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Abstract

The Urban Heat Island (UHI) effect is a phenomenon that typically occurs in areas with dense infrastructure and limited vegetation.
Nature-based solutions (NbS) have been proposed to mitigate the effects of climate change and have been proved to reduce the
frequency of its hazards. Therefore, this research examines how UHIs are influenced by the simulated implementation of NbS. The
area of interest (AOI) of this study is the city of Milan in Northern Italy and the purpose of this research is two-fold. First, to train
machine learning (ML) models to predict Surface UHI (SUHI) susceptibility and intensity, and their corresponding SUHI maps,
based on land cover, Land Surface Temperature (LST), Normalised Difference Vegetation Index (NDVI), Normalised Difference
Built-up Index (NDBI) and other ancillary data. Afterwards, the produced SUHI intensity ML model was re-evaluated to analyse
the expected behaviour of simulated NbS, specifically for green roofs and parks. The NDVI, NDBI, and albedo of the simulated
vegetation areas were changed to the average values of the urban vegetation in the City of Milan, 0.57, -0.17, and 0.15 respectively.
The SUHI statistics of the specific areas of change were analysed pre and post simulation. The results showed that green roofs
have the potential to lower SUHI intensity by 5 degrees Kelvin. The proposed methodology can be extended to simulate multiple

scenarios based on specific needs.

1. Introduction

Cities concentrate the majority of the world’s population and
due to the effects of climate change are facing rising temper-
atures, alteration in precipitation patterns, and extreme weather
events (Lu et al., 2024). The ability of a city to withstand these
challenges depends on the policies crafted by its leaders, which
need to be based on reliable information. Hence, precise envir-
onmental assessments are essential to support resilience against
climate-change related hazards.

Susceptibility quantifies the likelihood of hazardous events oc-

curring at a particular location by evaluating its inherent phys-

ical and environmental characteristics (Bentivoglio et al., 2022).

This analysis can be carried out using artificial intelligence meth-
ods, which treat the occurrences of hazards as the dependent

variable and develop a model using independent conditioning

factors, i.e., physical and environmental factors.

Urban areas have become ’islands’ of higher temperatures with
respect to the rural outlying areas (Pugliese Viloria et al., 2024).
This phenomenon is referred to as the Urban Heat Island (UHI)
effect, which typically occurs in areas with dense infrastructure
and limited vegetation. Specifically, UHIs are areas with greater
temperature than the average temperature in rural areas. In this
context, UHI susceptibility refers to the UHI likelihood in a
specific location.

Nature-based solutions (NbS) have been proposed to mitigate
the effects of climate change and have been proved to reduce
the frequency and intensity of its derived hazards. The proposed
NbS to alleviate Urban Heat Islands (UHIs) include enhancing
urban greenery and albedo, such as implementing green roofs
(He et al., 2021) and increasing urban vegetation (Calhoun et
al., 2024). Therefore, the present research examines how UHIs
are influenced by the simulated implementation of NbS. The
simulated NbS, consisting of new urban vegetation areas, were

introduced considering different patterns, in order to assess how
different setups may influence UHI susceptibility.

The methodology section describes the case study area and the
UHI modelling process which details the data analysis and pre-
processing. Subsequently, the results section presents the UHI
susceptibility model and map, the selection of the simulated ve-
getation areas, and the re-evaluation of the model considering
the change.

2. Methodology

The area of interest (AOI) of this study, depicted in figure 1, is
the city of Milan (in black) located in Northern Italy. It is sur-
rounded by its metropolitan area (in red). The area of the city
and the metropolitan area are 181 km?* and 1575 km?, respect-
ively.
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Figure 1. Area of interest
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The purpose of this study is two-fold. First, Machine Learning
(ML) models were trained to predict the Surface Urban Heat
Island (SUHI) susceptibility and the SUHI intensity alongside
their correspondent maps in the AOI. Second, Nature based
Solutions (NbS), i.e., the introduction of vegetation areas, were
simulated and the SUHI intensity was re-evaluated to measure
the effect of the simulated changes.

The following four subsections detail the concept of SUHI mod-
elling; the used data sources and preprocessing, i.e. Land Sur-
face Temperature (LST) and Land Cover (LC); an analysis on
the LST and LC dynamics; and a description on the NbS simu-
lation and relevant concepts on the matter.

2.1 Surface Urban Heat Island susceptibility

Surface Urban Heat Island (SUHI) refers to the effect of urban
islands of high surface temperature with respect to outlying
rural and vegetation areas. In fact, the SUHI can be derived
based on the Land Surface Temperature (LST) and the Land
Cover (LC).

