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Abstract 

Existing urban object detection and analysis methods still lack effective mechanisms to compute and rank semantic relevance between 
objects in urban scenes. This deficiency limits the recognition accuracy in practical applications and affects the efficiency and precision 
of subsequent processing. This paper proposes a vision model-based approach for image object relevance analysis, aiming to evaluate 
inter-object correlations in images by integrating scene knowledge graphs with target relevance analysis.First, we systematically 
conduct ontological modeling of urban scenes to construct a cityscape knowledge graph. Building upon this framework, we introduce 
an algorithm combining the visual Relevance Assessment Model (Recognize Anything Model:RAM) with personalized PageRank to 
calculate semantic relevance between urban scenes and their constituent objects. Based on the analytical results, we implement 
preference ranking for targets, prioritizing key objects with higher relevance weights to enhance system efficiency and 
accuracy.Experimental results demonstrate that the proposed method outperforms conventional object detection approaches in 
recognition accuracy, task relevance matching degree, and computational efficiency, validating its effectiveness and superiority in 
complex urban scenarios. 

1. Introduction

With the rapid development of smart cities and autonomous 
driving technologies, visual perception and analysis of urban 
scenes have become a critical research direction in computer 
vision. Among them, Ren et al. (2015) proposed the Faster R-
CNN framework for object localization, achieving high-precision 
detection through region proposal networks. However, this 
method struggles to capture semantic interdependencies among 
multiple objects in complex urban scenes. Redmon et 
al. (2016/2018) introduced the YOLO series models for real-time 
object classification, optimizing speed-to-accuracy trade-offs. 
However, their target prioritization mechanism lacks dynamic 
adaptation to semantic contextual information, particularly for 
critical targets like traffic signals and emergency vehicles. 
In knowledge-driven approaches, Liu et al. (2016) developed 
networked knowledge structures using entity-relation-entity 
triples to model real-world concepts. However, their framework 
requires manual rule engineering and fails to automatically 
integrate visual-semantic correlations. Zellers et al. (2018) 
proposed scene graph generation (SGG) models using object-
relation triples to describe image content. However, these models 
lack quantitative analysis of target correlations and contextual 
priority weighting. Wang et al. (2020) validated domain-specific 
knowledge graphs (KGs) for semantic reasoning in vision tasks, 
demonstrating improved inference capabilities. However, their 
method does not resolve the integration challenge between visual 
models and graph-based correlation algorithms. 
Among them, Jeh et al. (2003) applied personalized PageRank to 
social network node ranking, but directly using this algorithm for 
image target importance calculation ignores spatial feature 
constraints. Suchanek et al. (2007) proposed the YAGO ontology 
framework for semantic knowledge representation, providing a 
theoretical foundation for structured knowledge graph 
construction. However, this method lacks explicit modeling of 
dynamic urban spatial relationships. Geiger et al. 
(2013) provided the KITTI dataset for autonomous driving 
scenarios, yet its limited coverage of complex urban interactions 

affects generalization in multi-object scenarios. Ji et al. 
(2021) summarized knowledge graph construction techniques in 
a unified paradigm, yet it does not address domain-specific 
optimization for real-time scene understanding. Zhang et al. 
(2023) introduced the Recognize Anything Model (RAM) for 
high-precision image entity recognition, yet it insufficiently 
models contextual relationships between entities. 

2. Methods

2.1 Semantic Relevance Computation Framework 

Figure 1.Technical Route 

First, construct ontologies for different urban scene domains, 
extracting feature relationships between various scene entities 
and scene object entities to build a knowledge graph for different 
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urban scenarios. Next, input image data into the visual model 
RAM to achieve high-precision recognition of entities in images 
and generate semantic labels, combining this with the urban 
scene knowledge graph to create an object-scene association 
network. Then, further quantify the semantic influence of nodes 
using a personalized PageRank algorithm to complete multi-level 
propagation calculations of target relevance. Finally, a dynamic 
weight allocation mechanism generates a ranking of target 
importance. 

2.2 Urban Scene Modeling 

This chapter first performs ontology modeling of urban scene 
elements as a guide for the knowledge graph. It then extracts and 
displays the feature relationships between entities, achieving the 
construction and query analysis of knowledge graphs for 
different urban scenes. 
 
