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Abstract  
Building renovation to improve energy efficiency is crucial for reducing CO2 emissions, aligning with the goal of achieving net-zero 
emissions by 2050. This task requires a holistic approach that encompasses retrofitting outdated systems, enhancing thermal insulation, 
and integrating renewable energy sources. Simulating different indoor environmental conditions and technological systems within 
Digital Twin (DT) before interventions is crucial for optimizing energy efficiency. Simulations can support the proper installation of 
heating and cooling devices and facilitate the deployment of advanced technologies, including smart Heating, Ventilation, and Air 
Conditioning (HVAC) systems, energy-efficient lighting, and automated energy management solutions. The use of Artificial 
Intelligence (AI) in simulations allows for the precise sizing of HVAC systems, including heat pumps and related devices, by accurately 
modelling demand profiles and optimizing sensor placement based on the geometries of DTs.  
This study, conducted as part of the Horizon Europe InCUBE project1, explores a real-world use-case at the Centro Servizi Culturali 
Santa Chiara in Trento, Italy. It introduces an innovative approach that integrates 3D surveying, computational fluid dynamics (CFD), 
and digital twin (DT) geometries to enhance the analysis of indoor heat distribution. The proposed data-driven pipeline optimizes 
sensor placement within indoor spaces, ensuring precise system design, improving performance and energy efficiency, and minimizing 
energy waste while preventing the oversizing of technological systems. 
 
 

1. Introduction 

Digital Twins are revolutionizing the landscape of civil 
engineering (Hu et al., 2023), manufacturing (Liu et al., 2024a), 
energy sector (Arowoiya et al., 2024) and maintenance 
processes (Gosavi et al., 2024). For the built environment, and 
in particular for buildings, a digital replica serves as a powerful 
tool for both simulating various scenarios and monitoring real-
time conditions. These replicas typically consist of two key 
components: (i) a geometric digital twin (gDT), which 
represents the building's physical structure and spatial 
characteristics (Pan et al., 2024), and (ii) a dynamic interface 
linked to real-time data (Liu et al., 2024b), enabling continuous 
monitoring and actionable insights. At the same time, graph-
based structures (Bassier et al., 2024), with nodes organized 
into hierarchical frameworks, are increasingly important for 
integrating information from diverse domains. These structures 
efficiently integrate geometric data with domain-specific 
information, offering advantages in data storage, ease of 
updating and flexibility in filtering or querying information.  
An efficient and holistic Scan-to-BIM (Building Information 
modelling) method for generating DTs tailored to energy 
applications and optimizing Building Energy Management 
Systems (BEMS) remains largely absent.  
 
1.1 Paper objectives 

The proposed workflow enhances sensor placement by 
leveraging Computational Fluid Dynamics (CFD) simulations 
to analyze indoor heat diffusion and identify thermal stagnation 
zones, where temperature remains stable with minimal 
fluctuations. This facilitates the resizing of HVAC systems, 
reducing their overall size while ensuring precise climate 
control and enhancing energy efficiency assessments. By 
simulating heat flow across various scenarios, the approach 

 
1 https://incubeproject.eu/  

determines optimal sensor placement, ensuring accurate system 
setpoints, improving comfort, and maximizing energy savings. 
The pipeline comprises two main parts: (i) geometric 
reconstruction and (ii) energy-related simulation for optimal 
sensor positioning. The first part involves: 
 Reconstruction of building’s structural elements (gDT) using a 

Deep Learning (DL) method (Roman et al., 2024b). 
 Development of a graph-based framework integrating 

geometric and energy data nodes for creating a comprehensive 
dataset (Bassier et al., 2024). 

 Definition of a Topologic BIM (TBIM) model as a node-based 
framework within the main graph architecture. 

The second part focuses on the following objectives: 
 Computational Fluid Dynamics (CFD) simulations to assess 

indoor heat diffusion and environmental dynamics. 
 Heat distribution analysis to identify stable temperature zones 

across scenarios. 
The final step refines sensor placement by targeting thermally 
stable zones with minimal heat fluctuations through simulation 
image analysis. This enhances data accuracy, optimizes system 
performance, and boosts energy efficiency. 
 