Considering the LST and the land cover class, the reference
LST can be computed. The reference LST is the average LST
in rural and vegetated areas. The SUHI can be computed using
equation 1, where LST,, is the LST at each pixel and LST. is
the reference LST. The product of this computation is a binary
SUHI map.

1 LST, > LST,

(D
0 LST, < LST.

SUHI = {

Moreover, the SUHI intensity is defined as the temperature dif-
ference between LST), and LST,, see equation.

SUHIintensity = LSTr - LSTp (2)

SUHI susceptibility was approached as a binary supervised clas-
sification based on SUHI maps derived from equation 1 to char-
acterise the behaviour of the SUHI effect in the AOI. This clas-
sification is based on factors such as LST, LC, spectral indices
and other ancillary data as independent variables; see 2.2 for
further details. The workflow is detailed in figure 2.

Furthermore, the SUHI intensity was modelled to showcase the
areas where the SUHI was more severe as a function of LC,
spectral indices and ancillary data. The SUHI intensity model
was used to evaluate the impact of NbS, independent from the
LST. In fact, the model prescinds from the LST to prioritise the
effect of vegetation if the SUHI intensity rather than the LST
which has a high variability.

2.2 Data sources and preprocessing

The main data sources were Land Use Land Cover (LULC),
Landsat-8 L2C2, and certain ancillary data which are described
in detail in the following subsections. The spatial resolution
of all the datasets was set to 5x5 m? to keep best spatial detail
based on the available data.
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Figure 2. SUHI susceptibility modelling workflow.

2.2.1 Land Cover The Land Use/Land Cover (LULC) data-
set is publicly provided by the Italian Lombardy Region agency
and it is know as DUSAF, Agricultural and Forestry Land Use
Destination for its initials in Italian. DUSAF LULC is derived
from areal photographs and new versions of the DUSAF dataset
have been released every three years since the year 2000. For
the purpose of this study, the versions of the years 2015, 2018,
and 2021 were used.

The DUSAF dataset is divided into five main classes which are
eventually subdivided to provide more details on the land use.
The main classes are man-made areas (1), agricultural areas (2),
wooded areas and semi-natural environments (3), wetlands (4)
and water bodies (5). However, an ad-hoc class set was used to
better characterise the SUHI using a reduced number of classes.
The ad-hoc class set definition can be found in the following
list, and its representation on the city of Milan in figure 3.

1. Residential urban areas: continuous and discontinuous urban
fabric

2. Industrial and abandoned urban areas: productive areas,
large public establishments, private service facilities; quar-
rying areas, landfills, construction sites, sports and recre-
ational areas, artificial and abandoned land.

3. Transportation infrastructure: Road and rail networks, an-
cillary spaces, ports, airports and heliports.

4. Urban green areas: parks, gardens, uncultivated green areas.

5. Agricultural areas: arable land, permanent crops, and per-
manent lawns.

6. Forest: forested areas including broad-leaved forest, coni-
ferous forests, recent reforestations, and environments with
evolving shrub and/or herbaceous vegetation.
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7. Water bodies and wetlands: riverbeds, artificial watercourses,

watersheds, and vegetation of inland wetlands and peat
bogs.

8. Bare land: Dunes. Not present in the AOIL

DUSAF 2021

B Residential urban

B Industrial and
abandoned urban

B Transportation
infrastructure

B Urban green
Agricultural
Forest

B Water bodies
and wetlands

Figure 3. DUSAF Land Use Land Cover 2021 - reclassified

2.2.2 Landsat-8 L2C2 imagery The images were retrieved
from 2015 - 2022 in the months of June, July, and August with
a maximum 15% of cloud coverage and full coverage of the
AOL The total number of scenes is 17, with an average of two
scenes per year (see the scene list in the Appendix). The year
2017 had imagery availability only in may, therefore, the scene
was included as a reference but was not considered for furher
computations. The Land Surface Temperature (LST), the Nor-
malised Difference Vegetation Index (NDVI), the Normalised
Difference Built-up Index (NDBI), the albedo, the SUHI and
the SUHI Intensity were derived per each scene.

- The LST was extracted from Landsat-8 scenes using equation
3, where DN is the digital number of the thermal band (band
10).

