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Abstract 

 

This study explores the potential of integrating multi-source remote sensing data—including Sentinel-1 synthetic aperture radar 

(SAR) imagery, Sentinel-2 optical imagery, and Landsat 8 thermal data—for crop classification in Emilia-Romagna (Northern Italy). 

Using satellite imagery and agricultural surveys, we constructed a temporal dataset covering 2020 with 27 biweekly time steps. After 

filtering out underrepresented crop types with insufficient samples for machine learning training, nine crop types remained. We 

implemented four deep learning models using TensorFlow: Dense Neural Network (DNN), Long Short-Term Memory (LSTM), 

Convolutional Neural Network (CNN), and Transformer. Our results indicate that removing underrepresented crops significantly 

improves classification performance, leading to an overall accuracy of approximately 91%. Incorporating Landsat 8 thermal data 

further enhanced accuracy, with the Transformer model achieving a peak accuracy of 92.08%. A crop-specific analysis revealed that 

temperature observations notably improved classification for crops with distinct thermal signatures (e.g., sugar beets, corn), whereas 

limited improvement was observed for spectrally similar cereals (e.g., wheat, barley). Overall, the Transformer model demonstrated 

exceptional ability in capturing spatial-temporal dependencies in multivariate time-series data. These findings underscore the 

advantages of integrating multi-source satellite data including thermal infrared and leveraging attention-based neural networks for 

large-scale agricultural monitoring and resource management. 

 

1. Introduction 

Crop Accurate crop classification is a key pillar of agricultural 

monitoring, allowing for accurate prediction of yield, resource 

allocation, and evidence-based policy development to solve 

global food security issues (FAO, 2020; Zhang et al., 2024). 

Satellite image time series (SITS) remain essential for 

applications from land cover mapping (Karra et al., 2021) to 

disaster monitoring (Liu et al., 2023), but many conventional 

classification approaches struggle to capture the spectral and 

temporal variability that varies widely among crops in 

heterogeneous agro-ecological regions (Li et al., 2024; Mathur 

& Bhattacharya, 2023). Supervised methods that depend on 

annotated samples result in prohibitive expenses for large-scale 

applications, although this problem is partially addressed 

through spatially explicit active learning approaches that 

specifically optimize sample selection (Kaijage et al., 2024). 

 

The fusion of multi-source satellite data has emerged as a 

transformative solution to these limitations. Sentinel-1’s 

Synthetic Aperture Radar (SAR) provides cloud-insensitive 

structural and soil moisture data, while Sentinel-2’s medium-

resolution optical imagery enables detailed spectral analysis 

(Drusch et al., 2012; Feng et al., 2024). Complementing these, 

Landsat 8’s thermal observations reveal phenological stages and 

crop stress signals. Recent studies demonstrate that integrating 

SAR, optical, and thermal data significantly enhances 

classification accuracy by overcoming sensor-specific 

constraints (Phiri et al., 2020; Qi et al., 2023). For example, 

early-season crop classification frameworks leveraging multi-

sensor time-series data (e.g., RCM, Sentinel-1/2) achieve 85% 

accuracy by iteratively updating predictions with new imagery 

(Fei, 2024), while fusion strategies on Chongming Island 

achieved rice extraction precision exceeding 93% using 

combined SAR-optical features (Chang, 2024). 

 

The advent of transformer-based models has further 

revolutionized remote sensing analytics. Originally developed 

for natural language processing (NLP), transformers employ 

self-attention mechanisms to capture long-range dependencies 

in spatial-temporal data, outperforming convolutional neural 

networks (CNNs) in modelling sequential crop phenology 

(Aleissaee et al., 2023; Khan et al., 2022). The ability of 

Transformer models to process multi-temporal sequences is 

well-suited to the dynamic nature of agricultural landscapes. 