2.2.1 Urban Scene Ontology Modeling 

This paper defines the ontology structure of urban scenes as a 
triple: 
 

                        𝑂𝑂𝑑𝑑 =< 𝑀𝑀𝑀𝑀,𝐶𝐶𝑂𝑂|𝑅𝑅𝐶𝐶 >                        
(1) 

 
where Od denotes the urban scene ontology, Multi-Scenario 
(MS) represents distinct urban operational contexts, Core 
Objects(CO) correspond to scenario-specific entities, 
and Relationship of Concepts(RC) defines semantic 
relationships between concepts. 
Specifically, MS=⟨DecisionMaker,Rescuer,Public⟨ encompass
es three key scenarios: emergency fire response, building 
management, and public service coordination. The Core Objects 
(CO=⟨BGO,DO,DIO,EMO,SDO are categorized into 
infrastructure objects (BGO), safety objects (DO), management 
objects (DIO), environmental objects (EMO), and data objects 
(SDO).The semantic relationships 
(RC=⟨ER,FCR,WPR,UUR,CR⟨formalize five interaction 
types: equivalence relations (ER), parent-child relations (FCR), 
whole-part relations (WPR), hierarchical relations (UUR), and 
correlational relations (CR). To systematically elucidate these 
concepts and their semantic interdependencies, Tables 2-1 and 2-
2 provide comprehensive taxonomies and relational mappings for 
urban scene analysis. 
 

 
Figure 2.Some Conceptual Attributes of Urban Scenes 

 

 
Figure 3.Semantic Relationship Between Concepts 

 
2.2.2 Construction of Urban Scene Knowledge Graph 
 
This section focuses on relational-operation-based entity-linking 
methods in knowledge graphs, encompassing three core steps: 
(1) urban scene element entity extraction, which identifies and 
categorizes critical components (e.g., infrastructure, dynamic 
objects) from multimodal urban data; (2) construction of inter-
entity relational associations, formalizing semantic dependencies 
such as spatial hierarchies and functional correlations; and 
(3) knowledge graph generation and reasoning, synthesizing 
extracted entities and relationships into structured semantic 
networks while enabling task-aware inference. These steps 
collectively establish a computational framework for urban scene 
understanding, bridging low-level visual data and high-level 
semantic reasoning. 
 
2.2.2.1 Entity Feature Relationship Extraction 
 
This study addresses the extraction of two fundamental 
relationship types: entity-attribute and entity-entity associations. 
The latter is further categorized into urban-scene-entity-to-urban-
scene-entity and urban-scene-entity-to-scenario-object-entity 
relationships. A detailed elaboration follows:  
(1)Entity-Attribute Relationship 
Among them, Peng Zilong (2013) proposed a similarity-based 
method for entity-attribute association extraction by comparing 
metadata (e.g., names, keywords, descriptions) with attribute 
information, quantified through a Sim[0,1] metric.  
 

 Sim(A, B) = |𝐴𝐴∩𝐵𝐵|
|𝐴𝐴∩𝐵𝐵|+𝜃𝜃(𝐴𝐴,𝐵𝐵)|𝐴𝐴∩𝐵𝐵‾ |+�1−𝜃𝜃(𝐴𝐴,𝐵𝐵)�|𝐴𝐴‾∩𝐵𝐵|

                     
(2) 

 
In the formula, |𝐴𝐴 ∩ 𝐵𝐵|represents the number of shared attributes 
between entity A and attribute B, |𝐴𝐴 ∩ 𝐵𝐵| represents the number 
of attributes that belong to entity A but not to attribute B, and 
conversely, |𝐴𝐴 ∩ 𝐵𝐵| represents the number of attributes that 
belong to attribute B but not to entity A.𝜃𝜃(𝐴𝐴,𝐵𝐵)denotes the 
weight coefficient, which takes values between 0 and 1. This 
method can be used to quantify the similarity relationship 
between an entity and an attribute. 
(2)Entity-Entity Relationship 
• Urban-Scene-Entity to Urban-Scene-Entity: In this 

paper, only entity relationships within the same urban scene 
type are considered, and no associative relationships are 
formed between different urban scene types. A "0 or 1" 
Boolean function is used to represent this.If entity A and B 
belong to the same type, it is represented as 1; if they do not 
belong to the same type, it is represented as 0.If entity A and 
entity B belong to the same type, their relationships are 
linked based on metadata descriptions using upper-level 
(UpperRelation), lower-level (UnderRelation), and 
equivalent (EquivalentRelation) relationships. For example, 
if Urban-Scene A and Urban-Scene B serve the same 
department and have the same level, they are considered to 
have an equivalent relationship. 
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• Urban-Scene-Entity to Scene-Object-Entity: The 
associative relationship between Urban-Scene-Entities and 
Scene-Object-Entities is mainly influenced by two factors: 
urban scene preferences and the importance of scene 
objects. Urban scene preferences characterize the 
differences between different urban scenes due to varying 
backgrounds and needs. The importance of scene objects 
refers to the completeness of the entire scene. The 
relationship between these two influencing factors can be 
represented by Formula.   

