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ABSTRACT 

Urbanization has led to changes in land use and land cover (LU/LC) from non-urban areas to urban areas, significantly impacting local 

climates, particularly through the Surface Urban Heat Island (SUHI) effect, where urban areas are warmer than rural ones. This study 

quantifies the impact of urbanization on SUHI intensity in Perth and Muscat, analysing how LU/LC changes influence SUHI intensity 

and its spatio-temporal patterns. Utilizing high-resolution Landsat 8 and Landsat 7/5 data, along with MODIS's temporal capabilities, 

the research provides an in-depth understanding of LU/LC changes and their implications on SUHI dynamics. For analysing LU/LC 

changes, data processing involved cloud-pixel elimination, atmospheric correction, and Co-registration of MODIS and Landsat. Land 

surface temperature (LST) is derived from Landsat imagery by calculating radiance, brightness temperature, and emissivity, followed 

by correction for land cover type. The research findings demonstrate the significant impact of urban expansion on local climates and 

the strong influence of LU/LC patterns on SUHI intensity in Perth and Muscat.  

1. Introduction

The study of Urban Heat Islands (UHIs) has been a subject of 

scientific investigation for over four decades. Oke (1982) defined 

the concept as urban environments that experience warmer 

temperatures than their rural surroundings. Urbanization, 

population growth, and industrialization lead to increases in 

temperature, and this situation adversely affects the world, 

especially in urban areas (Aslan & Koc-San, 2021).  

Transformations in urban thermal characteristics carry 

significant implications for urban sustainability by altering local 

climate patterns, including precipitation and summertime 

temperature extremes. These changes contribute to increased 

health risks, resource scarcity, and pollution capture, posing 

major challenges for sustainable urban development (Dutta et al., 

2019). Zhang et al. (2009) report that in urban areas, heatstroke 

diseases tend to rise while (Grimmond, 2007) mentions risks for 

the natural environment affecting urban biological diversity and 

water status. It highlights that UHI must be understood. As urban 

areas continue to expand, understanding the relationship between 

land use/land cover (LU/LC) changes, such as the increase of 

urban settlement and reduction in vegetation cover, and LST 

patterns is crucial (Dutta et al., 2019).  

Unlike the traditional UHI, which primarily considers air 

temperature differences between urban and rural areas, surface 

urban heat islands (SUHI) focus on Land Surface Temperature 

(LST) variations, which can be derived from remotely sensed 

images reflecting the actual temperature of the urban environ-

ment's physical surfaces (Dutta et al., 2019) arises from complex 

interactions between urban development and environmental 

factors. The phenomenon is primarily driven by replacing 

natural, heat-absorbing surfaces with impervious, heat-retaining 

materials like asphalt and concrete (Santamouris, 2015). 

The recognition and study of SUHI have become an essential part 

of urban climate change assessment. This research centers on 

investigating the SUHI effects in Perth, Australia, and Muscat, 

Oman (Figure 1). The selection of these cities is based on distinct 

criteria, considering geographical location, climatic conditions, 

urban development, and data availability.  

Perth, located in Australia's southwestern part, has a Mediter-

ranean climate and exhibits moderate temperatures, distinct wet 

and dry seasons, and mild winters. Perth has had substantial 

urban development in recent years. The city is marked by a mix 

of land uses, significant suburban expansion, and a rich presence 

of green spaces and water bodies. This unique combination 

makes Perth a key example for studying SUHI dynamics (City of 

Perth, 2015, Bulatov et al., 2020).  

The second test site, Muscat, Oman's capital city, is located on 

the Arabian Peninsula, has a slightly more arid climate than Perth 

while also facing scorching temperatures in its hot desert climate, 

especially during summer, often exceeding 40°C (104°F). 

Similarly to Perth, Muscat experienced rapid urbanization. The 

city's urban landscape, characterized by high-density housing, 

commercial buildings, and limited greenery, provides a unique 

perspective on the SUHI effects in arid environments (Nebel & 

von Richthofen, 2016).  

Figure 1: Satellite images of Perth Metropolitan Area (left) and 

Muscat (right) by Google. 

Both cities share proximity to the sea, which influences their 

climates and exacerbates SUHI effects due to the interaction 

between urban heat and maritime air masses, leading to 

intensified SUHI phenomena. 

The study will address key questions including identifying 

significant land use and land cover changes observed in these 

cities, exploring the correlation between these changes and 

variations in SUHI intensity, and examining how the intensity 

and spatial distribution of SUHI have varied in Perth and Muscat 
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during 2000 and 2020. Firstly, we focus on identifying and 

quantifying the changes in LU/LC in Perth and Muscat over the 

last two decades and examining their correlation with urban 

growth. Utilizing supervised classification, the study will 

categorize land cover types into urban areas (residential, 

commercial, and mixed-use developments), industrial zones 

(factories, warehouses), vegetation areas (parks, gardens, natural 

vegetation), water bodies (rivers, lakes, coastal areas), and bare 

soil (undeveloped or transitional lands). Secondly, we investigate 

the correlation between LU/LC changes and variations in SUHI 

intensity in Perth and Muscat, with a particular focus on areas of 

urbanization identified previously. This objective aims to explore 

the interrelationship between LU/LC transformations and SUHI, 

determining how these changes influence SUHI's distribution and 

intensity in both cities. Finally, this research delves into 

understanding how the intensity and spatial distribution SUHI 

vary in Perth and Muscat. The primary aim is to conduct a 

temporal analysis of SUHI development, tracking and analysing 

changes in SUHI intensity over time to gain insights into the 

evolution of urban heat islands in relation to urban development 

patterns.  
 