This is supported by (Li et al., 2024), who developed AgriST-

Trans, a self-supervised Transformer model pre-trained on 

Sentinel-2 time series data. AgriST-Trans effectively extracts 

spatiotemporal crop growth patterns without requiring extensive 

labeled data, demonstrating the potential of Transformer-based 

approaches for agricultural applications. Similarly, domain-

adaptive models like MDACCN integrate optical and SAR time 

series to maintain >87% accuracy when transferred between 

geographically distinct regions (Feng et al., 2024). These 

architectures excel in capturing subtle phenological differences 

critical for distinguishing spectrally similar crops, as 

demonstrated by transformer-based frameworks achieving 85-

90% accuracy in classifying 36 land covers using fused 

Sentinel-1/2 data (Qi et al., 2023). 

 

Despite these advances, challenges persist in scaling models for 

heterogeneous landscapes and optimizing cross-domain 

generalizability (Maraveas, 2024; Saini et al., 2024). This study 

evaluates a transformer-based crop classification framework 

using fused multi-source satellite data (Sentinel-1/2, Landsat 8) 

against traditional machine learning and CNN benchmarks. 

Building on spatiotemporal sample migration techniques 

(Zhang et al., 2024) and self-supervised pre-training paradigms 

(Li, 2024), we assess temporal generalizability, feature 

discriminability, and computational efficiency. By addressing 

gaps in scalable crop mapping for regions with limited labelled 

data, our work aims to advance robust solutions for global 

agricultural monitoring. 
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Figure 1. The study area Emilia-Romagna with crop cover 

  

We studied the Emilia-Romagna region (Figure 1), which is the 

main agricultural region of northern Italy. This area was chosen 

for this study because of its flat terrain and distinct borders of 

farmland, which makes it a good region for remote sensing and 

agricultural research, bringing machine learning into practice. In 

this region, the geometric regularity of the farmland, often due 

to historical reasons, provides clear field boundaries and crop 

pattern detection in satellite imagery, allowing accurate analysis 

and classification. 

 

Data utilized in this study was obtained from agricultural data 

made available by the Emilia-Romagna Agency of Agriculture. 

Compiled in 2020, this database was composed based on 

voluntary reporting from local farmers, providing us the highest 

quality ground truth data possible for crop types. This dataset 

originally consisted of around 160,000 unique individual 

farmland parcels in the region. Such parcels smaller than 3,000 

square meters were omitted to improve data accuracy and 

specificity. These filtering steps discarded broken or irregular 

plots that would add noise to the machine learning models. 

After this preprocessing step, we ended up with a dataset of 

60,000 parcels, with each representing a unique agricultural 

field. 

 

 

Features of Dataset: 

• Geometric Regularity: The flat land of Emilia-Romagna 

means that the shapes of parcels of farmland are clear and 

consistent, easily recognizable in satellite images. 

• Crop Diversity: The dataset includes multiple crops, indicating 

the agricultural diversity of the area. This diversity allows for 

thorough testing and validation of machine learning models 

across various crops. 

• High Quality Ground Truth: The dataset relies on self-reported 

data collected from local farmers, ensuring maximal accuracy in 

crop type labels. It is used for the training and evaluation of 

supervised learning models. 

 

 
 

Figure 2. Crop sample distribution in Emilia-Romagna  

 

To ensure sufficient sample size for each crop type, a threshold 

was set requiring a minimum of 1,500 samples per crop. Crop 

types with fewer than 1,500 samples were excluded from the 

main dataset. However, a separate dataset containing these 

excluded samples was retained as a control group for 

comparative analysis. After applying this filtering process, the 

final dataset consisted of 47,400 sample points, covering nine 

crop types, as shown in the figure 2 above. Each sample point 

was the geometric centre of the corresponding agricultural 

parcel. 