2. Related works 

DTs combine geometric elements with real-time and informative 
data. While the geometric model and some semantic details can 
be extracted from surveyed data, additional information often 
requires manual integration due to the diverse data needed for 
structural, management, and energy efficiency analyses. Graph-
based structures are becoming increasingly important for 
bridging the gap between these components. Several studies 
(Aish et al., 2018; Jabi et al., 2021) have explored the integration 
of these data structures with the BIM environment, leveraging the 
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hierarchical relationships between entities commonly found in 
IFC files.  
In the field of energy efficiency, applications have focused on 
linking European regulations2 through Information Loading 
Dictionaries (ILDs), with various methodologies being defined 
and practically applied (Olasolo-Alonso et al., 2023).  
Recent studies integrate Virtual Reality (VR) with BIM to 
visualize energy analysis and Technical Building Equipment 
(TBE) (Blut et al., 2024). An energy building graph structure 
has been proposed by (Yang et al., 2024), extended to the urban 
scale (Ma et al., 2024), but the connection between building 
geometry and energy systems, devices, and components 
remains incomplete and requires further integration.  
Some interesting applications (Ramón-Constantí et al., 2024) 
focus on matching thermal images with point clouds to conduct 
energy analyses and assess the results. A method for thermal 
texture mapping ensuring geometric and radiometric 
consistency by registering thermal images to 3D point clouds 
for accurate temperature measurements has been proposed by 
(Lin et al., 2019). Meanwhile, applications utilizing DL 
networks for physics-informed simulations are being 
increasingly applied (Wandel et al., 2020). 
 

3. General methodology  

The presented workflow (Figure 1) outlines a data-driven 
approach for optimizing sensor placement in indoor 
environments. As discussed in Section 1.1, the process 
systematically integrates geometric data (steps 1A to 2B) and 
metadata (point 2C, 2D) with energy analysis and CFD 
simulations (steps 3 to 5) to refine sensor positioning (step 6). 
 

 
Figure 1. Scheme of the proposed workflow. 

 
The complete workflow, starting from the classified point cloud 
(step 1A) consists of: 
 Geometric Digital Twin creation (2A): the geometric Digital 

Twin (gDT) model is derived from classified point cloud data 
(Section 3.2). It represents a geometric structure of both 
primary and secondary building elements. 

 Topologic BIM (TBIM) model (2B): TBIM is developed to 
store previously computed geometry, volumetric and spatial 

 
2 https://eur-lex.europa.eu/eli/dir/2018/844/oj 

information (Section 3.3). The TBIM is a volumetric model 
ready to be enriched with metadata and ILDs.  

 Metadata collection (2C, 2D): energy-related metadata, device 
characteristics, volumetric data, and building usage patterns are 
collected and stored in the primary graph database to facilitate 
enhanced analyses and data-driven insights (Section 3.4). 

 Energy model and simulation (3): thermal analysis and CDF 
simulations are performed using FEniCS platform (Logg et al., 
2011) to predict temperature distributions and identify key 
areas of heat variation (Sections 3.4 and 3.5).  

 Model calibration (3A): previous analyses are calibrated based 
on the data coming from Internet of Things (IoT) devices. 

 Wall masks extraction (4): from the classified point cloud, 
ortho images of the walls are generated and masks are created 
to identify available positions for device placement (Section 
3.6). These wall masks are then matched with heat distribution 
data from simulations to exclude unsuitable areas, such as 
openings and clutter, ensuring optimal sensor positioning.  

 Sensor placement optimization (5, 6): from results of 
simulations and masks, temperature sensors are strategically 
placed key zones with stable thermal conditions to optimize 
monitoring and enhance energy efficiency (Section 3.7).  

 
3.1 Dataset used 

The study utilizes the Santa Chiara building dataset (Trento, 
Italy), gathered for the InCUBE project, focusing on a selected 
group of first-floor offices in the central wing (Figure 2). Point 
cloud data and panoramic images are accessible via the GitHub 
repository3 (Roman et al., 2023).  
The analyzed area primarily consists of office spaces, oriented 
approximately along the North-South axis. 
For ex-ante monitoring, several IoT devices from the InCUBE 
project partner Tera Srl were installed on the first floor. These 
include BEETA Box IoT edge computing gateways, eleven Z-
Wave multiparameter sensors (measuring temperature and 
humidity), thirty-five smart switches, and a CO₂ sensor.  
 

Figure 2. View of the Santa Chiara buildings (a and b). The 
first floor of the central wing used in the experiments (c). 
 