LST(K) = 0.00341802 « DN + 149 3)

- The NDVI was computed using the red (R) and Near Infrared
(NIR) bands, 4 and 5 respectively; see equation 4. The NDVI
range is (-1:1) and indicates the vegetation greenness.

NIR—-R
NOVI= TR+ R “

- The NDBI was computed using the Near Infrared (NIR) and
Shortwave Infrared SWIR 1 bands, 5 and 6 respectively; see
equation 5. The NDBI range is (-1:1) and emphasises the built-
up areas.

_ SWIR, — NIR
NDBI = SWIRy + NIR )

- The albedo was computed using the blue (B), R, NIR, SWIR
1 and SWIR 2 bands; see equation 6. It provides an index on
the capacity of a surface to reflect radiation.

albedo = 0,356 * B 40,130« R4 0,373 x NIR+

6
0.085 %« SWIR; +0.072 * SWIR> — 0.0018 ©

- The SUHI and SUHI intensity of each scene were computed
using equations 1 and 2, where LST), is the LST at each pixel
and LST, is the reference LST derived from the LST in the
DUSAF LULC vegetation pixels, i.e., agricultural and and for-
ested areas.

All these variables were averaged per year (mosaicked) to model
the phenomenon. The Landsat-8 training set consisted of yearly
summer scenes to avoid peak values due to either very extreme
LST, and gap filling if few clouds and shadows were present.

2.2.3 Ancillary data Further data consists of building height,
distance to main roads, distance to water bodies, and population
density.

2.3 Land cover and land surface temperature dynamics

DUSAF LULC datasets were compared throughout the years
2015, 2018, and 2021. Figure 4 shows the areas per land cover
class per year while figure 5 displays the class transition from
2015 to 2021, all in km?. Slight changes can be observed in
both graphs.

Land Cover Change Across Different Datasets

Dataset
- DUSAF_2015
m DUSAF 2018
= DUSAF_2021

Total Area (k)

Land Cover Class

Figure 4. DUSAF land cover area per class

Residential urban areas have declined, primarily transforming
into industrial zones, transportation infrastructure, and urban
green areas. Similarly, industrial areas have shifted toward res-
idential, transportation, and green spaces, reflecting broader urban
development patterns. Transportation infrastructure has expan-
ded, encroaching on agricultural land and forest, while urban
green areas have grown at the cost of agricultural land. Agricul-
tural areas have experienced significant reductions, with large
portions being converted into forested land and urban green
areas, suggesting a trend toward ecological restoration and re-
forestation. Forests and humid areas, although affected by other
transitions, have seen modest increases, particularly as agricul-
tural land is repurposed for environmental conservation. These
changes highlight the ongoing interplay between urban expan-
sion, environmental preservation, and land resource manage-
ment.

Furthermore, figure 6 shows the LST per land cover class per
each DUSAF LULC year, considering Landsat-8 scenes in the
AOL Specifically, for 2015: June 7% July 22" "and August 7,
for 2018: July 30™ and August 15%; for 2021: July 6™ and July
22™_ The plot shows a clear trend on LST with man-made areas
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Figure 5. DUSAF land cover change matrix 2015-2021

(residential, industrial, and transportation infrastructure) reach-
ing the highest values ranging from 315-320K, natural areas
(agricultural, forest, water bodies) with the lowest values ran-
ging from 309-315K, and urban green areas in the middle with
arange of 314-318K.
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Figure 6. Average summer land surface temperature per land
cover class [2015, 2018, 2021]

2.4 Nature-based Solutions Simulation

The simulation of Nature-based Solutions (NbS) consists of
adding mocked vegetation areas to the LULC with the purpose
of re-evaluating the SUHI intensity model to measure the vari-
ations. The scope of the NbS is limited to urban greenery, spe-
cifically parks and green roofs.

The new urban greenery can follow different patterns, i.e., fol-
lowing different traditional sampling techniques such as ran-
dom, stratified, clustered, or systematic sampling. Neverthe-
less, in-depth vegetation pattern analyses such as Morpholo-
gical Spatial Pattern Analysis (MSPA), can be used to under-
stand their mitigation towards the UHI effect (Soille and Vogt,
2022).

2.4.1 Morphological Spatial Pattern Analysis The MSPA
is a segmentation technique which provides a categorisation of
the geometry and connectivity of a specific landscape. The res-
ult consists of 23 non-overlapping classes which can be simpli-
fied to Core, Islet, Perforation, Edge, Loop, Bridge, and Branch
(Soille and Vogt, 2009).