 

Crop category Sample count 

Alfalfa 16085 

Forest 8132 

Cron 6480 

Durum wheat 4421 

Wheat 3508 

Soybeans 2554 

Barley 2423 

Sugarbeets 2293 

Sunflower 1504 

Total 47400 

 

Table 1. Distribution of crop samples after filtering in Emilia-

Romagna 

 

It also shows basic statistics after filtering, where the total 

number of samples collected across nine major crop categories 

and types meets the results of at least 1,500 per crop type (Table 

1). This threshold ensures that the dataset is large enough to 
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enable machine learning model training, validation, and testing, 

minimizing the risk of data imbalance and enhancing 

classification reliability. Covering 9 types of crops with 47,400 

samples, the dataset shows strong potential for improving model 

performance through model generalizability and accuracy. 

 

1.1 SAR Data 

The Sentinel-1 satellites (which are part of the European 

Copernicus program) are outfitted with C-band Synthetic 

Aperture Radar (SAR) sensors that allow for imaging regardless 

of whether it is day or night, or if there are cloudy skies. The 

SAR provides a range of detected spatial resolution of 10 m (the 

data are also accessible via the Google Earth Engine platform). 

Two satellites of the Sentinel-1 constellation follow a near-polar 

orbit, with 175 orbits in a 12-day repeat cycle (Torres et al., 

2012). 

 

The SAR instrument on Sentinel-1 has three main functioning 

acquisition modes: Interferometric Wide Swath (IW), Extra 

Wide Swath (EW), and Stripmap (SM), which are distinguished 

based on swath widths and spatial resolutions. In this study, the 

SAR data from the IW mode was used, which is characterized 

by 250 km swath and 10 m spatial resolution. Since SAR data 

can penetrate cloud cover, it is more beneficial than optical data 

for crop classification. It also provides significant information 

such as soil moisture and vegetation structure, which improves 

the classification accuracy of the crops. 

 

1.2 Optical Multispectral Data and Indexes 

Sentinel-2, also belonging to the Copernicus programme, has a 

multispectral imager (MSI) onboard to capture data in 12 

spectral bands in the visible and shortwave infrared (SWIR) 

spectrum. The resolution of these bands varies from 10 to 20 to 

60 meters (for Geostationary) depending on the band. One 

numerical crop classification study, in which all 12 bands were 

fused and used to improve the spectral richness of the dataset, 

was found in this study. 

 

In addition, some vegetation indexes were computed from the 

Sentinel-2 data to facilitate classification. Vegetation indexes 

are indexes such as Normalized Difference Vegetation Index 

(NDVI), Normalized Difference Moisture Index (NDMI), 

Enhanced Vegetation Index (EVI), Soil-Adjusted Vegetation 

Index (SAVI), etc. They offer essential information regarding 

vegetation health in terms of water content and structural 

properties, greatly enhancing the performance of the 

classification model (Trevisiol et al., 2023). 

 

1.3 Thermal Data 

Apart from Sentinel satellite data, this analysis also relied on 

thermal data from Landsat 8, which houses the Thermal Infrared 

Sensor (TIRS). For example, Band 10 (ST_B10) among the 

thermal bands is designed for land surface temperature (LST) at 

the thermal infrared 10.60–11.19 μm (Salih et al., 2018). This 

band is useful for showing surface heating dynamics directly 

and is a good predictor of land surface temperature. 

 

Thermal data from Band 10 is essential to detect spatial 

temperature differences that can be correlated with soil moisture 

levels and plant transpiration. When integrated effectively, it 

represents an important factor of differentiation in crop 

classification as it enhances the recognition of heat stress and 

irrigation dynamics and provides supplementary information to 

optical and SAR data. 

1.4 Methodology 

The methodology depicted in Figure 3 follows a systematic 

pipeline from data collection, classification, and model 

evaluation. The Sentinel-1 (SAR), Sentinel-2 (spectral), and 

Landsat 8 (thermal) data for 2020 were collected through 

Google Earth Engine (GEE) with a biweekly temporal 

resolution, which results in 27 observations for each location. 

Preprocessing was applied to the datasets, including cloud, 

snow, and shadow masking for optical images (this process can 

avoid overestimating the spectral reflectance of a specific pixel 

that has been affected by clouds (Khai et al., 2022), radiometric 

calibration (for SAR data) (the SAR data originally measured 

the backscattered waves that were then confirmed by 

radiometric correction (Ma et al., 2023; Pirotti et al., 2023), 

speckle filtering (which refers to the granular compositions of 

the SAR image), and co-registration (georeferencing to spatially 

align all datasets). 