This paper is structured as follows: After a literature review in 

Section 2, the data and methodology are introduced in Sections 3 

and 4. The validation of the LU/LC and LST accuracy is 

presented in Section 5. The Land Use/Land Cover Changes and 

SUHI Intensity analysis is presented in Section 6 and the paper 

closes with a discussion and conclusion in Section 7. 

 

 

2. Literature review 

The main mechanism that causes SUHI is the amount of surface 

heating created by impervious material in a city, such as roads 

and buildings, which absorb and emit heat to a greater extent than 

most natural surfaces. On a warm day, conventional roofing 

materials may reach as high as 16°C/60°F warmer than air 

temperatures (Fallatah & Imam, 2023). The literature indicates a 

multifaceted relationship between LU/LC changes and SUHI 

dynamics. Different LU/LC types have different impacts on 

SUHI, depending on their albedo, emissivity, vegetation cover, 

imperviousness, and anthropogenic heat sources (Fallatah & 

Imam, 2023).  
 

Vegetation cover plays a crucial role in influencing an area's 

cooling potential, which in turn affects the intensity of SUHI. 

This relationship can be quantified using multispectral sensors 

that capture the necessary data to calculate the Normalized 

Difference Vegetation Index (NDVI), which serves as an 

indicator of the level and health of vegetation; healthier, denser 

vegetation typically corresponds to a higher NDVI value and 

greater cooling effect, thereby mitigating SUHI intensity (Li et 

al., 2022). 
 

Another factor is the Normal Difference Built-up Index (NDBI), 

a satellite-derived index that plays a crucial role in identifying 

and quantifying built-up areas that contribute to the SUHI effect 

by analyzing high-resolution satellite imagery and utilizing GIS. 

NDBI leverages the distinct reflectance values of urban materials 

across specific wavelengths to calculate the built-up area index 

(Morabito et al., 2021). This index is crucial in assessing how 

much of the urban landscape is covered by surfaces that retain 

heat and reduce water permeability, thereby intensifying the 

SUHI effects. 
 

Shahfahad et al. (2022) examined the influence of LU/LC 

changes on SUHII in Delhi. Their approach using Landsat 

datasets and advanced statistical methods like geographically 

weighted regression (GWR) and urban thermal field variation 

index (UTFVI) resonates with the importance of remote sensing 

and GIS technologies. Their findings underscore the significant 

impact of urban expansion on local climate, highlighting the 

strong impact of LU/LC patterns on SUHII, as previously 

described. Similarly, Morabito et al. (2021) contribute to 

understanding the balance between built and green spaces in 

urban areas. Their study in Italian metropolitan cities, using a 

new urban surface landscape layer (USLAND), MODIS/Terra, 

and Sentinel data, highlights the crucial role of tree cover in 

mitigating SUHI effects, a point that complements the discussion 

on vegetation's cooling potential. 
 

Liu et al. (2022) extend the discussion on urban expansion by 

investigating the effects of built-up area expansion in China. 

Using long-term space-borne observations of LST and land 

cover, they applied various methods to measure UBAE and UHI. 

Their findings about seasonal variations in UHI intensity provide 

a nuanced understanding of the temporal dynamics of SUHI, a 

topic touched upon in the initial sections. The study by Chen et 

al. (2022) on Wuhan's main urban area uses Landsat imagery to 

explore the relationship between land cover changes, green spa-

ces, and UHI, further demonstrating the practical applications of 

remote sensing in urban climate studies, as advocated in earlier 

sections. 
 

The implications of urbanization patterns and existing 

atmospheric conditions necessitate innovative land use planning 

and development strategies that can harmonize urban growth 

with ecological sustainability. Incorporating urban green spaces, 

optimizing building designs for thermal comfort, and enhancing 

urban albedo through reflective surfaces are some of the potential 

strategies that could mitigate the SUHI effects associated with 

these development patterns (Shastri & Ghosh, 2019). 
 

To conclude: The occurrence and severity of SUHIs are 

determined by a combination of LST measurements, vegetation 

cover's cooling capacity, and the extent of built-up areas as 

indicated by NDBI. Each factor contributes uniquely to the 

understanding and mitigation of SUHI effects. 
 

A comprehensive understanding of SUHI formation, the 

contributing factors, and the impacts of different land develop-

ment styles is imperative for framing effective mitigation stra-

tegies and fostering urban sustainability. Remote sensing and 

GIS data are crucial components in studying and addressing the 

challenges posed by UHIs. 
 

The distinct urbanization patterns in Perth and Muscat 

significantly impact the formation and intensity of SUHIs. Liu et 

al. (2022) highlighted the role of low-density housing and mixed 

retail/commercial development in intensifying SUHI effects. 

Perth is known for its expansion outward from the Swan River, 

which is characterized by various suburbs and a central business 

district, reflecting a mix of residential and commercial 

development. This contrasts sharply with the dense urban core of 

Muscat, known for its low-lying white buildings and a vibrant 

economy influenced by trade, petroleum, and porting. These 

distinct urban landscapes in Perth and Muscat contribute 

differently to their respective SUHI intensities due to the varied 

nature of urban development and land use.  