The MSPA was used in the present research to interpret the cur-
rent vegetation pattens. First, for each DUSAF LULC data-
set (2015, 2018, and 2021) a binary vegetation/non-vegetation
raster was created enclosing the urban green, agricultural and
forest areas. Then, the GuidosToolbox (Vogt and Riitters, 2017)
was used to compute the vegetation MSPA in each of the years,
e.g., see the MSPA of 2021 in the AOI in figure 7.
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Figure 7. MSPA of vegetation in the city of Milan, 2021

The area change in the MSPA classes during 2015, 2018, and
2021 is reported in table 1. All the classes keep a stable area
through the years. There is, however, a slight decrease in the
background, i.e., non-vegetation decrease, and a slight increase
on edges, core-openings, and border-openings.

MSPA class 2015 2018 2021
Background 11492 | 114.13 | 114.35
Core 58.72 | 58.84 | 58.70
Islet 0.01 0.01 0.01
Perforation 0.49 0.50 0.49
Edge 4.50 4.73 4.80
Loop 0.01 0.01 0.01
Bridge 0.01 0.02 0.01
Branch 0.12 0.14 0.14
Core-opening 2.74 297 2.82
Border-opening | 0.26 0.43 0.43

Table 1. MSPA of vegetation in the years 2015, 2018, and 2021
in km’

The current MSPA vegetation patterns of 2021 were considered
in the generation of the new vegetation areas.

3. Results

3.1 Surface Urban Heat Island modelling and mapping

The SUHI susceptibility was modelled using an artificial neural
network (ANN) with the binary SUHI as target variable based
on the LST, NDVI, LC, and ancillary data.

The sampling was carried out using the metropolitan area of
Milan in order to provide more variability to the model. It
consisted of randomly extracting 10.000 points per each yearly
summer Landsat-8 mosaic resulting in approximately 70.000
points. The sampled points were constrained to be equally split
into four classes: vegetated UHI, non-vegetated UHI, vegetated
non-UHI, and non-vegetated non-UHI. The training/testing ra-
tio was 80/20%.
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The model produced an overall testing accuracy of 87%, pre-
cision 90%, recall 81%, and Fl-score 86%. Furthermore, the
Random Forest (RF) importances were computed with the pre-
viously described sampled data, see figure 8. The most import-
ant features, according to the RF model, were the LST with
almost ~70% of importance, followed, in a smaller proportion,
by the NDVI and the population density. Furthermore, the land
cover areas with the higher importance were the agricultural
and urban green areas.

LST

NDVI

Population density
Agricultural areas
Urban green areas
Water distance
River distance
Residential urban

Feature

Main road distance
Industrial urban

Building height
Transportation infrastructure
Forest

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
RF Importance

Figure 8. SUHI feature importance derived from Random Forest.

To predict the susceptibility, the inputs were the average LST
and spectral indices from 2020 to 2022, with the purpose of
showcasing the latest behaviour of the SUHI. The result of the
model is the probability of SUHI, represented by class 1 in
equation 1. See the SUHI susceptibility map in figure 9, the
black outlined shape represents the city of Milan while the red
outlined shape represents the metropolitan city of Milan with
the purpose of showcasing areas with low SUHI susceptibility
(in blue).
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Figure 9. SUHI susceptibility in the Metropolitan City of Milan,
Italy.

Furthermore, the SUHI intensity was modelled through an ANN
regression. The training points and set up was the same as the
previous model, excepting for the target change and the exclu-
sion of LST. The model produced a mean absolute error of 2.65,
a root mean squared error of 3.46, and a R? score of 0.5 in es-
timating the SUHI intensity in Kelvin. See the map in figure
10.

3.2 SUHI susceptibility vs. MSPA
The SUHI intensity (average conditions 2020-2022) and the

vegetation MSPA of 2021 (figure 7) were used to extract the
zonal statistics to understand the distribution of the UHI effect
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Figure 10. SUHI intensity in the Metropolitan City of Milan,
Italy.

throughout the vegetation patterns. The results are presented in
tables 2 and 3.

The results must be interpreted considering an AOI, corres-
ponding to the city of Milan (181 km?), and the area covered
by each MSPA class (see table 1). Even if the Background and
Core classes cover the 90% of the AOI, the zonal statistics were
interpreted (tables 2 and 3). The role of core vegetation areas in
reducing urban temperatures can be observed, having the lowest
SUHI intensity (1.55 K). In contrast, fragmented and isolated
vegetation patches, like Edges, exhibit higher SUHI intensity
values, indicating reduced cooling efficiency. Vegetation cor-
ridors, such as bridges and branches, help mitigate SUHI by
connecting green spaces and maintaining microclimate stabil-
ity. The highest SUHI intensities were found in urbanized zones
with sparse vegetation, emphasizing the need for expanding and
connecting green infrastructure to enhance climate resilience.