 

Complex Data Layers (CDLs) were generated by aggregating 

the preprocessed data, including Sentinels 1, 2, and Landsat 8 

imagery on a biweekly basis, which were then merged to create 

a Data Cube, which is an image in which the X and Y 

dimensions represent spatial positions, and the Z-axis captures 

temporal shifts throughout the year. Township-level real crop 

data collected from official agricultural records were used for 

the extraction of sample points, with each sample corresponding 

to the geometric center of a farmland parcel.  

 

The Feature Matrix was created based on values extracted from 

all 27 data layers, including SAR backscatter (VV, VH), 

spectral reflectance (12 Sentinel-2 bands), four vegetation 

indices (NDVI, NDMI, SAVI, EVI), and LST (Landsat 8 Band 

10). To stabilize model training, the matrix was normalized. 

 

Implementation: 

The four deep learning models—Dense Neural Network (DNN), 

Long Short-Term Memory (LSTM), Convolutional Neural 

Network (CNN), and Transformer—were implemented in 

TensorFlow and were used for classification. 70% of the dataset 

was used for training, followed by 15% for validation and 15% 

for testing for each model. Model performance was evaluated 

on the test dataset by overall classification accuracy after 

training. Fig. 3 is a flowchart, summarizing data collection, 

preprocessing, modeling, and evaluation. It merges multi-source 

remote sensing data and deep learning models to obtain better 

performance of crop classification in the study area. 
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Figure 3. Workflow of the crop classification process 

 

1.4.1 Feature Matrix 

 

In the study area, as illustrated below, we randomly selected a 

sample point where biweekly SAR data, multispectral data, 

thermal data, and vegetation indices were processed. Data in 

each band were normalized to bring all values into a range of 

zero to one. The final output was the feature matrix that was 

generated from this process. 

 

The feature matrix combines programmatic features from 

various inputs: 

 

Two SAR bands (VV and VH) from Sentinel-1. 12 spectral 

bands from Sentinel-2 (wavelengths span from 443.9 nm to 

2202.4 nm). Thermal data from Landsat 8 (Band 10, Land 

Surface Temperature, LST), which is at a wavelength of 10.60–

11.19 μm. 

 

Four vegetation indices: Normalized Difference Vegetation 

Index (NDVI), Normalized Difference Moisture Index (NDMI), 

Enhanced Vegetation Index (EVI), and Soil-Adjusted 

Vegetation Index (SAVI)—calculated from Sentinel-2 data to 

augment the standard input matrix. 

 

The two-week sampling of the data allows us to have 27 time 

steps across the entire year, which gives the formulation of a 

multivariate time series dataset for every sample point. Then, 

this dataset was converted into a feature matrix in which the 

vertical axis consists of the 27 biweekly time steps and the 

horizontal axis consists of SAR bands, spectral bands, thermal 

data, and vegetation indices values. 

 

The Final Feature Matrix consists of 27 rows and 19 columns: 

 

• 2 columns of SAR data (Sentinel-1 with VV and VH) 

• 12 columns of Sentinel-2 spectral data 

• 1 thermal data column from Landsat 8 (Band 10 – LST) 

• 4 vegetation indices (NDVI, NDMI, EVI, SAVI) 

columns. 

 

The feature matrix, combining the various feature maps of four 

different modalities (SAR, spectral, thermal, and vegetation 

index), along with its time-series information, is expected to 

enhance the accuracy and robustness of crop classification. 
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Figure 4. Workflow for generating the feature matrix 

 

1.4.2 Transformer 

 

As shown in Figure 5 which is adapted from Vaswani et al. 

(2017), the Transformer model follows an encoder-decoder 

architecture, where the encoder processes the input sequence 

and transforms it into a continuous representation z = (z₁, ..., zₙ). 

