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Abstract 

 

Urban environments are dynamic and complex, posing constant challenges for the localization and navigation of autonomous vehicles 

(AV). This demands more innovative sensor systems for effective autonomous navigation. Autonomous vehicles use sensors like 

LiDAR, cameras, and radar to traverse complicated urban environments with precision. These technologies have advantages in 

improving perception and localization, but they have their own shortcomings – LiDAR can be costly and falters under adverse weather 

conditions, cameras are sensitive to lighting conditions, and radars lack high-resolution details. Beyond these complexities, 

environmental conditions like signal-blocking skyscrapers, unpredictable obstacles, and the high costs of precision sensing add further 

convolution. A multi-sensor integrated solution can be a reliable option to overcome these challenges. Our work explores the use of a 

multi-stereo camera array that provides a 360° perception for localization in dense urban environments. We use computer vision 

algorithms to derive 3D point clouds from stereo-images and localize the cameras using a prior 3D map to balance cost and 

performance. We tested the system in Calgary’s urban setting with various lighting conditions and GNSS-denied zones. Our approach 

provided accurate localization in 85% of the cases we tested. The results demonstrate that our multi-stereo camera system can help to 

achieve robust localization in challenging urban situations. This approach offers a cost-effective alternative to LiDAR-based systems 

while ensuring adequate accuracy.  

 

 

1. Introduction 

Autonomous Vehicles are the self-driven motorized means of 

transport with capability to perceive and navigate itself without 

the need of human intervention. Autonomous navigation is 

achieved by the integration and culmination of a group of sensors 

along with five functional systems which includes localization, 

perception, planning, control and system management 

(Pendleton et al., 2017). In the domain of autonomous navigation 

systems, precise and reliable environmental perception coupled 

with accurate localization capabilities have emerged as critical 

prerequisites for successful deployment in complex urban 

environments (Kutti et al., 2018; Jo et al., 2014). The 

conventional methodologies for localization of vehicle 

predominantly rely on sensing solutions such as Light Detection 

and Ranging (LiDAR) systems or monocular cameras, which 

present limitations in terms of either substantial cost implications 

or restricted coverage capabilities (El-Sheimy and Li, 2021). 

 

Satellite-based navigation systems and inertial navigation 

systems or their fusion system are the most commonly used 

methods of localization in AVs. Advantage of using Global 

Satellite Navigation Systems (GNSS) is that it provides regular 

update on the global position of the vehicle. Its accuracy ranges 

between a few meters to a few millimetres depending on the 

signal strength, and the quality of the equipment used. Inertial 

navigation systems (INS), which uses accelerometer and 

gyroscope, to estimate the attitude of the vehicle, do not require 

external infrastructure, but it is highly prone to drifting as well as 

it need integration with GNSS to provide global positioning. 

GNSS provides good accuracy when reliable signal is recieved 

from the extra-terrestrial satellite constellation, but due to its 

dependency on the external satellites it also faces issues in areas 

such as indoor environments, underground tunnels and urban 

canyons with high-rise buildings (Gu et al., 2015). Researchers 

used road-matching algorithms alongside GNSS and INS to 

improve vehicle localization. These algorithms rely on a pre-

existing road map to help guide the vehicle's estimated position. 

While these approaches enhance global localization accuracy, it 

still falls short of providing the precise positioning needed for 

fully autonomous driving (Najjar, 2005; Guivant and Katz, 

2007). 

 

Modern localization techniques utilize visual and LiDAR-based 

simultaneous localization and mapping (SLAM) to pinpoint a 

vehicle's location. Visual SLAM can be divided into two primary 

approaches: feature-based and direct methods, which differ in 

their error management strategies. The feature-based method 

performs well in static environments with abundant textures but 

faces challenges in dynamic settings with limited textures or 

when there is significant rotational movement. The direct method 

addresses some of these issues but is primarily effective in indoor 

environments. In contrast, LiDAR-based SLAM addresses the 

shortcomings of visual SLAM, especially in areas with low 

texture or variable lighting conditions. However, LiDAR sensors 

tend to be much more expensive and less prevalent than cameras. 

Another issue with SLAM is the potential for error accumulation 

over time, particularly if the system runs for extended periods 

without revisiting earlier locations or incorporating previous 

constraints. This becomes especially problematic in regions with 

weak GPS signals, complicating loop-closing optimization.  
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Recently, improvements in computer vision and mobile mapping 

systems (MMS) have made high-definition (HD) maps more 

readily available (Nüchter, 2007; Bosse, 2012; Lin et al., 2021). 