 

 

3. Data  

To accurately analyze SUHI in the selected study areas, Perth and 

Muscat, multi-source data was collected. The sources included 

satellite imagery, meteorological datasets, and Geographic 

Information System (GIS) data repositories to understand land 
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surface temperature, vegetation cover, and land use/land cover 

changes over the period 2000 to 2020. The selection of imagery 

at five-year intervals within this timeframe was crucial to 

observing significant urban and land cover changes that correlate 

with variations in (SUHI) intensity. This multifaceted approach 

ensures a thorough analysis of the various factors influencing 

SUHI in these distinct urban environments. For Perth and 

Muscat, the data was carefully chosen during the hottest months: 

December to February for Perth and June to August for Muscat. 
 

Table 1 details the satellite images used for this paper. Since 

Landsat data have both spectral and thermal bands, this study 

used Landsat images to maintain data consistency. The different 

Landsat missions used for this study include 5, 7 ETM+, and 8 

(OLI/TIRS). For Perth, the Path/Row was 113/082; for Muscat 

158/044. All images have been sourced from USGS Earth 

Explorer (earthexplorer.usgs.gov/) and have a spatial resolution 

of 30 meters.  
 

For the Landsat 7 ETM+ data affected by the "SLC-off" issue, 

Landsat 7 ETM+ imagery acquired after May 2003 was flawed 

due to a malfunction of the Scan Line Corrector. In each image, 

about 20% of pixels were lost. Landsat 5 images were selected 

for Perth for 2005 and 2010 to keep the data consistent. In the 

case of Muscat, where no alternative Landsat 5 data were 

available, the missing information in the Landsat 7 ETM+ images 

from 2005 and 2010 was filled in using the gap-fill function in 

QGIS. Finally, cloud masking was carried out with a specific 

plugin in QGIS, following the established procedure from 

Landsat's manual to remove the impact of clouds and shadows. 

This ensured that the extracted data accurately represented the 

surface conditions. 
 

Landsat MODIS 

Perth Muscat Perth Muscat 

20/02/2000 

(Landsat 7 

ETM+) 

14/06/2000 

(Landsat 5) 

24/02/2000 14/06/2000 

24/01/2005 

(Landsat 5) 

22/07/2005 

(Landsat 7 

ETM+) 

26/01/2005 22/07/2005 

22/01/2010 

(Landsat 5) 

24/08/2011 

(Landsat 7 

ETM+) 

21/01/2010 24/08/2011 

22/12/2015 

Landsat 8 

(OLI/TIRS)) 

10/07/2015 

(Landsat 8 

(OLI/TIRS)) 

22/12/2015 10/07/2015 

19/12/2020 

Landsat 8 

(OLI/TIRS)) 

05/06/2020  

(Landsat 8 

(OLI/TIRS)) 

19/12/2020 05/06/2020 

Table 1: Modis and Landsat data for Perth and Muscat used for 

the analysis of SUHI. The Landsat Path/Row for Perth 113/082; 

and for Muscat 158/044. 
 

MODIS data shown in Table 1 was retrieved from 

earthdata.nasa.gov to provide a higher temporal (daily) and 

spatial resolution (1 km), guaranteeing consistent measurement 

parameters for comparative analysis over time and between the 

two cities, used for Validating Landsat LST. 
 

In addition, the study incorporates temperature data from the 

Bureau of Meteorology for Perth and accesses records from 

'Muscat Climate - Weather History - Oman' to enhance the 

correlation between satellite-derived LST and actual air 

temperatures. For LULC classification validating, Google Earth 

imagery and OSM data are utilized, offering detailed depictions 

of urban infrastructure, and aiding in identifying different 

development patterns within the cities of Perth and Muscat. 

4. Methodology 

The procedural methodology of this study is shown in Figure 2. 

In this section, each of the different steps are described in detail. 

 
Figure 2: The flowchart of the overall processes. 

 

4.1 Land Use and Land Cover Classification   

Supervised classification (Maximum Likelihood Classification 

(MLC)) was employed to delineate various land cover classes 

within the study areas of Perth and Muscat. Representative 

training sites for each land cover class were identified. These 

sites were chosen based on observable characteristics within the 

images to discern the distinct features of each land cover class for 

accurate classification. The band combination of different bands 

in a sequence of RGB (Landsat 5/7: Natural color 321, Urban 

753; Vegetation 432), (Landsat8: Natural color 432, Urban 764, 

Vegetation 543) helps distinguish different land surface features. 
 

 
Perth 

 
Muscat 

Figure 3: Spectral Signature Plot of Perth (top) and Muscat 

(bottom). 
 

For each land cover class, spectral signatures were developed by 

delineating sample areas on the satellite images that accurately 

represented water, industrial, urban, vegetation, and bare 

soil/rock features (Table 2). Figure 3 shows Perth exhibits a 

higher reflectance in the near-infrared band (0.77-0.89 μm), 

indicative of its abundant vegetation. In contrast, Muscat, 
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characterized by arid conditions, presents a higher reflectance in 

the shortwave infrared bands (1.55-1.75 μm and 2.09-2.35 μm), 

suggesting the presence of Bare Soil/Rocks. 
 

LULC 

classes 
Description 

Water 
Areas representing bodies of water (rivers, 

lakes, and coastal zones). 

Industrial 
Regions containing manufacturing facilities, 

warehouses, and other industrial structures. 

Urban 
Residential and commercial areas, including 

mixed-use developments. 

Vegetation 
Parks, gardens, forests, and other forms of 

greenery. 

Bare Soil 

Unpaved, undeveloped land or areas 

undergoing transition, devoid of significant 

vegetation or built structures. 