The area of interest (Figure 3), denominated Zone A, consists of 
two distinct rooms. Geometric details about the indoor spaces are 
shown in Table 2.  
The devices have provided valuable data, which has been 
instrumental in calibrating the analysis of heat transfer. The 

3 https://github.com/3DOM-FBK/InCUBE 
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rooms have been divided into two main areas, with one or more 
sensors installed in each, as shown in Figure 3.  
In particular, sensor_01 was installed in the Zone A1, while 
sensor 02 in the Zone A2. For all analyses in this study, the 
reported results for Zone_A represent the mean values averaged 
across the two rooms, as stored and transmitted by the IoT 
device. 
Multiple sensors collect data on temperature (Figure 4), 
humidity (Figure 5), and CO2 levels.  
The data, recorded at one-minute intervals from February 27 to 
June 6, 2024, allows for both monthly and daily analyses. 
 

 
Figure 3. The placement of sensors in Zone A1 and Zone A2 
(top). Temperature and humidity sensors installed (below). 
 

 
Figure 4. Temperature values in Zone A. 

 

 
Figure 5. Humidity values in Zone A. 

 
3.2 Geometric Digital Twin (gDT) 

Following the workflow outlined in (Roman et al., 2024b), the 
point cloud was classified using Point Transformer version 3 
(Wu et al., 2024), while Pointcept (Zhao et al., 2021) was 
utilized for instance segmentation. For window detection, 
GroundingDINO (Liu et al., 2023) was leveraged, achieving a 
mean Intersection over Union (mIoU) of 0.58. It is important to 
note that the dataset does not include any RGB data, limiting 
the detection process. 

Based on the workflow presented in (Roman et al., 2024a; Roman 
et al., 2024b), structural building elements are reconstructed from 
the point cloud data. The focus is on primary components such 
as walls, floors, and ceilings, as well as secondary elements like 
windows and doors.  
The enhanced graph not only maps structural elements but also 
provides detailed geometric metadata associated with these 
components. The class and object_id store geometric information 
and spatial definitions, along with classified points associated 
with each object_id. Structural elements and their metadata are 
finally stored in a JSON-based RDF graph file (Bassier et al., 
2024), which organizes key information such as geometric 
properties, object_ids, locations, and orientations.  
 
3.3 Topologic BIM model (TBIM) 

The proposed workflow enhances the traditional graph data struc-
ture related to the gDT by incorporating a Topologic Building 
Information Model (TBIM) (Jabi et al., 2021), which integrates 
geometric data with volumetric information, building location, 
room usage (aligned with European standards). 
As noted earlier, the topological map (Roman et al., 2024a) 
serves as the foundation for the generation of 2D indoor spaces, 
computed at various z-levels. The edges defined by the map are 
then used as information for the TBIM, which considers vertices 
and edges of walls, floors, and ceilings reconstructed in the gDT 
(Section 3.2) as inputs to define the 3D volume (Figure 6). 
The key steps in the workflow are: (i) extracting building 
elements from the gDT to create the topological map, (ii) 
defining the main indoor space volumes, (iii) generating the 
meshes for the analyses, and (iv) linking metadata to the 
computed volumes. This approach generates an additional node 
in the graph, based on Load Dictionaries (ILDs), to assign 
metadata relevant for simulations and analyses, including 
orientations and volumes.  
The final output is a comprehensive node-structured graph that 
integrates both geometric and spatial data with energy-related 
metadata, represented using a vocabulary-based information 
model.  

 
Figure 6. The TBIM model where metadata are stored. 

 
3.4 Model and boundary conditions for simulations  

Analyzing sensor placement in thermally stable zones with 
minimal temperature fluctuations ensures accurate data 
collection, enabling precise climate control, enhancing system 
design, preventing oversizing, and improving energy efficiency 
without compromising performance. 
 
3.4.1 Model for simulation 
The workflow generates .obj meshes of building volumes (Sec-
tion 3.3), which define the surface model for energy simulations.  
These meshes generated with a semi-automatic process have ir-
regular shapes that differ from manually produced meshes.  
As a result, they are not fully compatible with OpenFOAM 
(OpenCFD Ltd) software, which is specifically designed for CFD 
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applications. To address this challenge, we decided to leverage 
the FEniCS (Logg et al., 2011) library for simulations, adapting 
it to suit our CFD needs (Section 3.5). 
The primary operation involves converting the geometric model 
generated through the geometric Digital Twin workflow to 
make it compatible with the FEniCS library.  
By using the refine(mesh) command, the mesh density can be 
increased, allowing for deeper insights in the analysis. 
In this process, U-values (thermal transmittance) derived from 
ILDs are assigned to each mesh according to its classification. 
U-values are assigned to each building element based on the 
Energy Performance of Buildings Directive (EPBD) and may 
slightly differ from those reported in (Ziozas et al., 2024) due 
to specific material property assumptions.  
Additionally, heating system data follow the guidelines of 
(Maduta et al. 2023) (Table 1) and comply with European 
regulations.   
This approach allows us to determine the U-value, area, 
position, orientation, dimensions, and class type of each 
element with precision. Heat sources, in this case, radiators, 
have been punctually inserted in the model in the real position. 
 