Consequently, localization methods that depend on pre-existing 

maps have become more popular. These methods require 

aligning onboard sensor data with the established map, and the 

most efficient way to achieve this is by using the same type of 

sensor for both mapping and localization (Yoneda et al., 2014; 

Ruchti et al., 2015). Several studies have investigated the use of 

LiDAR for 3D mapping and localization. However, due to cost 

and hardware limitations, many researchers lean towards camera-

based localization as a more feasible option (Stewart and 

Newman, 2012; Wolcott and Eustice, 2014; Neubert et al., 2017; 

Xu et al., 2017; Mounier et al., 2024). 

 

Recent advancements in computer vision algorithms and three-

dimensional reconstruction techniques, particularly in areas such 

as disparity estimation and point cloud processing, have opened 

new avenues for exploring multi-stereo camera configurations. 

Despite these technological progressions, significant challenges 

persist in accurately aligning and fusing data streams from 

multiple stereo pairs while maintaining real-time processing 

capabilities. Previous research contributions like Mur-Artal et al. 

(2017) and Levinson et al. (2007) have explored various aspects 

of stereo vision-based mapping and localization. Xu et al. (2017), 

Heng et al. (2019), Kim et al. (2018), Yabuuchi et al. (2021), and 

others have utilized stereo cameras for localization utilizing prior 

3D point cloud maps, but their approaches either rely on a single 

stereo camera or focus exclusively on forward-facing stereo 

camera systems.  

 

However, the implementation of single stereo camera 

configurations faces substantial challenges in providing 

comprehensive environmental coverage. The inherent limitations 

in the field of view and depth range associated with individual 

stereo cameras frequently result in incomplete scene 

reconstruction and potential blind spots, which could 

significantly compromise navigation safety and positional 

accuracy (Häne et al., 2017; Heng et al., 2019). The complexity 

is further aggravated by the unreliability of complementary 

systems such as GNSS due to multipath errors and INS due to 

error accumulation in these environments (Gu et al., 2015). 

However, the potential of multiple synchronized stereo cameras 

for comprehensive environmental perception remains relatively 

unexplored in the existing literature ((Häne et al., 2017; Wan et 

al., 2018). Lee et al. (2025) and Häne et al. (2017) have suggested 

the use of multiple stereo cameras to provide a 360-degree view 

of the surrounding area.  

 

In our work, we explore a system of stereo cameras capable of 

providing an almost 360-degree view that effectively captures 

points and offers comprehensive localization capabilities in 

dense urban environments. The proposed methodology aims to 

develop, implement, and assess a novel multi-stereo camera 

system comprising five synchronized stereo pairs strategically 

mounted to provide near-360-degree coverage around a vehicular 

platform. 3D point clouds generated from stereo images are used 

for localization using a prior 3D map of the environment, and the 

results are assessed. 

 

 

 

 

Figure 1. Overview of system workflow. 
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2. Methodology 

2.1 System Overview 

The system architecture incorporates several key components 

and processing stages: Initially, data from five stereo cameras are 

recorded into a bag file with synchronised time. This data base 

records stereo pair images along with the position information 

recorded using GNSS and INS. Once we have the bag files, we 

prepare a configuration file for the setup which consists of 

intrinsic and extrinsic camera parameters. We then make use of 

Robotic Operating System (ROS) to extract the images from the 

bag file. Disparity estimation is performed on each stereo pair 

utilizing the Semi Global Block Matching (SGBM) algorithm, 

followed by Weighted Least Squares (WLS) filtering to enhance 

the accuracy and density of the resulting point clouds. 

Implementing WLS filtering significantly reduces noise and 

outliers in the disparity maps, resulting in more reliable three-

dimensional reconstructions. Subsequently, the generated point 

cloud is filtered and dynamically sub-sampled for fast processing 

and accurate results. All the point clouds at an epoch are aligned 

using a robust calibration and alignment procedure that ensures 

an accurate transformation of individual point clouds into a 

common reference frame. The aligned point clouds undergo 

further processing to generate a comprehensive three-

dimensional representation of the surrounding environment. For 

localization purposes, the system utilizes an initial position 

estimate using the IMU, and the generated point cloud is matched 

with a pre-existing high-precision reference map using the 

Iterative Closest Point (ICP) matching algorithm. Results are 

compared with the trajectory information derived from tightly 

coupled GNSS/INS integration. Figure 1 shows the overview of 

the system, and we will discuss the steps in detail in the following 

sub-sections. 