Table 2: Details of LULC Classes 
 

The primary classification was refined through manual 

adjustments, rectifying misclassified regions using additional 

verified interpretation of high-resolution satellite images (Google 

Earth and existing maps and datasets.) 

 

4.2 Indices Calculation: NDVI and NDBI (ISA)  

The spectral indices NDVI and NDBI were central to analyzing 

land cover characteristics. These indices were derived the years 

2000, 2005, 2010, 2015, and 2020. NDVI, highlighting 

vegetation, was computed from Landsat data using equation (1). 

NDVI =  
NIR − Red

NIR + Red
     (1) 

where NIR represents the near-infrared band and Red is the 

visible red band, with band numbers varying between Landsat 

versions (Bands 4 and 3 for Landsat 5 and 7, and Bands 5 and 4 

for Landsat 8). 
 

Similarly, NDBI, indicating built-up areas, was computed using 

the same Landsat data using equation (2). 

NDBI =
SWIR − NIR

SWIR + NIR
      (2) 

where SWIR is the short-wave infrared band and NIR is the near-

infrared band. Bands 5 and 4 were used for Landsat 5 and 7, 

respectively, and Bands 6 and 5 were used for Landsat 8. The 

NDBI exhibits values between -1 and +1. As the NDBI increases, 

it indicates more urbanized or built-up areas, signifying more 

extensive construction land coverage. 
 

Additionally, the built-up area was estimated by combining 

NDBI and NDVI values to minimize spectral confusion between 

bare land and urban areas, as both exhibit similar characteristics 

in the NIR band. This method's effectiveness was enhanced by 

its sensitivity to chlorophyll through NDVI using equation (3) 

allowing to obtain the built-up area (BuA). 

BuA = NDBI − NDVI    (3) 

The final step involved classifying the resultant NDVI and NDBI 

into respective land cover categories based on specific threshold 

values of index ranges. These calculated indices proved essential 

for subsequent analysis steps, offering quantitative measures of 

vegetation cover and urban extent necessary for the study. 

 

4.3 Extraction and Analysis of Land Surface 

Temperature (LST)  

Creating LST maps from Landsat imagery involves several steps, 

each employing satellite data attributes and conversion factors. 

The Landsat-derived LST maps are validated against the MODIS 

LST data product "MOD11A1" to ensure accuracy. 
 

For Landsat 8, the spectral radiance for Band (10) was calculated 

using the radiance scaling factors from the metadata (ML and AL) 

as shown in equation (4) and (5). 

𝑅𝑎𝑑𝑖𝑎𝑛𝑐𝑒 = (𝑀𝐿 × 𝑄𝑏𝑎𝑛𝑑10) + 𝐴𝐿   (4) 

𝑅𝑎𝑑𝑖𝑎𝑛𝑐𝑒 = (𝑀𝐿 × 𝑄𝑏𝑎𝑛𝑑11) + 𝐴𝐿   (5) 

ML and AL are the multiplicative and additive rescaling factors, 

respectively, provided in the Landsat 8 metadata file, while 

𝑄𝑏𝑎𝑛𝑑10,11 is the digital number value for each band. These 

factors ensure that the raw DN values are accurately translated 

into physical measures of radiance reflecting the detected energy.  
 

For Landsat 7/5, which include the Thematic Mapper (TM) and 

Enhanced Thematic Mapper Plus (ETM+) sensors, respectively, 

spectral radiance for thermal Band 6 is calculated differently 

using equation (6). 

𝐿ʎ = (𝐿𝑀𝐴𝑋ʎ − 𝐿𝑀𝐼𝑁ʎ) × 𝑄 + 𝐿𝑀𝐼𝑁ʎ   (6) 

The 𝐿𝑀𝐴𝑋ʎ and 𝐿𝑀𝐼𝑁ʎ are the maximum and minimum spectral 

radiance scaling constants obtained from the metadata for each 

band, while Q represent quantized calibrated pixel value linearly 

scaled between the minimum and maximum into the range [0;1]. 

This equation adjusts the DN values to account for the specific 

calibration of the satellite's thermal sensors, facilitating the 

comparison of thermal data over time and across different 

Landsat sensors. 
 

The top of atmosphere brightness temperature (T) was then 

calculated using equation (7) whereby the conversion constants 

(K1 and K2) are shown in Table 3. 

𝑇 = 𝐾2 /ln (
𝐾1

𝐿ʎ
+ 1)    (7)

 
 

Sensor 

Constant K1 

(Watts/(m² * sr * 

µm)) 

Constant K2 

(Kelvin) 

Landsat 8 (Band 10) 774.89 1321.08 

Landsat 8 (Band 11) 480.89 1201.14 

Landsat 7 ETM+ 666.09 1282.71 

Landsat 5 TM 607.76 1260.56 

Landsat 4 TM 671.62 1284.3 

 

Table 3: Thermal Band Calibration Constants for Landsat 

Sensors. 

The temperature T is then converted to LST using emissivity 

correction methods that account for land cover type—estimating 

the emissivity (ε) from the NDVI values calculated using a 

simple linear relationship using equation (8). 

𝜀 = 𝑎 + 𝑏 × NDVI     (8) 

where a and b are coefficients (0.986 and 0.004, respectively). 

Finally, we calculate the LST using equation (9). 