Element U computation U-value 
W/m²K 

External 
walls 𝑈ௐ = ൭෍

1

λ௜,ௐ ⋅ 𝑑௜,ௐ

௡

௜ୀଵ

൱

ିଵ

 

 

1.25 

Windows 
𝑈ௐwin

= ൭෍
1

λ௜,ௐwin
⋅ 𝑑௜,ௐwin

௣

௜ୀଵ

൱

ିଵ

 
3.25 

 

Floors 
𝑈ி = ൭෍

1

λ௜,ி ⋅ 𝑑௜,ி

௠

௜ୀଵ

൱

ିଵ

 
0.80 

Ceilings 
𝑈஼ = ൭෍

1

λ௜,஼ ⋅ 𝑑௜,஼

௠

௜ୀଵ

൱

ିଵ

 
0.90 

Doors 
𝑈஽ = ൭෍

1

λ௜,஽ ⋅ 𝑑௜,஽

௠

௜ୀଵ

൱

ିଵ

 
2.50 

 
Table 1. Building physics features and U-values for 
simulations, where λ௜,௝ represents the thermal conductivity and 
𝑑௜,௝ the thickness of the i-th layer. 
 
Using CFD and thermal modelling, this study analyzes heat 
transfer dynamics within the TBIM environment, considering 
convection, conduction and radiation to predict temperature 
distributions in real-world environments.  
Simulations have been conducted on Zone A, with data from 
devices serving as ground truth for model calibration, forming 
the basis for heat transfer and diffusion simulations.  
 
3.4.2 Boundary conditions 
Climate data from the Climate.OneBuilding database is 
integrated into the model, with geographic coordinates 
extracted via the Geopy library4 to calculate annual temperature 
extremes. The system processes hourly weather data to compute 
daily average temperatures for each month. The pre-processing 
pipeline includes: 
 Data cleaning: removal of invalid entries such as missing 

or non-numeric values. 
 Outlier filtering: Exclusion of extreme values to prevent 

anomalies in thermal simulations. 
The cleaned dataset is then grouped by day and hour for each 
month. The formula for calculating the average temperature at 
each hour ℎ of a day d is as follows (Equation 1): 
 

𝑇avg(𝑑, ℎ) =
1

𝑁
෍ 𝑇௜(𝑑, ℎ)

ே

௜ୀଵ

 
 
(Eq. 1) 

 
4 https://geopy.readthedocs.io/en/stable/ 

 
Where: 
 𝑇avg(𝑑, ℎ)is the average temperature for day d and hour h. 
 N is the total number of records for that specific day and hour. 
 ∑ 𝑇௜(𝑑, ℎ)ே

௜ୀଵ  is the sum of all temperature records for hour h 
on day d. 

 
3.5 Computational Fluid Dynamics 

The in-house code uses finite element-based computational fluid 
dynamics (CFD) in FEniCS platform to simulate heat transfer 
and airflow in an enclosed space under real-world environmental 
conditions.  As illustrated in Figure 3, Zone A is divided into two 
sub-areas: Zone A1 and Zone A2. Simulations were performed in 
both zones, with results averaged to ensure consistency with real-
time data. The specific characteristics of these areas are detailed 
in Table 2. 
 

Zone Volume 
[m3] 

Radiators Windows 

Zone A1 208.65 3 4 
Zone A2 56.04 1 1 

Table 2. Characteristics of the two areas used in the simulation. 
 
The geometric meshes of the converted model for simulations are 
enriched with U-values and IDLs information properties. The 
simulation integrates hourly outdoor temperatures with daily 
averages and incorporates predefined schedules for occupancy 
(Equation 2) and radiator heating. 
 

𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦_𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒(ℎ) =

⎩
⎪
⎨

⎪
⎧

0, 𝑖𝑓 ℎ ∈ [19,24) ∪ [0,8) 
1, 𝑖𝑓 ℎ ∈ [8,10)

2, 𝑖𝑓 ℎ ∈ [10,12)
0, 𝑖𝑓 ℎ ∈ [12,14)

2, 𝑖𝑓 ℎ ∈ [14,19)
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 
 
(Eq. 2) 

  
The Navier-Stokes equations for modelling heat transfer within 
the room are numerically solved using the finite element method 
(FEM). These equations for incompressible fluid flow are 
calculated over a structured 3D mesh volume representing the 
room (Section 3.3).  
In this case, using FEniCS library, equations are transformed into 
weak forms for efficient numerical approximation. This involves 
multiplying the governing equations by a test function and 
integrating over the computational domain (Ω).  
Below, the weak forms used for momentum conservation 
(Navier-Stokes, Equation 3), continuity (incompressibility, 
Equation 4), and heat transfer (Equation 5) are given (Stokes, 
1851):  
 

𝜕𝒖

𝜕𝑡
+ (𝒖 ⋅ ∇)𝒖 − 𝜈∇ଶ𝒖 + ∇𝑝 = 𝑭 (Eq. 3) 

න ൬
𝜕𝒖

𝜕𝑡
+ (𝒖 ⋅ ∇)𝒖 − 𝜈∇ଶ𝒖 + ∇𝑝 − 𝑭൰

ஐ

⋅ 𝒗 𝑑Ω = 0 (Eq. 4) 

𝜕𝑇

𝜕𝑡
+ 𝒖 ⋅ ∇𝑇 − 𝛼∇ଶ𝑇 = 𝑆 (Eq. 5) 

 
Where: 
 𝒖 is the velocity vector field; 
 𝑡 is time [s, min, h]; 

 డ𝒖

డ௧
 transient term, that is the fluid acceleration; 

 (𝒖 ⋅ ∇)𝒖 is the convective term, the fluid inertia; 
 𝜈∇ଶ𝒖 is the diffusion term, so the viscous effect; 
 ∇𝑝 is the gradient of pressure;  
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 𝑭, the external forces, when present. 
 

This formulation ensures a physically consistent simulation of 
heat transfer and fluid dynamics within the room of Zone A, 
allowing for accurate thermal and flow behaviour predictions. 
The space is discretized into volumetric elements of vs = 0.25m 
×0.25m ×0.25 m to enhance accuracy and stability.  
Indoor temperature dynamics are influenced by thermal 
boundary conditions and occupant-generated heat (80 
W/person), which is incorporated into the model and varies 
throughout the day.  
By integrating thermal boundary conditions and external 
climate data, this simulation provides a detailed representation 
of indoor temperature distribution and energy efficiency.  
 
3.6 Wall masks extraction 

Wall masks to identify available areas for sensor installation are 
generated starting from 3D classified information then 
projected onto 2D planes (Figure 7 – left). We start by isolating 
the wall class from the classified point data and the floors to 
delimit walls dimension.  
Once walls and floors are separated, we utilize the graph that 
connects the classified point cloud and geometries as a 
reference.  
In particular, using the wall structure as a reference, we extract 
its starting 𝑝start = (𝑥start, 𝑦start, 𝑧start) and ending point 𝑝end =
(𝑥end, 𝑦end, 𝑧end) . With these points, we compute the main axis 
of the wall (Equation 6) in the xy plane, and we determine its 
direction, as described in (Equation 7).  
 

𝒗௪௟ = (𝑥end − 𝑥start, 𝑦end − 𝑦start, 𝑧end − 𝑧start) (Eq. 6) 
 

𝑣mi =
𝑣wl

|𝑣wl|
 

 

(Eq. 7) 
 

 
Where|𝒗wl| = ඥ(𝑥end − 𝑥start)

ଶ + (𝑦end − 𝑦start)
ଶ + (𝑧end − 𝑧start)

ଶ . 
 
Then, we compute the offset axis, which is positioned 1 meter 
away from the main axis, in the middle area of the wall, and we 
set the z-coordinate to the mean height of the wall.  
Finally, we can automatically fix the camera position for each 
wall (Equation 8): 
 

𝑃camera = (𝑥mean + 1, 𝑦mean + 1, 𝑧mean) (Eq. 8) 
 
Where: 
 𝑥mean =

௫startା௫end

ଶ
 , 

 𝑦mean =
௬startା௬end

ଶ
 , 

 𝑧mean =
௭startା௭end

ଶ
 . 