 

2.2 Depth Estimation 

The data processing step involves extracting the data from bag 

files. We utilize the capabilities of ROS and Python to extract the 

images from five cameras & mechanical LiDAR and store them. 

Along with the images, we extract the ancillary information about 

the sensors, including intrinsic and extrinsic parameters that 

would later be used for disparity calculations and point cloud 

generation. The next step in the methodology is to create a 

configuration file for each camera and enrich it with intrinsic 

parameters (focal length (fx, fy), coordinate of principal point 

(cx, cy) and distortion coefficients) and extrinsic parameters 

(rotation matrix, translation vector and baseline between the 

stereo camera sensors). This arrangement is advantageous as it 

consolidates the camera parameters in a single file, streamlining 

the calibration process and allowing flexibility in adjustments 

and fine-tuning. 

 

Images from the stereo cameras are pre-processed in two steps. 

Firstly, the images are converted to grayscale. Converting images 

to grayscale reduces computational complexity by processing 

only a single channel instead of three (RGB). We then apply 

Contrast Limited Adaptive Histogram Equalization (CLAHE) to 

grayscale images. This step improves the local contrast of the 

image, rendering features more distinguishable. It also reduces 

the noise that can occur with standard histogram equalization. 

CLAHE adapts to different regions of the images, making it 

robust to different lighting conditions. It is crucial for urban 

environments with variable lighting conditions, thus 

outperforming global histogram equalization by preserving local 

details important for accurate stereo matching. 

 

To derive disparity from the stereo pairs, we utilize the Semi-

Global Block Matching (SGBM) algorithm with the HH4 mode. 

SGBM-HH4 enhances depth accuracy and handles texture-less 

areas better than default SGBM but requires more tuning. We 

used SGBM as it is less sensitive to illumination changes and 

works well in texture-less regions prevalent in urban scenes, 

which makes it suitable for our case. The produced disparity map 

is further refined using a Weighted Least Squares (WLS) filter. 

WLS filtering, unlike other smoothening filters, smooths the 

disparity map while preserving the edges and filling small holes 

while improving the 3D depth accuracy. These steps ensure the 

depth estimates are highly accurate, forming a robust base for the 

localization algorithm. The combination of SGBM with WLS 

filtering outperforms simple stereo-matching techniques, 

granting the accuracy and reliability needed for navigating 

complex urban surroundings. 

 

2.3 Point Cloud Generation 

After we have the disparity map, the next step is to convert the 

disparity values to actual depth measurements. The depth value 

is calculated using the relationship between depth and disparity 

expressed as: 

 

depth (Z)  =
𝐹𝑜𝑐𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ ×𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝑑𝑖𝑠𝑝𝑎𝑟𝑖𝑡𝑦
    (1) 

 

 

The formula uses known camera parameters, i.e. focal length and 

baseline, to translate disparity value into absolute depth 

measurements, which signifies the three-dimensional 

representation of the scene. These depth values are combined 

with the RGB values from the colour image to construct a 3D 

point cloud. This involves projecting each pixel into the 3D space 

using the depth values.  

 

𝑋 = (𝐼𝑥  −  𝑐𝑥)  ∗  𝑧
𝑓𝑥

⁄    (2) 

 

𝑌 = (𝐼𝑦  −  𝑐𝑦)  ∗  𝑧
𝑓𝑦

⁄    (3) 

 

𝑍 = 𝑑𝑒𝑝𝑡ℎ                                  (4) 

 

where  𝑓𝑥, 𝑓𝑦 = focal length in x and y directions 

 𝐼𝑥, 𝐼𝑦  = Pixel Coordinates 

 𝑐𝑥 , 𝑐𝑦  = coordinates of principal point 

X, Y, Z = Coordinates of 3D point in object coordinate 

frame 

 

Several point cloud filtering methods are employed to make the 

point cloud data manageable and filter out the noise. First, a 

threshold filter is applied to remove the points farther than 20 

meters from the sensors. This is done because the depth accuracy 

decreases with the distance from the stereo camera, and points 

beyond the threshold become increasingly less reliable as you 

move away from the sensor. Second, a decimation filter is used 

to reduce the overall point count so that the computational 

efficiency can be maintained, and we can achieve near real-time 

processing speeds as it reduces the volume of data generated 

while still preserving the geometrical information of the scene. 