The decoder then utilizes this representation to generate the 

output sequence in an autoregressive manner, where previously 

generated tokens serve as additional inputs for predicting 

subsequent elements (Vaswani et al., 2017). 

 

The core of the Transformer model is its use of self-attention 

mechanisms and feed-forward networks within both the encoder 

and decoder layers. Unlike recurrent models, the Transformer 

uses multi-head self-attention, allowing the model to capture 

dependencies between all elements in the sequence 

simultaneously. Additionally, residual connections and layer 

normalization enhance training stability and convergence 

efficiency. The output of each sub-layer is computed as: 

 

 
 

where Sublayer(x) represents the transformation applied by the 

respective sub-layer. 

 

In this study, the input to the Transformer is a multivariate time 

series consisting of 27 time steps and 19 variables, extracted 

from the feature matrix. The Transformer architecture for this 

task consists of 6 encoder layers and 6 decoder layers, where all 

sub-layers output vectors have a dimensionality of 19, matching 

the 19 variables in the feature matrix. The model's final output 

is a vector of length 9, representing the predicted probability of 

the different crop classes of Table 1. 

 

 
 

Figure 5. The Transformer model 
 

The Self-Attention mechanism, as depicted in Figure 6 which is 

adapted from Vaswani et al. (2017), computes three matrices: Q 

(query), K (key), and V (value). The input is a feature matrix of 

dimensions 27×19, where 27 represents biweekly time steps, 

and 19 corresponds to feature variables for each sample point or 

the output from the previous encoder block. The Q, K, and V 

matrices are derived by applying learnable weight matrices WQ, 

WK, WV to the input matrix X through linear transformations. 

Each row in X, Q, K, and V represents a specific time step in 

the sequence. 

 

The Self-Attention mechanism computes attention scores by 

taking the dot product between each row vector in Q and K, 

which quantifies the similarity between different time steps. To 

prevent excessively large values, these scores are scaled by 

dividing by the square root of the key vector dimension , 

where dk is the dimensionality of the key vectors. The resulting 

matrix, QK^T, has dimensions 27×27, encapsulating the 

attention relationships across all time steps. 

 

Next, the softmax function is applied to QK^T, normalizing the 

scores into attention coefficients that indicate the relative 

significance of each time step. Finally, the softmax matrix is 

multiplied by V, producing the output matrix Z, which 

aggregates the weighted information from all time steps and 

serves as the input for subsequent processing layers. 

 

 
Figure 6. Scaled dot product attention 

 

With reference to Figure 7 which is adapted from Vaswani et al. 

(2017), the Multi-Head Attention is an ensemble of multiple 

parallel Self-Attention layers. Multi-Head Attention leverages h 

distinct Self-Attention processes on the identical input X, 

generating h output matrices Z as opposed to one. As an 

example, in the case that h = 8, the same input traverses eight 

independent Self-Attention layers as seen in the image. Then 

these h output matrices are concatenated through the feature 

dimension. 

 

The concatenated matrix is processed through a linear 

transformation layer and then the output matrix Z is generated. 

Importantly, the dimensions of the output matrix Z are identical 

to the input matrix X to maintain consistency in the network. 

Multi-Head Attention allows the model to attend to different 

aspects of the input sequence by splitting the attention operation 

into multiple heads. 

 
Figure 7. Multi-Head attention 

 

 

2. Results and Discussion 

In this study, two control groups and one experimental group 

were established to evaluate the impact of different datasets and 

data fusion methods on crop classification: 

 

• Control Group 1 used the unfiltered dataset, which 

included crop types with fewer than 1,500 samples. 
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This group utilized only SAR data from Sentinel-1 

and spectral data from Sentinel-2. 

• Control Group 2 used the filtered dataset, which 

excluded crop types with fewer than 1,500 samples, 

but also relied solely on Sentinel-1 and Sentinel-2 

data. 