 
Once these computations are completed, we generate ortho 
images of the classified point cloud (Figure 7).  
After obtaining the ortho images of the indoor walls, we apply 
the Canny edge detection algorithm (Canny, 1986) to identify 
the edges within these images. To refine the extracted masks, 
we finally apply the DBSCAN (Ester et al., 1996) algorithm to 
create masks that highlight areas of the image suitable for 
sensor installation. In particular, Figure 7 illustrates sensor 
placement suitability: coloured pixels on the left and white 
pixels on the right indicate available areas, while white pixels 
on the left and black pixels on the right represent areas not 
suitable for sensor installation. 
This multi-step process effectively identifies the most suitable 
regions of the point cloud for sensor placement, considering the 
geometric properties of the walls, indoor clutter, and spatial 
relationships within the environment. 

 
4. Results and simulations 

This section presents the simulation results for Zone A indoor 
spaces, incorporating key boundary conditions such as outdoor 
temperatures, occupancy levels, radiator parameters, and real-
time temperature data from IoT devices. The analysis focuses on 
the TBIM model, derived from the gDT, with an emphasis on 
energy simulations and CFD analysis. 
 

 

 

 
Figure 7. Wall masks indicating available areas (colored on 
the left, white on the right) or unavailable areas (white on the 
left, black on the right) for sensor placement. 

 
4.1 The model for the simulations 

The gDT model reconstructs the building's structural elements 
using meshes. In the FEniCS library, a mesh represents the 
computational domain where finite element methods (FEM) are 
applied. It consists of discrete elements, commonly tetrahedra in 
3D, that partition the domain for numerical analysis (Figure 8). 
As outlined in Section 3.4.1, and reported in Figure 1, the mesh 
preparation workflow includes importing the .obj file into 
Blender (v. 4.3), exporting it as .stl for compatibility with 
meshing tools, and converting the .stl file to .xdmf format in 
FEniCS for simulations. 
 

Figure 8. Indoor volume with discretized volumes. 
 
This structured approach ensures that the computational domain 
is properly discretized and optimized for FEM-based heat 
transfer. Figure 8 illustrates the discretized volume used for the 
analysis, generated with UnitCubeMesh(vs, vs, vs), where vs 
represents the dimension of the discretized volume. For 
visualization purposes, vs is set to 0.50 m, while for simulation, 
a finer resolution of vs = 0.25 m is used. 
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4.2 Model calibration 

The calibration process begins with the collection of thermal 
data from IoT sensors placed throughout the building, capturing 
temperature readings every minute. This data is combined with 
outdoor temperature values from the .epw file, which provides 
essential external climate information. By using this combined 
dataset, multiple CFD simulations are performed to replicate 
the building’s thermal behavior, focusing particularly on the 
performance of the radiators. The main parameter assessed is 
the radiator efficiency (η), which reflects how effectively the 
radiators heat the space in relation to their energy consumption. 
The simulation results are compared to the real-world data from 
the IoT devices, allowing for iterative adjustments of the model.  
Simulations indicate that indoor temperatures tend to be slightly 
higher than the recorded values, likely caused by internal heat 
buildup, material thermal variations, or occupancy patterns. 
Furthermore, the evening temperature drop suggests the model 
may slightly underestimate heat loss. 
Figure 9 illustrates temperature variations for the Zone A2, the 
smaller one, for a day in early March, where the temperatures 
are more evenly distributed with minimal fluctuations 
throughout the day. This fine-tuning process is crucial to ensure 
that the CFD model accurately represents the building's heating 
dynamics, leading to more reliable predictions of indoor 
thermal conditions. 
 

 
Figure 9. Comparison between real-time data (blue graph) 
and simulated data (orange graph). 

 
4.3 Results for CFD simulations  

For a comprehensive analysis of indoor spaces, simulations 
were conducted across the entire Zone A.  
These simulations were performed for specific days within the 
available monthly data, as well as on a monthly basis. This 
approach enables model calibration using both daily 
temperature data and monthly ground truth data.  
The in-house code simulations were conducted on a system 
equipped with a NVIDIA® GeForce RTX™ 4050 GPU with 
6GB GDDR6 memory, ensuring high computational 
performance and efficiency. Simulations took around 10 hours 
to be computed.  
The mean error calculated between the real-time temperature 
data and the simulated one is (Equation 9): 
 

𝐸ത =
1

𝑛
෍ห𝑡IoT,௜ − 𝑡simul,௜ห

௡

௜ୀଵ

 
 
(Eq. 9) 