𝐿𝑆𝑇 =
𝑇𝐵10+𝑇𝐵11

2
/ (1 + 𝜆𝐵10 ×

𝑇𝐵10

𝜌
× ln 𝜀)   (9)

 
TB10 and TB11 are the brightness temperatures for Bands 10 and 

11, 𝜆𝐵10 is the central wavelength of Band 10 (approximately 
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10.8μm), ρ is a constant incorporating Planck's constant, the 

speed of light, and the Stefan-Boltzmann constant (calculated as 

2.384×107). The Landsat-derived LST maps were statistically 

and visually compared with the MODIS LST data to validate the 

accuracy of the Landsat LST. The statistical comparison involved 

calculating Mean Average Error (MAE) and Root Mean Square 

Error (RMSE). 

 

4.4 UHI Intensity Calculation and Bi-Temporal 

Analysis  

SUHI intensity underscores the difference in LST between urban 

and rural areas. To grasp SUHI evolution, a bitemporal analysis 

will contrast SUHI intensities at two distinct time points. 
 

For SUHI calculation, the LU/LC urban and industrial areas are 

grouped as 'Urban' while vegetable, water, and bare soil are 

considered 'Rural'. This segregation is pivotal for accurately 

assessing the differential heat properties of these distinct land 

covers. Next, the average LST for the Urban and Rural areas are 

calculated. This was achieved by overlaying the LST data with 

LULC classifications, extracting the average LSTs for the Urban 

(merging Urban and Industrial) and Rural (merging Vegetation, 

Water, and Bare Soil) zones, ensuring accuracy in my analysis. 

Finally, SUHI Intensity was calculated by subtracting the average 

LST of the Rural areas from that of the Urban areas. SUHI is 

characterized as the difference in the LST of the urban pixels and 

the non-urban pixels (Karimi et al. 2021) using equation (10). 

SUHI = LSTUrban − LSTnon−urban   (10) 

The bi-temporal analysis involves a change detection assessment 

on urban land cover between two time points, pinpointing signi-

ficant urban sprawl. This is cross-examined with shifts in SUHI 

intensity to understand their interplay. Preliminary results are 

poised to spotlight vulnerable regions in Perth and Muscat, parti-

cularly those with recent urban growth, in terms of SUHI 

susceptibility.  

 

 

5. Validation 

5.1 LULC Accuracy Assessment  

The LULC classifications were subjected to a rigorous accuracy 

assessment to ensure their quality and practical utility. 

Employing Google satellite imagery as the reference data, error 

matrices were constructed utilizing test pixels. Congalton (1991) 

recommended that at least 50 test samples were systematically 

collected for each LULC class to facilitate a robust evaluation. If 

the area is large, at least 75 or 100 samples per class need to be 

used. This comprehensive approach enabled a thorough 

quantitative and qualitative classification accuracy assessment, 

thereby bolstering the confidence in the derived LULC maps. 

Therefore, more than 500 testing pixels per class were collected 

in this study. In Table 4, the overall accuracies were calculated 

above 95% for the 5 time periods between 2000 and 2020. Values 

below 90% are highlighted. 

 

5.2 LST accuracy assessment 

Table 5 presents a comparative analysis of LST data obtained 

from Landsat and MODIS satellites. The higher MAE and RMSE 

values suggest larger discrepancies and lower accuracy between 

Landsat and MODIS temperatures. These discrepancies could be 

attributed to several factors, including differences in spatial 

resolution, retrieval algorithms, and temporal sampling between 

Landsat and MODIS datasets. The difference in spatial 

resolution, with Landsat having a finer resolution of 30 meters 

compared to MODIS's coarser resolution of 1 km, is particularly 

significant and can lead to spatial averaging and loss of detail in 

MODIS data. 

 

However, all calculated Correlation Coefficient (r) values are 

close to 1, indicating a strong positive linear relationship between 

the LST values of MODIS and Landsat in both cities across all 

time points. This shows that when the LST values in MODIS 

increase, the LST values in Landsat tend to increase as well, and 

vice versa, highlighting a general agreement in the data trends 

even with discrepancies in magnitude. 

 
Perth  2020 2015 2011 2005 

Water PA 98.50 97.00 95.00 96.00 

UA 97.00 95.50 93.00 94.00 

Bare 

soil 

PA 98.00 97.80 98.00 97.00 

UA 98.50 98.00 97.50 96.50 

Urban PA 99.20 98.50 96.00 94.50 

UA 98.80 97.00 95.00 93.50 

Vege-

tation 

PA 95.00 94.00 90.00 92.00 

UA 90.00 92.00 88.00 89.00 

Indust-

rial 

PA 96.00 94.50 92.00 91.00 

UA 92.00 95.00 93.00 90.00 

 Overall, 

Acc. % 

97.50 96.60 95.50 94.80 

Muscat  2020 2015 2011 2005 

Water PA 100.00 100.00 96.90 99.38 

UA 100.00 100.00 95.07 95.18 

Bare 

soil 

PA 99.86 99.65 99.30 99.08 

UA 99.86 99.96 98.37 99.20 

Urban PA 98.85 99.09 83.88 86.47 

UA 100.00 93.52 91.90 88.99 

Vege-

tation 

PA 98.81 96.88 88.91 93.36 

UA 89.00 97.98 94.79 86.59 

Indust-

rial 

PA 97.65 93.66 80.83 86.96 

UA 91.14 99.83 99.27 86.59 

 Overall, 

Acc. % 

98.78 99.52 97.74 98.12 

Table 4: The obtained producer’s accuracy (PA), user’s 

accuracy (UA), and overall accuracy values for Perth (top) and 

Muscat (bottom). Values below 90% are highlighted. 
 