Third, we apply a statistical outlier removal (SOR) filter to detect 

and discard the noise points that vary from the local point group, 

improving the quality of the 3D representation. The SOR filter is 

particularly effective in addressing measurement errors and 

artifacts that may arise from the stereo-matching process or 

environmental factors.  
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Once we have the optimized point cloud, we apply rigid body 

transformation to align it with the vehicle’s reference frame. This 

transformation is applied to all the point clouds generated from 

five stereo cameras so that they align with the vehicle. This step 

helps ensure that the point clouds are aligned with each other as 

well as the GNSS/INS system. Finally, to make the point clouds 

globally consistent and match the prior 3D map, we apply the 

global transformation to the locally consistent point clouds, using 

the trajectory information derived from the integrated GNSS/INS 

system. Finally, we have a set of point clouds from various 

cameras, all aligning to the global coordinate system. 

 

2.4 Localization 

Since we already have globally aligned point clouds from the 

multi-stereo cameras, we first implemented a testing 

methodology that simulates real-world scenarios where GNSS 

signals are compromised. This approach allows the evaluation of 

the system’s performance under controlled conditions while 

mimicking the effects of urban canyons on localization accuracy. 

The testing methodology follows several steps. First, we 

intentionally introduce errors in rotation and translation to the 

combined point cloud derived from the five stereo cameras at a 

single epoch. This simulates the drift that would typically occur 

when relying solely on inertial measurements in a GNSS-denied 

setting. This circumstance is especially challenging for 

traditional navigation systems and acts as an ideal test for a multi-

stereo camera approach. To initialize the localization algorithm, 

we first use the last known GNSS position before the simulated 

GNSS-denied condition. This replicates the condition where the 

vehicle has entered an underpass or is between high-rise 

structures where GNSS signals are unreliable. We use the 

Iterative Closest Point (ICP) algorithm to align the error-induced 

combined point cloud with the prior high-precision 3D point 

cloud map. The corrections applied to the combined point cloud 

perform several iterations to align the point cloud to the closest 

match and then provide an RMSE error for the match and the new 

rotation and translation. Since the combined point cloud has 360-

degree coverage, it has comprehensive information about the 

surrounding environment and can align with the 3D map quite 

accurately. Using the series of corrected transformations, we 

generate a trajectory that represents the vehicle path through the 

simulated scenario.  

 

We compare the generated rotation and translation with the 

ground truth data to quantify the accuracy of the localization 

system. This methodology allows us to thoroughly assess the 

system’s ability to localize in challenging urban environments 

accurately.  

 

3. Experiments 

3.1 Sensors Platform 

In this research, we utilize the navigation and instrumentation 

(NavINST) research laboratory multi-sensor system platform. 

The setup incorporates advanced hardware components to 

develop, test, and implement robust localization and navigation 

algorithms for AVs. The sensor platform consists of five Zed2i 

stereo cameras, each capable of recording high-resolution images 

at 1280 x 720 pixels. These stereo cameras come with an in-built 

IMU sensor. Four of these cameras have a 2.12 mm focal length  

with an ultrawide field of view (FOV) (110°(H) x 70°(V) x 

120°(D)), and these cameras are positioned at the top corners of 

the vehicle, rotated 45 degrees outward to expand the peripheral 

vision. Meanwhile, the fifth camera is mounted at the front center 

on top of the vehicle with a focal length of 4 mm (FOV: 72°(H) 

x 44°(V) x 81°(D)), facing forward to capture the broad frontal 

imagery. The illustrated configuration of the multi-stereo camera 

system is strategically designed to provide comprehensive 360-

degree coverage around a vehicular platform, ensuring 

comprehensive environmental perception. 

 

 

Figure 2. Multi-sensor platform – 4 corner stereo cameras, one 

forward-looking stereo camera, one mechanical LiDAR, and a 

GNSS receiver integrated with high-end (reference). 

