vary 

significantly between methods. Even in similar environments 

with identical data, certain methods—particularly image-based 

ones—can yield different outcomes (Latella et al., 2021). 

Segmentation inaccuracies may arise from errors in canopy 

height models (Goldbergs et al., 2018) or the misidentification of 

non-tree vertical structures as trees (Weinstein et al., 2019), 

emphasizing the importance of carefully selecting an appropriate 

CHM algorithm. 

 

Leveraging LiDAR-derived data from multiple locations across 

Australia, this study investigates the efficacy of various ITS 

methods for generating high-quality and large tree crowns 

datasets, potentially useful for training DL models that are 

generalizable and balanced towards the natural vegetation type 

distribution. We evaluate the detection and delineation 

accuracies of some of the most used CHM and ITS methods, 

focusing on their adaptability across diverse vegetation types and 

point cloud densities. 

 

2. Methods 

We analysed 37 representative airborne LiDAR-derived point 

clouds (see Figure 1) across 15 vegetation classes, selected to 

replicate the statistical distribution of Australian vegetation as 

defined by Scarth et al. (2019). 
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Figure. 1.  Distribution of point cloud datasets across Australia, 

categorized by vegetation class (based on Scarth et 

al., 2019) and represented by symbols indicating 

point cloud density classes. Insets include red 

polygons denoting manually delineated tree crown 

ground truth, with background imagery sourced 

from Google and DigitalGlobe. 

 

Covering approximately 7.7 million km², Australia spans 

latitudes from 10° S (Cape York, Queensland) to 43° S (South 

East Cape, Tasmania) and hosts a diverse range of biomes, such 

as grasslands, deserts, temperate forests, subtropical regions, 

tropical rainforests, and equatorial zones (Stern et al., 2000). 

Known for its exceptional climate variability, which exceeds that 

of comparable climatic regions globally (Harris et al., 2018; Ma 

et al., 2016; Peel et al., 2004), Australia supports ecosystems 

ranging from tropical savannas and rainforests in the north, semi-

arid shrublands and grasslands in the center, to evergreen forests 

and woodlands in the south (Moore et al., 2016). This ecological 

diversity makes Australia an ideal location for testing and 

evaluating vegetation mapping techniques. 

The vegetation classes utilised for this study and derived from 

Scarth et. al (2019) range from low/medium scattered trees to 

very tall closed/open forests, including low/medium/tall 

woodlands and medium/tall forests. These study areas exhibit 

marked differences in the distribution and density of foliage and 

woody elements from the sub-canopy through to the overstory, 

including variations in the layering of vegetation (e.g., the 

presence or absence of a distinct understory), the continuity of 

foliage, and the vertical gap fraction, providing a complete 

overview of the variability found across the continent. 

 

We made sure to also take point cloud densities into account, 

classifying datasets into low (< 3 pts/m2), medium (3 to 16 

pts/m2) and high (>16 pts/m2) point cloud densities datasets. To 

categorize point cloud density, the ELVIS subset's first-return 

point cloud densities were grouped into three distinct classes. 

This classification was performed using the Jenks-Caspall 

algorithm which optimizes data partitioning into natural breaks. 

These datasets were processed using several combinations of 

three Canopy Height Model (CHM) algorithms (Point to Raster 

[P2R], Pit-Free (Khosravipour et al., 2014), and Triangulated 

Irregular Network [TIN]), and four ITS algorithms, namely 

DalPonte (Dalponte et al., 2016), Watershed, Silva (Silva et al., 

2016), and Li (Li at al. (2012). This generated 444 segmentation 

results (Figure 2), validated against 3,387 manually delineated 

tree crowns to evaluate detection and delineation accuracy across 

vegetation types and point cloud densities. 

 

 

 

Figure 2.  Example results of the four Individual Tree Segmentation (ITS) algorithms run in Wyandra, QLD, Australia. 
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To assess detection accuracy, each delineated crown was labelled 

as oversegmented, where multiple crowns overlap one 

groundtruth, undersegmented, where one crown spans multiple 

groundtruths, or a match, where one crown aligns with one 

groundtruth (Figure 3). 

 

 
Figure 3.  The figure highlights matches, oversegmentation, 

and undersegmentation cases used to evaluate 

detection accuracy. 

 

To quantify matched and undersegmented crowns delineation 

accuracy, we used the Intersection over Union (IoU) as defined 

as: 

 

 
𝐼𝑜𝑈𝑖 =  

𝐴∩𝑖

𝐴∪𝑖

 (1) 

 

where i represents a valid pairing between a grountruth (gt) and 

its ITS-crown while 𝐴∩𝑖
 and 𝐴∪𝑖

their spatial intersection and 

union respectively. For oversegmented crowns, calculating 

individual IoU for each fragment (frag) would lead to inaccurate 

and overestimated IoU results. Therefore, we adjusted the IoU 

(adj_IoU) to account for fragmentation of the ITS-crowns as 

follows: 

 

 
𝑎𝑑𝑗_𝐼𝑜𝑈𝑖

𝑓𝑟𝑎𝑔
= 𝐼𝑜𝑈𝑖  × 

𝐴∩𝑖

𝑓𝑟𝑎𝑔

𝐴𝑔𝑡𝑖

 

 

(2) 

 

where 𝐼𝑜𝑈𝑖  𝑖s the IoU calculated for each fragment frag of the 

oversegmented ITS-crown in pairing i,  𝐴∩𝑖

𝑓𝑟𝑎𝑔
 is the area of a 

fragment of the pairing i and 𝐴𝑔𝑡𝑖
 is the total area of the ground 

truth of the pairing i. 