Perth MAE RMSE  Muscat MAE RMSE 

2020 1.74 2.25 2020 7.04 7.26 

2015 2.95 3.38 2015 6.38 6.79 

2010 6.76 7.08 2011 15.81 16.10 

2005 5.93 6.12 2005 8.90 9.23 

2000 7.28 7.41 2000 10.30 10.65 

Table 5: MAE and RMSE between Landsat and MODIS. 

 

 

6. Land Use/Land Cover Changes and SUHI Intensity 

6.1 Overview of LU/LC Changes in Perth and Muscat  

Figure 4 shows the LULC maps for Perth and Muscat in 2020 for 

visual inspection. More details are provided in Table 6. Table 6 

(top) shows the land cover area in Perth from 2000 to 2020, 

indicating a substantial growth in urban areas, with an increase 

of 123.6 km², now comprising over half of the land area 

(51.51%). The industrial areas have also expanded, albeit slower, 

by 37.52 km². Meanwhile, there is a slight reduction in vegetation 

and water areas, by 11.01 km² and 8.12 km², respectively. The 

most significant change is observed in the bare soil category, 

which decreased by 141.99 km². On the other hand, there has 

been a noticeable expansion in urban development in Muscat 

(Table 6, bottom), with the urban area growing by 165.38 km², 

now representing 10.05% of the land. Industrial zones have seen 

a more modest increase of 33.78 km². Vegetation cover has 
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decreased slightly by 2.68 km², and water bodies have also 

experienced a marginal decline of 2.8 km². The most dramatic 

change is evident in the bare soil category, which has reduced 

207.48 km². These shifts suggest a significant change in land use, 

possibly attributable to development and urbanization processes. 

6.2 Comparison between LST data, NDVI and NDBI 

This section involves a comprehensive comparison of LST 

between Perth and Muscat over a five-year period, employing a 

tailored approach to applying the NDVI to suit each city's specific 

vegetation characteristics. In Perth, an NDVI threshold of 0.3 was 

utilized to identify densely vegetated areas, and the average LST 

for these regions was calculated. Conversely, due to Muscat's 

sparser vegetation, the NDVI threshold was adjusted to 0.2, 

enabling a more accurate representation of its limited vegetative 

areas in determining the mean LST. 
 

 

 

Figure 4: LULC Classes for 2020 for Perth (left) and Muscat 

(right). 

 
Perth Km2 (%) 
Year Urban Industrial Vegetation Water Bare Soil 

2020 738.74 

(51.51%) 

131.63 

(9.18%) 

63.70 

(4.44%) 

92.76 

(6.47%) 

407.32 

(28.4%) 

2015 727.89 

(50.75%) 

118.86 

(8.29%) 

81.49 

(5.68%) 

89.52 

(6.24%) 

416.38 

(29.03%) 

2010 713.96 

(49.78%) 

102.99 

(7.18%) 

73.48 

(5.12%) 

93.71 

(6.53 

%) 

450.01 

(31.38%) 

2005 676.83 

(47.19%) 

100.65 

(7.02%) 

78.25 

(5.46%) 

92.57 

(6.45%) 

485.85 

(33.88%) 

2000 615.14 

(42.89%) 

94.11 

(6.56%) 

74.71 

(5.21%) 

100.88 

(7.03%) 

549.31 

(38.30%) 

Change  123.6 37.52 -11.01 -8.12 -141.99 
 

 
Muscat Km2 (%) 
Year Urban Industrial Vegetation Water Bare Soil 

2020 311.80 

(10.05%) 

34.84 

(1.12%) 

21.96 

(0.71%) 

56.48 

(1.82%) 

2678.90 

(86.31%) 

2015 258.68 

(7.34%) 

26.93 

(0.87%) 

17.57 

(0.57%) 

50.95 

(1.64%) 

2749.84 

(89.6%) 

2010 211.01 

(6.8%) 

15.61 

(0.5%) 

19.99 

(0.64%) 

53.27 

(1.72%) 

2804.10 

(90.34%) 

2005 178.12 

(5.74%) 

5.97 

(0.19%) 

18.13 

(0.58%) 

49.15 

(1.58%) 

2852.61 

(91.9%) 

2000 146.42 

(4.72%) 

1.06 

(0.03%) 

26.44 

(0.85%) 

53.68 

(1.73%) 

2876.38 

(92.67%) 

Change  165.38 33.78 -2.68 -2.8 -207.48 
 

Table 6: LU/LC area by class for Perth (top) and Muscat 

(bottom). 
 

The study also incorporated the NDBI, initially applying a 

threshold of 0.1 in both cities. However, this threshold in Muscat 

predominantly indicated areas of bare soil rather than urban 

zones, a phenomenon attributed to the local geology. The bare 

soil in Muscat is characterized by sedimentary coarse grey gravel, 

commonly found in the lowland zone and composed of a mixture 

of boulders, pebbles, sand, and silt. Also, the highland zone is 

distinguished by dark lava rocks such as Ophiolite and Gabbro, 

known for their high thermal conductivity and ability to absorb 

short-wave radiation (Charabi & Bakhit, 2011). Given these 

geological considerations, the NDBI threshold for Muscat was 

refined to include values between 0.0 and 0.1. This adjustment 

more accurately delineates urban areas than the higher values that 

indicate bare soil landscapes. Such a modification ensures that 

the LST calculations for Muscat are based on the urban extent, 

allowing for a more precise analysis of the SUHI effect in this 

unique environmental context. 
 

  
Figure 5: LST, NDVI, and NDBI temporal trends for Perth and 

Muscat between 2000 and 2020. 
 