 
Where 𝑡IoT,௜ is the temperature recorded by IoT device at time i, 
𝑡simul,௜ is the temperature simulated at time i, n is the number of 
data points (e. g., n = 1440 for a daily simulation). This value is 
𝐸ത = 0.644 °C for daily and 𝐸ത  =  1.67 °C  for monthly 
simulation. 
Figure 10 shows the average distribution of heat during the day 
as a point cloud distribution of temperature for better 

visualization. Furthermore, as explained before, the internal 
volume has been discretized in smaller volumes (vs = 0.25m) 
where it is possible to evaluate the changing temperature during 
the day in different parts of the indoor environment. This 
structure enables the visualization of the average daily 
temperature distribution near indoor walls.  

 

 
Figure 10. CFD simulation of heat distribution in Zone A.  

 
Figure 11 shows two different timesteps of two of the discretized 
volumes, at t1 = 720 minutes and t2 = 1200 minutes, located near 
walls close to the windows.  
Figures 11a and 11b illustrate the positioning of these sample 
volumes (defined as Volume_01, Volume_02) within Zone A, 
while Figures 11c to 11f show the heat distribution at two 
different time points, t₁ and t₂. 
 

 
Figure 11. Heat distribution in two sampled volumes. 

 
Following Section 3.6, orthogonal wall images, points, and 
temperature values are extracted, with each point defined by 
coordinates and the simulated temperature (ptemp).  
Using the same workflow, a 1-meter influence area around each 
wall is established, divided into four discretized volumes.  
The main plane of the wall (Equation 10) is computed based on 
its normal vector, derived from (Equation 11), ensuring accurate 
spatial alignment of the extracted temperature data. 
 

𝑛௫(𝑥 −  𝑥௦௧௔௥௧)  +  𝑛௬(𝑦 −  𝑦௦௧௔௥௧)  +  𝑛௭(𝑧 −  𝑧௦௧௔௥௧)  =  0 
 

(Eq. 10) 
𝑛w = ൫𝑛௫, 𝑛௬, 𝑛௭൯ 

 

(Eq. 11) 

Where (𝑥௦௧௔௥௧ ,  𝑦௦௧௔௥௧ ,  𝑧௦௧௔௥௧) is a specific point on the plane and 
(𝑥, 𝑦, 𝑧) is any arbitrary point on the plane, while 𝑛w = ൫𝑛௫ , 𝑛௬, 𝑛௭൯ 

represents the components of the normal vector. 
Then, we collect the points close to the wall plane if the distance 
of a point is less than 1 m (𝑑wall  <  1,00 𝑚), where 𝑑wall is defined 
in Equation 12.  Finally, we project these points into the main 
plane, maintaining color visualization. 
This method ensures the acquisition of orthoimages of walls, 
which can then be compared to wall masks. 
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𝑑wall =
ห𝑛௫൫𝑥௣ − 𝑥start൯ + 𝑛௬൫𝑦௣ − 𝑦start൯ + 𝑛௭൫𝑧௣ − 𝑧start൯ห

ඥ𝑛௫
ଶ + 𝑛௬

ଶ + 𝑛௭
ଶ

 
(Eq. 12) 

 
By analysing these zones, it is possible to identify areas where 
the heat gradient is lower, helping to determine the optimal 
placement for sensors. 
 
4.4 Sensor placement 

The final step serves to detect thermal stagnation regions in 
images, where temperature remains stable across various 
scenarios. These zones are ideal for sensor placement, ensuring 
consistent and accurate thermal monitoring with minimal 
influence from external factors.  
The output masks from Section 3.6 highlight available pixels 
indicating suitable sensor locations (Figure 7) and serve as the 
foundation for defining areas where sensors can be placed. 
Simulations conducted on daily-based data provide (i) average 
temperatures for each day, calculated from hourly data, and (ii) 
average temperatures for the month, derived from daily.  
Figure 12 illustrates the pipeline used to integrate these two 
outputs, identifying the most suitable areas for sensor 
placement. Specifically, the CFD simulation utilizes these 
temperature values to generate an hourly heat distribution, 
which is then converted into a point cloud representing the heat 
distribution (Figure 12a). The process then follows these steps: 
1.  Point collection near the walls: following the procedure 

outlined in Section 4.3, we collect points corresponding to 
each wall within a distance of 𝑑wall < 1 𝑚  (Figure 12b).   

2.  Projection and orthoimage plotting: these points are 
projected and orthoimages of the walls are created, displaying 
the points and their associated temperatures (ptemp) (Figures 
12c, 12d).  