 

3. Preliminary results and discussion 

Regarding detection accuracies, among the algorithms tested, the 

Pit-Free CHM algorithm obtained the highest match ratio (29% 

matches) whereas the TIN the lowest (25%), despite differences 

are minimal (Figure 4A). The Pit-Free (pit) algorithm's 

effectiveness lies in its ability to eliminate pits, which occur when 

fine grid resolutions exceed the point density, leaving certain grid 

cells without any points and resulting in undefined values or 

"pits." These empty pixels can negatively impact the accuracy of 

subsequent analyses. By addressing this issue, the Pit-Free 

algorithm ensures a smoother and more continuous 

representation of canopy surfaces. This capability not only 

improves the visual quality of the data but also significantly 

enhances the accuracy of downstream applications, such as tree 

detection and delineation, when compared to traditional methods 

(Khosravipour et al., 2014). The reduction of pits allows for more 

reliable segmentation of tree crowns, contributing to better 

overall performance in vegetation mapping and monitoring. 

 

 
Figure 4.  Detection accuracies per CHM (A) and ITS (B) 

algorithms. 

 

Regarding ITS algorithms, the best detections are obtained using 

DalPonte (84% match) whereas the worst with Li (5%), which is 

very prone to oversegmentation (Figure. 4B). Missed trees are an 

uncommon occurrence, with each approach typically failing to 

detect only one groundtruth tree in their delineations, on average. 

 

In terms of vegetation type, the best detections are obtained in 

low scattered trees environments (54% match), typical of 

rangelands. These ecosystems play a vital role in accurate tree 

mapping, given that rangelands account for 75% of Australia’s 

land area and hold approximately two-thirds of its carbon 

reserves (Donohue et al., 2012). Despite their significance, field 

data from these regions remain scarce and challenging to obtain 

due to their remote and vast nature (Porfirio et al., 2020). As a 

result, large-scale ITS methods are indispensable for effective 

monitoring and analysis of these critical landscapes. Conversely, 

the worst detection rates are found in tall open woodlands (15% 

match, Figure. 5) and generally in forests. In forested areas, the 

reduced delineation accuracies were primarily attributed to the 

phenomenon of clumping, or crown clustering, which led to 

higher undersegmentation ratios. This clustering effect occurs 

when tree crowns are closely spaced together, making it difficult 

for segmentation algorithms to accurately distinguish individual 

crowns, resulting in undersegmentation of tree crowns. 

 

 
Figure 5. Detection accuracies per vegetation type. 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-G-2025 
ISPRS Geospatial Week 2025 “Photogrammetry & Remote Sensing for a Better Tomorrow…”, 6–11 April 2025, Dubai, UAE

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-1223-2025 | © Author(s) 2025. CC BY 4.0 License.

 
1225



 

Regarding delineation accuracies, reported as median adj_IoU 

(unitless), the best performing CHM algorithms, independently 

from segmentation methods, is Pit-Free (0.16), followed by p2r 

(0.14) and lastly Tin (0.12). This corroborates our previous 

observations that Pit-Free algorithm generated CHM that are 

suitable to obtain the best delineations overall. Note that these 

seemingly low values are attributable to the combined 

performances of each CHM the Li ITS algorithm. 

 

In fact, Li segmentation algorithm resulted in very poor 

delineation accuracies (0.07) across all CHM methods, whereas 

the best ITS method was DalPonte (0.66), followed by Silva 

(0.43) and watershed (0.19). Once again, DalPonte algorithm 

superior performances also in delineating crowns result in the 

combination Pit-Free & DalPonte algorithms being the most 

generalisable and accurate of our study. 

 

In terms of vegetation type, the highest median adj_IoU are 

obtained in high point density point clouds representing medium 

scattered trees (0.3, Figure 6) whereas the lowest in low points 

density tall woodlands (0.03, Figure 6). The superior 

performances of high point cloud density datasets was expected, 

however also low density point cloud classes also returned 

satisfactory results. 

 

 
Figure 6.  Delineation accuracies per vegetation type and point 

cloud density. Note some classes are missing due to 

unavailable data. 

 

Overall, our analysis revealed that the performance of tree crown 

delineation algorithms varied significantly across different 

vegetation types. The highest accuracy rates were observed in 

sparsely vegetated areas such as rangelands and woodlands, 

which are particularly important for mapping Australia's vast and 

ecologically significant rangeland ecosystems. These regions, 

which cover a substantial portion of the country's landmass, 

benefit from the relatively open canopy structures that allow for 

more precise crown detection. In contrast, the delineation 

accuracy was lower in closed-canopy forests. This reduction in 

performance was primarily driven by the complex vegetation 

structures found in these areas, including the presence of dense 

crown clumping and multi-layered canopies. These 

characteristics make it challenging for segmentation algorithms 

to differentiate between individual tree crowns, leading to 

increased undersegmentation and reduced overall delineation 

accuracy. 

 

These findings emphasize the need for algorithm optimization 

tailored to tropical and eucalypt-dominated forests. Moreover, 

oversegmentation emerged as the predominant challenge across 

all ITS methods, particularly in tropical savannas and rangelands 

with multi-peak trees. Oversegmentation inflates error rates and 

complicates the development of robust and accurate individual 

tree crown dataset, potentially useful for DL training datasets.  

 

Retaining noisy labels may be beneficial, as overly stringent 

quality control risks underrepresenting complex canopy 

environments. 
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