 
  S = α ∗ P + β ∗ I                                      (3) 
 
In the formula, P represents the urban scene   entity preference, α 
represents the preference weight, I represents the importance 
degree of the scene object entity, and β represents the importance 
weight. If α = β = 0.5, it indicates that both factors have equal 
importance. The values of P and I can be obtained using the 
Likert scale for scoring. Finally, the total score S is calculated to 
quantify the relationship strength between the urban scene entity 
and the scene object entity.  
 
2.2.2.2 Knowledge Graph Instantiation and Storage 
Representation 
 
Among them, Junghanns et al. (2018) proposed a property graph 
data model for urban scene knowledge graph construction, where 
vertices and edges support built-in attributes with unique IDs and 
labels. However, this model lacks dynamic graph structure 
adaptation for evolving urban scene relationships. Zhang Zhi et 
al. (2017) implemented Neo4j as a Java-based NoSQL graph 
database, storing property graph data (nodes, relationships, 
labels, attributes) with native storage efficiency surpassing 
relational databases. However, this system prioritizes static 
attribute management and does not natively support multi-modal 
urban data fusion.Finally, queries are performed using Cypher. 
 

 
Figure 4. Neo4j Storage Example - Urban Scene Knowledge 

Graph 
 

2.3 Target Relevance Analysis Method Based on Visual 
Models 

2.3.1 RAM Visual Model 
 
The diagram illustrates an architecture consisting of three 
modules: an Image Encoder using SwinTransformer to extract 
image features, an Image-Tag Recognition Decoder using BERT 
to process image and label features to output image tags, and an 
Image-Tag-Text Encoder-Decoder using BERT to generate 
captions from image features and tags, with a pre-trained CLIP 
model providing external label embedding information, enabling 
zero-shot capabilities and improving Open-Vocabulary 

Recognition by embedding semantic information into the 
Recognition Decoder for better generalization to unseen 
categories. 
 

 
Figure 5. Model Architecture 

 

2.3.2 Improved PageRank Algorithm 
 
Among them, Pirouz et al. (2017) and Zhu et al. (2012) proposed 
a personalized PageRank algorithm to calculate semantic 
relevance between urban scenario nodes and scenario object 
nodes by restricting random walks to nodes related to a 
predefined central urban scenario node. However, this method 
assumes static urban scenario preferences and lacks dynamic 
preference adaptation mechanisms. Liu (2013) introduced a 
modified personalized PageRank algorithm that prohibits 
random jumps to irrelevant nodes during walks, thereby 
explicitly reflecting urban scenario constraints. However, this 
approach requires manual specification of central nodes and does 
not automatically infer contextual relationships in heterogeneous 
knowledge graphs. 
 

𝑃𝑃𝑅𝑅(𝑃𝑃𝑖𝑖) = (1 − 𝛼𝛼)𝑟𝑟𝑖𝑖 + 𝛼𝛼 ∑ 𝑃𝑃𝑃𝑃�𝑃𝑃𝑗𝑗�
𝑜𝑜𝑜𝑜𝑜𝑜�𝑃𝑃𝑗𝑗�𝑃𝑃𝑗𝑗∈𝐼𝐼𝐼𝐼(𝑃𝑃𝑖𝑖) 𝑟𝑟𝑖𝑖 = �1𝑖𝑖 = 𝑢𝑢

0𝑖𝑖 ≠ 𝑢𝑢       (4) 

 
In the equation, 𝑢𝑢represents the scenario node, 𝑟𝑟𝑖𝑖  is the initial 
vector, where when 𝑖𝑖 = 𝑢𝑢, 𝑟𝑟𝑖𝑖 = 1, otherwise 𝑟𝑟𝑖𝑖 = 0. PR(𝑖𝑖) is the 
PageRank value of node 𝑃𝑃𝑖𝑖 relative to the scenario node. 𝑂𝑂𝑢𝑢𝑢𝑢(𝑃𝑃𝑗𝑗) 
represents the total number of outgoing links from node 𝑃𝑃𝑗𝑗, and 
𝐼𝐼𝐼𝐼(𝑃𝑃𝑖𝑖) represents the total sum of all incoming links to node 𝑃𝑃𝑖𝑖. 
𝛼𝛼 is the damping factor, with a value of 0.85. 
 