 

 

Figure 3. Position and Orientation of Stereo Cameras and 

Mechanical LiDAR with respect to Reference 

 

Accompanying the cameras, the sensor platform includes a 

Velodyne Puck LITE mechanical LiDAR with 16 laser channels, 

with FOV (360° (H) and 30° (V)), and a 100m range. Its point 

cloud is used to assess and compare the point clouds generated 

by the multi-stereo camera system. Additionally, the sensor 

platform also comprises dual-frequency Global Navigation 

Satellite Systems (GNSS) receiver - Novatel PwrPak7-E1 and a 

high-grade Inertial navigation System (INS) - tactical grade 

KVH1750 IMU. We had a base station located within 15km from 

the trajectory site collecting data as well. This extra data was used 

inside the Novatel Inertial Explorer software to postprocess the 

reference data to correct for multiple GNSS-related errors and 

achieve a Real-time Kinematic (RTK)-like solution with higher 

positioning accuracy. These sensors assist in providing the initial 

position estimates to seed the localization algorithm and provide 

the ground truth for system performance assessment. Data 

acquisition is handled through multiple computers managed 

using the Robotic Operating System (ROS).  This framework 

ensures time-synchronized data collection across all sensors 

stored in bag files that can be used for testing and processing.  
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3.2 Data 

Using the NavINST system, data was collected from real road 

tests in normal land vehicle driving conditions in downtown 

Calgary, AB, Canada, capturing measurements from all sensors. 

The recorded data is stored in ROS bag files and processed on a 

high-performance system equipped with an Intel Core i7 

processor and an Nvidia RTX 360 GPU.Additionally, we utilize 

a prior 3D map of Calgary, generated using a mobile mapping 

system, which provides a georeferenced 3D point cloud in the 

UTM Cartesian coordinate system, covering the downtown area. 

This prior map serves as a reference for both localization and 

algorithm assessment. 

 

4. Results and Discussions 

3D point clouds generated from the five Zed2i stereo cameras 

produced a dense and accurate representation of the urban 

scenarios. Table 1 shows the sample stereo pairs images from the 

stereo cameras at an epoch. Conversion of RGB images to grey 

and using the Adaptive Histogram equalization methods are 

crucial in reducing the input data size as well as ensuring that the 

features in images are highlighted while making them more 

robust to different lighting conditions. The implementation of the 

SGBM algorithm, together with WLS filtering, significantly 

enhanced the quality of the disparity maps. It resulted in 

producing a depth accuracy of 0.15 meters at a range of 20 meters 

under optimal conditions. WLS filtering provided particularly 

effective results by reducing noise as compared to the traditional 

stereo-matching results. It added to the overall computation cost 

but the resultant improvement in disparity map is a trade-off 

worth the results that are generated. Additional filtering of the 

point cloud made sure that for further processing at the 

localization step the point cloud can be processed efficiently 

while maintaining the accuracy.

 Left Image Right Image 

Front Center Camera 

  

Front Left Camera 

  

Front Right Camera 

  

Rear Left Camera 

  

Rear Right Camera 

  
Table 1. Stereo images from five stereo cameras at an epoch 
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Figure 4. Combined Point Clouds from 5 Stereo Cameras 

aligned with the mechanical LiDAR point cloud. 

 

  

Figure 5. Point Clouds from Stereo Cameras aligned with the 

prior 3D Point Cloud Map for the trajectory of the Car in 

Downtown Calgary. 

 

Figure 4 shows the combination of five point clouds from stereo 

cameras aligned with the mechanical LiDAR point cloud. Figure 

5, shows the alignment of all the point clouds with the 3D map 

of Calgary. Performance of the proposed multi-stereo camera 

system for localization in urban environment was evaluated and 

the results thus generated demonstrated that the developed sensor 

system along with the processing pipeline has capability to 

provide accurate and reliable localization in challenging urban 

scenarios. Using ICP matching algorithm to align the combined 

point cloud from five stereo cameras with high-precession 

reference map, we achieved a convergence rate in 85% test cases 

within 2 meters of translation and 8 degrees of rotation.  

 

 

Figure 6. Histograms of translation errors derived from ground 

truth comparisons. 

 

Figure 7. Histograms of rotational errors derived from ground 

truth comparisons. 

 

The multi-stereo camera configuration showed promising results 

and addressed the limited field of view constraint inherent in 

single stereo pair systems. It provided near-360-degree coverage 

around the vehicular platform, our system achieved 

comprehensive environmental perception, crucial for navigation 

in complex urban environments characterized by wide roads and 

high-rise structures. The combined point cloud generated using 

the synchronized cameras provides dual benefits. In addition to 

360-degree awareness, it also allows additional information for 

3D point cloud matching which proves to be helpful in alignment 

of point cloud with the prior map. The limitation of stereo 

camera’s shorter baseline limits the reliability of depth, but this 

also creates an opportunity to use the information provided by 

cameras which are aligned 45 degrees looking outward. This 

allows the visibility of sidewalk and buildings that has lot of 

features which improves the probability of getting those features 

which can be matched with the point cloud map. By leveraging 

these additional viewpoints, we can identify the most reliable side 

for localization. For instance, on wide roads, we can assign 

greater weight to features on the side closer to the sidewalk, 

improving alignment and robustness in positioning. 