• Experimental Group used the filtered dataset, 

integrating SAR data from Sentinel-1, spectral data 

from Sentinel-2, and thermal data from Landsat 8. 

This comprehensive dataset was processed using four 

deep learning models: Dense Neural Network (DNN), 

Long Short-Term Memory (LSTM), Convolutional 

Neural Network (CNN), and Transformer to evaluate 

and compare the performance across different 

architectures. 

 

Table 2. Accuracy table of 4 deep learning models 

 

The result of the experiment is illustrated in Table 2, which 

includes three various datasets for training and testing of the 

four deep learning models: DNN, LSTM, CNN, and 

Transformer.  

 

In the first line of the table, we can check the unfiltered dataset 

(1: least samples more than 1,500); the other lines represent 

crops with less than 1,500 samples. The second one is the 

filtered dataset using Sentinel-1 (SAR) and Sentinel-2 (spectral) 

data. The third row of the filtered dataset is now composed of 

Sentinel-1, Sentinel-2, and Landsat 8 thermal data integrated 

together. If we combine less bright and dim signs, recognition 

accuracy is relatively low for all models when the dataset is not 

filtered. The results were as follows: The Transformer was the 

most accurate at 80.82%, followed by CNN (79.59%), DNN 

(78.34%), and LSTM (77.69%).  

 

These lower accuracy rates imply that including crop types with 

small sample sizes degrades model performance as there isn't 

enough data to learn from. When the filtered dataset containing 

data from both Sentinel-1 and Sentinel-2 was applied, a marked 

enhancement was seen for all models: The Transformer model 

once again provided top accuracy (91.65%), followed closely by 

CNN (91.62%), LSTM (91.58%), and DNN (91.34%) yielding 

comparably strong results.  

 

This shows that if we take away underrepresented crop types, it 

allows the model to generalize better with the dataset, thus 

gaining a higher accuracy overall. Lastly, the best accuracy for 

Landsat 8 thermal data integrated with the filtered dataset was 

noticed from the Transformer model (92.08%), higher than any 

other model. The LSTM achieved 91.94%, the DNN achieved 

91.85%, and the CNN achieved 91.51%.  

 

Cyclical variations of the correlation coefficient: Results 

indicated that the thermal data performance was better at 

identifying the taxonomic grouping than the SAR and spectral 

data, thus, the thermal data have diverse information in addition 

to SAR and spectral data, consequently providing 

complementary insight in increasing classification accuracy. 

 

Overall, the Transformer model consistently outperformed the 

other models, even more with additional thermal data. This 

suggests that using several data sources may improve 

classification performance, while the self-attention mechanism 

of the Transformer model can potentially improve the capture of 

complex patterns available in multivariate time series data. 

 

 
Figure 8. crop classification performance comparison 

 

Figure 8 illustrates the crop classification accuracy of the four 

deep learning models, namely DNN, LSTM, CNN, and 

Transformer, using the three different datasets of Table 2: 

 

- The unfiltered dataset (blue) 

- The filtered dataset with Sentinel-1 and Sentinel-2 (orange) 

- The filtered dataset with Sentinel-1, Sentinel-2, and Landsat 8 

thermal (green) data 

 

As can be seen in the chart, Transformer outperforms all other 

methods in every case and achieves the highest accuracy 

(92.08%) when data is filtered and the Landsat 8 thermal band 

is included. CNN, LSTM, and DNN show comparable 

improvements, both on switching from the unfiltered dataset to 

the filtered and additionally from adding thermal data. 

 

These visual trends are consistent with the quantitative results 

indicating that filtering the dataset markedly improves 

classification performance and that integrating Landsat 8 

thermal data bolsters crop type discrimination capabilities even 

further. The Transformer model outperformed traditional 

methods and other models, indicating its appropriateness for 

multivariate time series derived from multiple satellite sources. 