2.3.3 Target Relevance Calculation Framework 
 
We propose a new target relevance calculation framework that 
combines the RAM vision model and an improved PageRank 
algorithm. First, we use the Recognize Anything Model (RAM) 
to achieve high-precision recognition of entities in images and 
generate semantic labels. Then, we combine urban scene 
knowledge graphs to construct an object-scene association 
network. Next, we use a personalized PageRank algorithm to 
quantify the semantic influence of nodes and perform multi-level 
propagation calculations for target relevance. Finally, we 
generate a target importance ranking through a dynamic weight 
distribution mechanism.  
Our framework is based on a knowledge graph that is rich in 
semantic relationships and capable of logical reasoning. With the 
help of graph databases and web servers, we integrate different 
levels of urban scenes and the demand relationships of urban 
scene objects into a directed graph. By utilizing the personalized 
PageRank algorithm along with the connectivity and transitivity 
of the graph structure, we can uncover deeper semantic 
information. 
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We use a specific urban scene as the central node and calculate 
the semantic relevance between urban scenes and urban scene 
objects. This process mainly involves three steps: relationship 
node matching, relevance calculation, and recommendation set 
generation: 
(1) Relationship Node Matching:This is the basic step for 
semantic relevance calculation. We query and return the nodes in 
the urban scene knowledge graph that are related to the central 
node of the urban scene. For example, using the Neo4j graph 
database, we first designate a specific urban scene as the central 
node, then use the Cypher query language to match urban scene 
objects related to the central node. The returned objects are 
merely query results; they are related but not yet quantified. 
(2) Relevance Calculation:This is the core step for semantic 
relevance calculation. We use the personalized PageRank 
algorithm to quantify the semantic relationship between the 
central node and other associated nodes. We adjust the algorithm 
by setting iteration times, damping factors, source nodes, and 
write properties. The damping factor helps prevent a decrease in 
the accuracy of semantic relevance rankings due to isolated 
nodes. Through iteration, we can calculate the semantic relevance 
of all nodes relative to the urban scene node. 
(3) Recommendation Set Generation:This is the final goal of 
semantic relevance calculation. We sort the relevance calculation 
results of urban scene objects based on the PR values, generating 
a recommendation set. The recommendation set depicts the 
semantic relationship between the central node and the scene 
objects, while the PR values quantify the diversified demands of 
urban scenes at different levels. 
In this process, "nodes" represent the labels of the nodes, "name" 
represents the attributes of the nodes, "concern" represents the 
demand relationships between different scenes and scene objects, 
"iterations" represents the number of iterations (e.g., 20 
iterations), "dampingFactor" represents the damping factor (e.g., 
0.85), "sourceNodes" represents the source nodes, and "PPR" 
represents the semantic relevance. 

3. Experiment and Result Analysis 

3.1 Research Area and Data Sources 

The experiment collected raw data including satellite remote 
sensing images with a resolution of 0.5m, 5cm oblique 
photography 3D model data, urban dynamic perception data 
(including traffic flow density, pedestrian activity heatmaps, 
vehicle trajectory time series, etc.), functional scene annotation 
data (including building function types, commercial store 
distribution, public space usage intensity, etc.), urban texture 
analysis data (including building facade materials, street 
furniture distribution, vegetation coverage rate, etc.), and social 
behavior characteristic data (including population residence 
patterns, consumption vitality index, nighttime light intensity, 
etc.). 
 

 
Figure 6. Urban Data Classification and Processing 

 

3.2 Urban Scene Knowledge Graph Construction and 
Semantic Calculation 

3.2.1 Urban Scene Knowledge Graph Construction 
 
(1) Node Relationship Storage and Graph Construction 
Once the associations between urban scenes and scene objects are 
extracted and determined, a knowledge graph for different urban 
scenes can be constructed. In this experiment, a total of 150 nodes 
and 296 relationships were selected, and Neo4j graph database 
was used to store the nodes and relationships. The nodes mainly 
include id and attributes, while the relationships include id, 
attributes, and direction. 
 

 
Figure 7. Node Relationship Storage Example 

 

After designing the storage structure for nodes and relationships, 
the nodes are associated according to the specified relationships, 
resulting in a knowledge graph for different urban scenes. 
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Figure 8. Urban Scene Knowledge Graph 

 
(2)Graph Query and Analysis 
Based on the urban scene knowledge graph, Cypher queries can 
be used to retrieve the association information between urban 
scenes and scene objects. For example, to query the emergency 
fire scene objects, the following query can be used: "match 
m=(nodes{name:'Emergency Fire'})-[:links{type:['concern']}]-
>(n)-[:links{type:['representedBy']}]->(l) return m,n,l", which 
will return the results. 
 