 

Building and other tall structures casts shadows which creates 

dynamic lighting conditions that hampers the localization 

accuracy of the vehicle. It also gets tricky with dynamic objects 

like cars, pedestrians etc. moving throughout the scene. In 

addition to these complexities, we also face GNSS signal drop 

due to urban canyon and multipath effect. All these conditions 

posed various challenges in the localization of vehicle, but 

several methods used in our system proved to be useful in 

countering their effects. Utilizing Adaptive Histogram 

equalization to increase robustness to the changing lighting 

conditions, using WLS filtering to reduce the effect of low 

feature or texture-less surface resulting in less accurate disparity 

map and several point cloud filtering techniques used to reduce 

the adverse effects of moving objects resulted in improving the 

accuracy of the system. By positioning cameras at the corners of 

the vehicle’s roof, angled 45 degrees looking outward, we 

enhance localization by leveraging features present on the sides 

of the road. The traditional methods approach relies on either 

forward-facing or strictly side-facing cameras that may struggle 

in environments with limited distinguishing features directly 

ahead or to the sides, whereas for our sensor arrangement the 

angled cameras provide features for road as well as the sidewalk 

or buildings increasing the availability of reliable reference 

points. On wide roads, where features on one side may be more 
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structured (e.g., near the sidewalk), the system can be designed 

in future to assign higher confidence to those features for better 

alignment and localization accuracy. Integrating these 

advantages, the system can dynamically adjust feature weighting 

based on environmental context, ensuring more robust and 

precise localization. 

 

Compare with the LiDAR based solutions, performance of our 

system suggests that it offers competitive results. The accuracy 

and comprehensive coverage indicate that the multi-stereo 

camera approach for camera localization in urban environments 

has great potential at a lower cost that the high-end sensing 

solutions. Although processing time for the localization is fast, 

but it needs to be improved by further optimizing the solution to 

incorporate real-time processing. For future research we will 

focus on optimization of the processing pipeline to enable it to 

work in real time by incorporating parallel processing. We will 

also focus on fusing perception algorithms to semantically 

understand the environment and integrate inertial measurements 

so make the system more efficient and robust.  

 

5. Conclusion 

In this research, we presented a multi-stereo camera system 

designed for accurate and reliable vehicle localization in urban 

environments. By utilizing five ZED2i stereo cameras with a 

strategically designed configuration, we achieved near 360-

degree environmental perception, addressing the limited field of 

view inherent in single stereo pairs. Our approach demonstrated 

the effectiveness of combining stereo depth estimation with 

advanced filtering techniques such as Adaptive Histogram 

Equalization, WLS filtering, and point cloud processing to 

enhance localization accuracy. The disparity maps generated 

with SGBM and WLS filtering achieved a depth accuracy of 0.15 

meters at a 20-meter range, significantly improving the reliability 

of depth estimation. 

 

The proposed system was evaluated using ICP-based point cloud 

alignment against a high-precision reference map, achieving an 

85% convergence rate within 2 meters of translation and 8 

degrees of rotation. The unique positioning of cameras at 45-

degree outward angles provided additional visual features from 

sidewalks and building facades, which enhanced localization 

performance, particularly in wide-road scenarios where 

traditional forward-facing or side-facing cameras may struggle. 

By doing so, we were able to track more reliable features based 

on environmental context; our system demonstrated robustness 

in complex urban settings, including those with GNSS signal 

dropouts, dynamic lighting conditions, and moving objects. 

 

When compared to LiDAR-based solutions, our multi-stereo 

camera system exhibited competitive localization performance at 

a significantly lower cost. While the system effectively processes 

localization data in near real-time, further optimization is 

necessary to achieve fully real-time operation. Future work will 

focus on optimizing the processing pipeline through parallel 

computing, integrating inertial measurements for improved 

robustness, and incorporating semantic perception algorithms to 

enhance scene understanding. With these advancements, the 

proposed system has the potential to become a cost-effective and 

efficient alternative for urban vehicle localization, contributing 

to the broader adoption of vision-based navigation solutions in 

autonomous driving and intelligent transportation systems. 
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