Statistics Backg. | Core | Islet | Perfor. | Edge
Mean 5.97 1.55 | 3.69 1.79 3.92
Std 2.93 3.01 2.43 2.43 2.42
Variance 8.59 9.06 | 5.89 5.91 5.84
Area (km?) | 120.68 | 52.07 | 0.007 0.44 4.46
25 Perc. 3.89 -1.00 | 1.82 0.02 2.43
50" Perc. 6.11 1.90 4.03 1.85 4.20
75" Perc. 7.32 4.11 5.18 3.81 5.38
Skewness -0.21 -0.14 | -0.34 -0.05 -0.42
Kurtosis -0.53 | -1.06 | -0.58 | -0.65 0.08

Table 2. Zonal statistics of vegetation MSPA in 2021 and the

SUHI intensity in K (1)
Statistics Loop | Bridge | Branch | Bo.-O | C-O
Mean 2.54 332 477 2.15 3.15
Std 2.87 243 2.37 2.25 2.36
Variance 8.26 5.91 5.60 5.07 5.57
Area (km2?) | 0.008 0.01 0.14 1.87 0.41

25™ Perc. 0.21 1.85 3.37 0.27 1.39
50™ Perc. 2.65 3.74 4.97 2.08 2.96

75% Perc. 3.73 5.05 6.17 3.66 | 4.85
Skewness -0.18 | -0.42 -0.34 0.30 0.25
Kurtosis -1.10 | -0.35 0.19 -047 | -0.41

Table 3. Zonal statistics of vegetation MSPA in 2021 and the
SUHI intensity in K (2)
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3.3 Generation of new green areas

The generation of different NbS set ups was carried out in the
city of Milan, considering the most susceptible locations based
on the SUHI intensity and susceptibility maps, and the current
vegetated locations. Two set ups were created to test the meth-
odology.

- The first set up was the simulation of green roofs. The gener-
ated green roofs cover an area of 0.7 km* within a bounding box
of 5.6 km?, see figure 11. The new areas were sampled from the
land cover residential class and refined with the building height
dataset to consider only the roofs, removing non urban areas,
e.g., streets and inner yards. The selection of a continuous set
up is based on the cooling capacity of core patterns.

DN A

Legend

Green areas
Gren roofs n

Land cover ¢ . e R
Continuos residential urban fabric

3 milan | -

Figure 11. Locations of simulated green roofs.

- The second set up was the simulation of green corridors (see
figure 12), i.e., creating buffers surrounding all the MSPA ve-
getation cores and creating bridges connecting the nearby ve-
getation areas, including urban vegetation, agricultural and forest
areas. The bridges were created only if the distance between the
vegetation cores is less or equal than the buffer size. The buffers
and bridges were refined with the land cover dataset to exclude
water pixels. The selected buffer size was 5 meters covering an
area of 4.6 km?.
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Figure 12. Locations of simulated 5-meter green corridor.

3.4 Measuring the impact of the new vegetation

The SUHI intensity ANN regression model was used to eval-
uate the behaviour of the phenomenon after introducing land

cover changes in the AOL

The simulated green roofs adopted the average NDVI, NDBI,
and albedo values of the urban vegetation land cover class. These
were 0,57, -0.17, and 0.15, respectively. The simulation of the
green roof set up suggests that the mean SUHI intensity de-
creased more than 5K with a less variable distribution, see table
4 for further information.

Prediction (K) | Mean | Median | Std | Min | Max
Original 8.4 8.7 1.8 | 0.1T | 134
Green roofs 3.3 3.3 0.6 | -0.06 | 5.3

Table 4. Original SUHI intensity vs. green roofs SUHI intensity
in a sample area.

In a similar fashion, the green corridor’s impact on the SUHI in-
tensity was measured and the results reported in table 5. High-
lighting that the new vegetation areas are connected with core
vegetation areas, the SUHI intensity decrease was around 1K.

Prediction (K) | Mean | Median | Std | Min | Max
Original 2.7 2.7 25 | 36 | 152
Green corridor 1.4 1.1 1.33 | -0.5 7.7

Table 5. Original SUHI intensity vs. green corridors SUHI
intensity in a sample area.