Figure 5 illustrates that Perth experienced a gradual increase in 

LST associated with NDVI and NDBI, with a notable divergence 

in 2010 where the LST for built-up areas exceeded that for 

vegetated areas by 5.66°C. Muscat, however, exhibited more 

pronounced variations, particularly between 2011 and 2020, 

when the LST for vegetated and built-up areas surged by 12.51°C 

and 13.49°C, respectively. This indicates a significant shift in 

urban thermal properties, possibly due to varying urban 

development and vegetation management practices. The 

consistently higher LST in urbanized zones compared to 

vegetated areas underscores the influence of land cover on urban 

temperatures. Moreover, the relationship among LST, NDBI, and 

NDVI is noteworthy. A strong positive correlation exists between 

NDBI and LST, indicating that as urbanization increases, so does 

the LST. Conversely, a negative correlation is observed between 

NDVI and LST, suggesting that areas with more vegetation tend 

to have lower surface temperatures. Additionally, NDBI and 

NDVI share a significantly negative correlation, underscoring the 

inverse relationship between urbanization and vegetation cover. 

 

6.3 Correlation analysis between LST and LULC  

The data in Table 7 shows that different LULC types have 

different mean and median LST values, reflecting their thermal 

properties and heat retention capacities. For example, water and 

vegetation tend to have lower LST than urban and industrial 

areas, as they have higher albedo and evapotranspiration rates. In 

contrast, bare soil has intermediate LST depending on its 

moisture and mineral content. 
 

The data also shows that urban areas, which include residential, 

commercial, and mixed-use developments, have higher LST than 

rural areas. This indicates the presence of SUHI effects in both 

Perth and Muscat, as urbanization leads to increased surface 

heating and reduced cooling mechanisms. The difference in LST 

between urban and rural areas is more pronounced in Muscat than 

in Perth, as Muscat has a higher degree of urbanization and a 

lower proportion of green spaces. 

 

Perth 2000  2020 
Class Mean Median Sd  Mean Median Sd 
Water 20.43 20.52 0.93 22.28 21.79 1.60 
Urban 26.44 26.42 1.35 35.15 35.34 1.73 
Industrial 25.88 26.28 3.57 34.12 34.58 2.88 
Vegetation 25.22 25.37 1.60 32.34 32.48 1.94 
Bare Soil 27.21 27.18 2.09 34.80 35.02 2.74 

Muscat    

Class Mean Median Sd  Mean Median Sd 

Water 29.21 28.77 1.79  33.10 32.29 2.26 

Urban 41.24 41.07 1.68 45.68 45.99 2.06 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-G-2025 
ISPRS Geospatial Week 2025 “Photogrammetry & Remote Sensing for a Better Tomorrow…”, 6–11 April 2025, Dubai, UAE

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-123-2025 | © Author(s) 2025. CC BY 4.0 License.

 
128



 

Industrial 40.48 39.93 1.59 45.48 46.22 3.05 

Vegetation 39.35 39.55 2.21 42.90 43.18 2.67 

Bare Soil 40.45 40.69 3.26 45.36 45.75 2.95 

Table 7: Comparison of LST Across Different LULC in Perth 

and Muscat. 

It reveals that LST has changed over time in both cities, following 

urban growth trends and land cover changes. For Perth, the mean 

LST of urban areas increased from 26.44°C in 2000 to 35.15°C 

in 2020, while the mean LST of rural areas increased from 

24.29°C to 29.81°C in the same period. For Muscat, the mean 

LST of urban areas increased from 41.24°C in 2000 to 45.68°C 

in 2020, while the mean LST of rural areas increased from 

36.34°C to 40.45°C in the same period. These changes suggest 

that SUHI intensity has increased in both cities over the past two 

decades, as urban expansion and land cover transformation have 

altered the thermal characteristics of the surface. 

 

6.4 Relationship between Land Development Patterns 

and SUHI Intensity 

The resultant SUHI Intensity highlights the extent of Perth's 

urban heat island effect. It provides insights for urban planning 

and environmental management strategies to mitigate this 

phenomenon. Table 8 shows SUHI intensity observed in Perth 

versus Muscat over the last twenty years, revealing interesting 

trends that align closely with how each city has developed and 

used its land. In Perth, the SUHI intensity has steadily increased, 

from 1.29°C in 2000 to 4.63°C in 2020. This rise in SUHI inten-

sity coincides with the expansion of urban areas, from 42.89% to 

51.51% of the land cover, suggesting a strong link between urban 

development and increased urban temperatures in the city's core 

compared to surrounding non-urban areas. The growth in 

industrial areas also mirrors this rise in SUHI, which could be 

attributed to the additional heat generated by industrial activity. 
 

The land cover data in Muscat reveals a relatively small increase 

in urban area over the two decades, from 4.72% to 10.05%. The 

SUHI intensity has remained low and even negative at times, as 

seen with –0.43°C in 2011 and –0.07°C in 2015. This indicates 

that in some years, non-urban areas in Muscat were warmer than 

urban ones. The overwhelming dominance of bare soil, consis-

tently above 86%, along with Muscat's hot climate, could explain 

the minimal variation in SUHI, as the vast open land absorbs and 

re-radiates heat similar to urban areas. This is further evidenced 

by the occasional negative SUHI values, indicating that non-

urban areas can be as warm or warmer as urban zones. In hot, arid 

cities like Muscat with extensive bare soil, urban areas can some-

times exhibit lower surface temperatures than surrounding non-

urban areas. The stark contrast in land cover drives this pheno-

menon: the lack of vegetation and moisture in non-urban regions 

limits their ability to cool through evapotranspiration, while ur-

ban surfaces like buildings can radiate heat more efficiently 

during the night, leading to potentially cooler temperatures com-

pared to the surrounding arid landscape (Naserikia et al., 2022). 