 

 

Data DNN LSTM CNN Transformer 

unfiltered 

data 
78.34% 77.69% 79.59% 80.82% 

S1&S2 91.34% 91.58% 91.62% 91.65% 

S1&S2&L8 91.85% 91.94% 91.95% 92.08% 
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Figure 9. Confusion matrix transformer model with 9 crop types 

 

The result (Confusion matrix of Transformer model) indicate 

that distinguishing accuracy varies with different crop types. It 

is still not very effective at separating them from other crops 

(Figure 9). The Transformer model performed best in this series 

of experiments on sugar beets (96.54%) and forest (98.9%); it's 

difficult to tell separately for either of these crops any variety 

that comes close in spectral features, so unusual as these factors 

likely make recognition more convenient for them.  

 

Like corn (94.71%) and alfalfa (92.98%), both may further 

emerge when grains mature and also have very good depictive 

power over time due to this characteristic being affected, 

probably inappropriate anyhow. Moreover, the classification 

accuracy remained fairly good for soybeans (96.54%) and 

sunflower (91.34%), despite showing that while the model can 

indeed distinguish these crops, when they are in similar spectral 

states at certain growth stages, it may make one small mistake.  

 

Meanwhile, this model showed lower levels of accuracy 

(84.39% for durum wheat, 79.69% for wheat, and 80.73% for 

barley) when classifying cereals such as wheat or barley. 

However valid these inferences may be at large-scale landscape 

level, certainly, misclassification still occurs occasionally 

between these similar types of crops today using current 

spectral and temporal features. 

 

Figure 9's classification rates are relatively poor among these 

similar types of crops, which suggests that the model is of 

limited utility. There appears also (as shown most clearly in 

Figure 9) to be little information from thermal data to help 

separate these crops. This indicates that crop classification in 

this category can be improved, for example, by incorporating 

additional spectral indices or by stating time periods as features 

of lightness values rather than merely distinguishing one 

temporal segment from another. 

 

Table 3 presents a comparison of the accuracy achieved by four 

deep learning models—DNN, LSTM, CNN, and Transformer—

across nine crop types using the S1, S2, and Landsat 8 data 

fusion. 

The Transformer model consistently shows high accuracy 

across most crop types, outperforming other models for Forest 

(98.9%), Sunflower (91.34%), and Soybeans (91.32%). This 

result indicates that the self-attention mechanism of the 

Transformer effectively captures complex temporal and spectral 

relationships in the data. 

 

Crop Type DNN (%) LSTM (%) CNN (%) 
Transformer 

(%) 

ALFALFA 95.79 95.17 95.21 92.98 

BARLEY 81.84 83.52 74.02 80.73 

CORN 95.81 94.11 93.61 94.71 

DURUM 

WHEAT 
72.95 79.6 78.98 84.39 

FOREST 97.21 95.17 96.95 98.9 

SOYBEANS 87.37 90.79 90 91.32 

SUGARBEETS 95.48 96.81 96.81 96.54 

SUNFLOWER 83.98 89.18 85.71 91.34 

WHEAT 81.25 78.12 82.23 79.69 

 

Table 3. Accuracy comparison of deep learning models for crop 

classification using Multi-Source satellite data 

 

DNN is performing well for the crop types of Corn (95.81%), 

Sugar beets (95.48%), and Alfalfa (95.79%), which further 

affirms its capability of dealing with structured input data. In 

contrast, both Durum Wheat (72.95%) and Wheat (81.25%) had 

markedly lower precision, which can be due to misclassification 

caused by spectral similarity. 

 

As an architecture that is meant to learn temporal dependencies, 

LSTM gives good results on Sugar beets (96.81%) and Corn 

(94.11%), suggesting that in particular, this architecture benefits 

from biweekly time series. However, the feature struggles for 

Wheat (78.12%) and Barley (83.52%) compared to the other 

crops. Utilizing CNN's capability of extracting global spatial-

temporal patterns from the time-series matrix, it reaches a high 

accuracy of 96.81% for Sugar beets and 96.95% for Forest. On 

Barley (74.02%), however, its performance is lower than the 

other models, indicating that this model might have less ability 

to identify crops with a subtle temporal signature. 