4. Discussion

The produced SUHI susceptibility and intensity maps showcase
the behaviour of this phenomenon in summer, with respect to
the average spectral conditions of 2020-2022. The SUHI sus-
ceptibility map illustrates the overall behaviour throughout the
years. The SUHI concentrates in the city center and in the
northern parts of the metropolitan area, where the population
density is higher. Moreover, the SUHI intensity map explains
the spatial distribution of the temperature difference across the
susceptible areas, with an overall range from -5K to 10K.

The zonal statistics of the SUHI intensity, based on the MSPA
vegetation classes, demonstrate how the core vegetation areas
have the highest cooling capacity. Based on the previous fact,
two NbS set ups were proposed: core green roofs, and the ex-
tension of the current vegetation cores with green corridors.

The green roofs simulation provided a mean and maximum SUHI
intensity mitigation of 5K and 8K, respectively, with a 3.3K
mean SUHI intensity; which is consistent with the results of
similar studies (Asadi et al., 2020).

The green corridors simulation, consisting of 5-meter buffered
vegetation cores and connecting bridges, slightly mitigated the
phenomenon in areas where the SUHI intensity was already low
due to their adjacency with cores of vegetation. It is relevant to
mention that the bridges follow an Eucledian path rather than
a natural path. However, this fact can be neglected considering
the maximum length of the bridges.

5. Conclusion

A machine learning-based methodology for modelling Surface
Urban Heat Island (SUHI) phenomenon was proposed. The
methodology is bi-folded. The first part regarded the model-
ling of the SUHI susceptibility to provide a general overview of
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the SUHI behaviour throughout the years, and the SUHI intens-
ity to to provide a spatial overview of the LST dynamics. The
second part focused on the simulation of Nature based Solutions
(NbS) to assess their impact with respect to SUHI intensity, by
re-evaluating the previously produced model.

The case study of Milan (Italy) was presented with an initial
assessment of the Land Surface Temperature (LST) and Land
Cover (LC) dynamics to enhance the understanding on the SUHI
phenomenon during summer. In the same context, the Mor-
phological Spatial Pattern Analysis (MSPA) of vegetation was
derived from the LC dataset to characterise the geometry and
connectivity of the vegetation landscape. The main vegetation
MSPA classes were cores and edges.

The SUHI susceptibility and intensity were modelled based,
among other data, on Landsat-8 imagery. The selected machine
learning method was the Artificial Neural Network (ANN) for
both classification and regression tasks, resulting in an accur-
acy of 87% and mean absolute error of 2.65K. The models were
used to produce the SUHI susceptibility and intensity maps in
the metropolitan area of Milan to showcase the spatial beha-
viour of the phenomenon in a larger area of interest.

The produced SUHI intensity model served as a basis for eval-
uating the effect of land cover changes to mitigate the SUHI. In
fact, the spatial set up of two NbS were provided based on their
possible potential mitigation effects. The first was the simula-
tion of green roofs covering a 0.7 km? area, and the second, the
simulation of green corridors covering a 4.6 km? area. Their
impact on mitigating SUHI intensity were around 5k and 1k,
respectively. Other set-ups can be tested based on specific scen-
arios.

The proposed methodology can be easily implemented in other
places by relying on global data sources such as Urban Atlas for
Land Use/Land Cover. Although, local and frequently updated
datasets are recommended for more precise results.

5.1 Limitations and future work

-The study is limited to the modelling of the SUHI in the sum-
mer season. Other seasons may be analysed to understand the
SUHI dynamics thoughout the year.

- The study is limited to the modelling of the SUHI since 2015.
A deeper analysis could be carried out considering more years
into the past based on the data availability.

- The current model, ANN, can be replaced by more advanced
models such as Convolutional Neural Networks or Transformers
for capturing better the spatial behaviour of the SUHI.
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6. Appendix

The Landsat-8 L2C2 scenes were downloaded from the USGS
EarthExplorer through the Landsatxplore Python package. The

specific scenes dates are listed per year in the following in MM/DD

format.

e 2015 (3): 07/06,07/22,08/07.
e 2016 (2): 06/22,08/25.

e 2017 (1): 05/24.

e 2018 (2): 07/30,08/15.

e 2019 (1): 07/17,08/18.

e 2020 (2): 07/19,08/20.

e 2021 (2): 07/06,07/15.

e 2022 (3): 07/21,08/02,08/18.
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