In summary, the data from Table 6 indicates that Perth's 

increasing urban footprint has resulted in a corresponding rise in 

SUHI intensity, reflecting the heat-retaining properties of urban 

infrastructure. In contrast, Muscat's unique environmental 

conditions and land cover composition result in a less 

pronounced and more variable SUHI effect. These contrasting 

patterns highlight the importance of local geographical and 

climatic factors in shaping the SUHI phenomenon and emphasize 

the need for tailored urban planning strategies to address the 

specific challenges of each city's SUHI effect. 

 

Figure 6 presents contrasting urban heat dynamics. In Muscat, the 

SUHI intensity exhibits an irregular pattern, sometimes 

registering cooler temperatures in urban spaces compared to their 

non-urban counterparts. This anomaly could be attributed to the 

extensive presence of bare soil and Muscat's arid conditions, 

potentially modulating the urban-rural temperature dichotomy. 

The high thermal inertia of bare soil could contribute to non-

urban areas retaining heat, occasionally exceeding urban 

temperatures. 

 
 Perth City  Muscat city 

Class/Year Urban 
Non-

Urban 
SUHI  Urban 

Non-

Urban 
SUHI 

2020 34.73 30.1 4.63  45.66 45.08 0.58 

2015 36.31 31.94 4.37 39.2 39.27 -0.07 

2010 37.69 35.13 2.55 31.81 32.24 -0.43 

2005 29.55 27.65 1.9 36.04 35.87 0.17 

2000 26.61 25.32 1.29 41.23 40.24 0.99 

Table 8: Intensity of the SUHI for Perth (left) and Muscat 

(right), showing mean LST differences between urban and non-

urban areas from 2000 to 2020. 

 

Conversely, Perth's development pattern correlates with rising 

SUHI intensity, affirming the conventional urban heat island 

effect where urbanization exacerbates thermal accumulation. The 

trend indicates urban areas progressively warming over the past 

two decades, which aligns with the observed expansion of urban 

land cover. The consistent rise in SUHI in Perth underscores the 

heat-retaining characteristics of urban infrastructure, marking a 

stark contrast to Muscat's unique environmental interplay, where 

such a pattern is not as straightforward. 
 

  
Figure 6: Correlation scatter plot of SUHI intensity trends in 

Perth (left) and Muscat (right). 

 

Figure 7 contrasting Mean LST with Urban and Non-Urban 

classifications in Perth and Muscat delineate the influence of land 

development on thermal patterns. Perth's urban areas consistently 

register higher temperatures than non-urban zones, affirming the 

presence of a robust SUHI effect. This divergence suggests urban 

infrastructure's role in intensifying heat retention. Conversely, 

Muscat's plot presents a nuanced scenario where urban and non-

urban temperatures are comparable, occasionally with urban 

areas being cooler, reflecting the unique interplay of the city's dry 

landscape and urban form on its thermal profile. 
 

  

Figure 7: Mean LST with Urban (blue) and Non-Urban (orange) 

classifications in Perth and Muscat . 
 

The spatial distribution of SUHI in Perth is characterized by a 

discernible heat intensity pattern aligning with urban 

development. Contrarily, Muscat exhibits a more uniform 

thermal landscape with less pronounced heat variation. 

Temporally, Perth has shown a clear upward trend in SUHI 

intensity over the years, highlighting an amplification of the 

surface urban heat island effect that aligns with urban expansion. 
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Muscat's SUHI intensity fluctuates, reflecting its unique climatic 

and geographical conditions. 
 

7. Discussion and Conclusion 

This study's exploration of SUHI intensity in Perth and Muscat 

illuminates the profound impact of urbanization on local climatic 

conditions. A pivotal observation is the correlation between 

urban land development and increased surface temperatures. The 

conversion of natural landscapes to urban settings, marked by 

heat-absorbing materials like concrete, intensifies SUHI effects. 

This pattern is especially noticeable in rapidly urbanizing regions 

with diminishing green spaces. Perth and Muscat's contrasting 

urban profiles exemplify this phenomenon.  

 

Comparing Perth and Muscat offers insights into how different 

urbanization rates and climatic conditions influence SUHI. In 

addition to the reasons mentioned in the previous section 

(different landscape compared with surroundings), there are a 

few more reasons to take into account. While the population of 

the Perth metro area duplicated between 2000 and 2025, mainly 

because of immigration, this number in Muscat has almost 

tripled. However, this happened in a natural way and, as a 

consequence, the number of cars in Australia has increased much 

more in comparison to Oman, and affecting negatively the urban 

heat. This comparison suggests that urban planning must be 

context-specific, considering each city's unique environmental 

and climatic backdrop. Although the study used sound methods 

and acknowledged constraints, like using particular satellite data 

and focusing on just two cities, future work could expand its 

reach by including various urban settings and utilizing more data 

sources for a deeper understanding of SUHI phenomena. 

 

Future research should not only focus on comparing the impact 

of “urban” to SUHI but also investigate specific factors driving 

the observed SUHI intensity, such as land cover types, urban 

density, and the role of vegetation. It is also planned to compare 

with other cities and regions to contextualize the findings and 

better assess the generalizability of the results. 
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