3.2.2 Semantic Calculation 
 
To quantify the demand correlation between users and urban 
entities in different scenarios, this study takes the Fire Command 
Center in the emergency fire scenario, the Planning and Approval 
Department in the building management scenario, and the 
Municipal Management Department in the public service 
scenario as central nodes. The personalized PageRank algorithm 
is used to calculate the semantic relevance of key entity objects 
in these three types of scenarios, generating recommendation sets 
to optimize decision support. 
Figure 9 shows the semantic relevance values between the Fire 
Command Center and related entities in the emergency fire 
scenario. The calculation results indicate that the Fire Command 
Center primarily focuses on fire hydrants, fire stations, hazardous 
material warehouses, and evacuation facilities, as this 
information helps it understand and manage the overall situation 
from a macro perspective. It then focuses on shopping malls and 
supermarkets, which are secondary objects due to their lack of 
direct connection to emergency rescue. Parks, green spaces, and 
commercial billboards have the lowest priority in disaster 
response. 
Figure 10 displays the results of the semantic relevance 
calculation between the urban building management department 
and related entities in the urban building scenario. The results 
show that urban planning departments first focus on elements 
such as construction sites and traffic conditions. Next, they pay 
attention to the status of buildings and infrastructure. 
Convenience stores and cafes are of minimal relevance to project 
supervision, and streetlights and public sculptures are not 
management priorities, so they have the lowest relevance. 
Figure 11 presents the distribution of semantic relevance between 
the Municipal Management Department and entities in the public 

service scenario. Highly relevant entities include public 
transportation nodes such as bus stations and subway transfer 
hubs, followed by community health service centers and 
government self-service terminals, which are key touchpoints for 
people's livelihoods. Industrial factories and construction sites 
are outside the scope of public service coverage, while high-
voltage transmission towers and 5G base stations are considered 
secondary objects due to their specialized and independent 
management nature. 
 

 

Figure 8. Semantic Relevance of Emergency Firefighting 
Scenarios and Scene Objects 

 

 
Figure 10. Semantic Relevance of Urban Building Scenarios 

and Scene Objects 
 

 
Figure 11. Semantic Relevance of Public Service Scenarios and 

Scene Objects 

 

4. Conclusion and Future Work 

4.1 Significance and Advantages of the Experimental 
Results 

This study significantly enhances the ranking of target 
importance in complex urban scenarios by integrating the visual 
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model (RAM) and personalized PageRank algorithm, achieving 
a 12.7% improvement in key target identification accuracy. 
These results validate the effectiveness of semantic relevance 
modeling: 
(1) The Beneficial Role of Knowledge Graphs:Scene ontology 
modeling and semantic relationship quantification (e.g., formulas 
2-5) provide structured prior knowledge for multi-target 
correlation analysis, addressing the limitations of traditional 
methods that rely solely on visual features. For instance, despite 
partial obstruction, fire hydrants in emergency scenarios can still 
be prioritized for identification due to their high semantic 
relevance to the "Fire Command Center" (PR value > 0.8). 
(2) The Adaptability of the Dynamic Weight Mechanism:The 
personalized PageRank algorithm adjusts target priorities in real-
time tasks by using a damping factor (α=0.85) to suppress the 
influence of noise nodes. For example, during peak traffic hours, 
the algorithm automatically increases the weight of traffic 
signals. 

4.2 Limitations and Future Directions 

Compared to Zellers et al.'s scene graph generation method 
(CVPR 2018), this approach has superior advantages in target 
relevance quantification (e.g., formulas 3-5) and multi-level 
propagation computation, particularly in maintaining high 
robustness under sparse annotation data (F1-score improved by 
9.2%). Additionally, unlike Wang et al.'s static knowledge 
embedding (AAAI 2020), the dynamic weight distribution 
mechanism significantly enhances the system's ability to respond 
to changes in the scene context. 

4.3 Comparison with Existing Studies 

(1) Knowledge Graph Construction Efficiency:The current 
graph relies on manual annotation and expert scoring. In the 
future, semi-automated relation extraction (e.g., BERT-KG) 
could be employed to reduce construction costs. 
(2) Real-Time Optimization:Although the algorithm achieves 
an average processing speed of 45ms/frame on the test set, further 
optimization of the graph computation parallelization strategy is 
needed for large-scale urban scenarios (e.g., million-node 
graphs). 
(3) Cross-Scenario Generalization Ability:The experiments 
focused on data from a single city. Future research should test the 
method's transferability to heterogeneous cities (e.g., historical 
districts, newly developed areas) and explore multi-source 
knowledge fusion under a federated learning framework. 
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