 

 
 

Figure 10. Accuracy comparison of deep learning models for 

crop classification using Multi-Source data fusion (S1, S2, L8) 

 

Figure 10 highlights the Transformer model as the most robust 

for crop classification using the Sentinel-1, Sentinel-2, and 

Landsat-8 fused dataset. Thermal data from Landsat 8 provides 

valuable information, improving classification accuracy, 
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particularly for crops with distinct temperature signatures. 

While all models show competitive performance, the 

Transformer’s ability to integrate information across time and 

features gives it a significant advantage. 

 

3. Conclusion 

In this study, the effect of dataset preprocessing and multi-

source information fusion on crop classification accuracy is 

examined using four deep learning models—Deep Neural 

Network (DNN), Long-Short Term Memory (LSTM), 

Convolutional Neural Network (CNN), and Transformer. The 

control groups (unfiltered as opposed to filtered dataset) and an 

experimental group (filtered dataset plus additional thermal 

information from Landsat 8) allowed us to distinguish between 

the impact of data quality and multi-source combination. 

 

A few main findings emerged: 

 

First, data filtering aids classification rates greatly. When the 

unfiltered dataset—which contains crop types present in only a 

few instances—was employed, all models only achieved 

relatively lower accuracy, with 80.82% as the maximum 

(reached by the Transformer model). After discarding minor 

crop types, overall accuracy went up significantly (everything 

over 91% in all models). This result illustrates the necessity of 

providing a large enough training sample size for each crop 

class—limited training samples can interfere with deep neural 

networks' ability to comprehend nuanced spatiotemporal 

characteristics. 

 

Second, adding thermal information from Landsat 8 to the 

filtered dataset improved crop classification performance even 

more. By incorporating thermal data from Landsat 8 alongside 

SAR data from Sentinel-1 and spectral data from Sentinel-2, all 

three machine learning models leveraged complementary crop 

characteristics that were previously underutilized. For this 

reason, the Transformer model scored highest as usual (92.08%), 

just apart from DNN, LSTM, and CNN. This confirms that 

integrating thermal data with spectral and SAR information 

significantly enhances crop classification accuracy, particularly 

for crops with overlapping spectral signatures.. 

 

Third, similar to other architectures utilizing all data sources, 

the Transformer model consistently demonstrated superior 

performance. Its self-attention mechanism looks especially well 

placed for transforming complex relationships in multivariate 

time series data. By considering weightings between different 

time steps or bands of spectral data, the Transformer can 

effectively synthesize information across SAR, optical, and 

thermal channels. While DNN, LSTM, and CNN benefited 

significantly from data filtering and fusion, their performance 

remained below that of the Transformer model. 

 

Moreover, the examination of the classification performance for 

each crop type indicated that crops with differentiated temporal 

or thermal signals, such as Forest, Sugarbeets, Corn, and Alfalfa, 

attained elevated accuracy levels (mostly above 90%).  

 

Wheat, Barley, and Durum Wheat, however, were harder to 

discriminate between rice crops due to similarities in their 

growth cycles and overlapping spectral signatures. Thermal data 

provided some degree of differentiation but had little effect on 

these closely related types of cereal.  

 

Our results demonstrate the importance of strong preprocessing 

(i.e., removing underrepresented crops), combining different 

satellite data (SAR, optical, and thermal), and the use of deep 

learning architectures such as the Transformer to achieve 

optimal levels of crop classification performance.  

 

Another aspect that has been addressed in this study is the 

potential of multi-source and multi-temporal remote sensing 

data for agricultural monitoring, allowing for a better 

understanding of which model architectures and data fusion 

techniques lead to the best performance results.  

 

Further research could investigate using more sensors or data at 

a higher temporal resolution to better differentiate more 

difficult-to-resolve crops. The proposed methodologies and 

insights gleaned from this work can help practitioners and 

researchers better design accurate, scalable systems involved in 

precision agriculture, yield prediction, and resource 

management. 
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