3.  Time-based heat distribution visualization: by plotting 
these for each hour, starting from time t = 0 with initial 
conditions and continuing with ti and then t(i+1), we visualize 
the heat distribution near each wall (Figure 12e). 

4.  Determining sensor placement: by combining the CFD 
temperature simulations, which highlight areas with stagnant 
heat, and the masks indicating sensor placement availability, 
we determine the most suitable sensor locations (Figure 12f). 

This approach enables the strategic placement of sensors in 
thermal stagnation zones, improving thermal comfort 
assessment and optimizing overall climate control efficiency. 
 

5. Conclusions 

The proposed workflow optimizes sensor placement through a 
semi-automated pipeline, converting point cloud data into a 3D 
model suitable for CFD simulations.  
These simulations analyze indoor heat diffusion, identifying 
stable thermal zones with minimal heat fluctuation to optimize 
heating and cooling system sizing for improved efficiency.  
By adapting to real-world conditions, the proposed approach 
enhances BEMS by refining thermal regulation, reducing 

energy consumption, and enabling precise real-time control to 
enhance overall building performance. 
This pipeline revealed challenges in both workflow components, 
i.e. (i) the geometric modeling and (ii) the simulation. 
Specifically, the automatically derived TBIM model introduces 
mesh complexities that hinder compatibility with industry-
specific CFD software like OpenFOAM. To ensure accurate 
shape interpretation, future work will refine parameters for 
improved integration and accuracy. 
On the other hand, simulations tend to slightly overestimate 
indoor temperatures compared to measured values, likely due to 
internal heat accumulation, variations in thermal properties, or 
occupancy patterns. Additionally, the observed temperature drop 
at the end of the day suggests that the simulated building 
envelope may underestimate heat loss dynamics. 
Conversely, the FEniCS library has demonstrated high flexibility 
and efficiency in managing both geometries and heat transfer 
analysis, making it a valuable tool for further improvements. 
Future work will focus on evaluating the effects of gDT quality 
and topological accuracy on sensor placement uncertainty, 
aiming to quantify how variations in geometric and topological 
representations influence the reliability and precision of sensor 
positioning within the built environment. Additionally, as more 
data becomes available, further improvements will be made to 
enhance simulation precision, better capturing real-world thermal 
dynamics and refining model validation. 
 
Acknowledgements 
 
This research is partially supported by the EU InCUBE project 
(https://incubeproject.eu), funded by the European Union under 
Grant Agreement No. 101069610. We extend our gratitude to 
Tera Srl for providing IoT devices and related data, and to 
Comune di Trento for its collaboration in installing these devices. 
We also thank Centro Servizi Culturali Santa Chiara for granting 
access to their spaces for this study. Finally, we acknowledge the 
support of Edilvi S.p.A. and the University of Trento for their 
contribution to the co-financed program funded by the European 
Union - Next Generation EU, Mission 4 Component 2 
CUPE66E22000050008. 

 
References 

Aish, R., Jabi, W., Lannon, S., Wardhana, N.M., 
Chatzivasileiadi, A., 2018. Topologic: Tools to explore 
architectural topology. AAG, 316-341. 
 
Arowoiya, V. A., Moehler, R. C., Fang, Y., 2024. Digital twin 
technology for thermal comfort and energy efficiency in 
buildings: A state-of-the-art and future directions. Energy and 
Built Environment, 5(5), 641-656. 
 
Bassier, M., Vermandere, J., De Geyter, S., De Winter, H., 2024. 
GEOMAPI: Processing close-range sensing data of construction 
scenes with semantic web technologies. Automation in 
construction, 164, 105454. 

 

 
 

Figure 12. Pipeline to extract the most suitable position for sensors placement. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-G-2025 
ISPRS Geospatial Week 2025 “Photogrammetry & Remote Sensing for a Better Tomorrow…”, 6–11 April 2025, Dubai, UAE

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-1291-2025 | © Author(s) 2025. CC BY 4.0 License.

 
1297



 
Blut, C., Becker, R., Kinnen, T., Schluetter, D., Emunds, C., 
Frisch, J., Heidermann, D., Wenthe, M., Rettig, T., Baranski, 
M., van Treeck, C., Blankenbach, J., 2024. Optimizing Building 
Energy Systems through BIM-enabled georeferenced Digital 
Twins. ISPRS Archives, XLVIII-4/W11-2024, 1–2024. 
 
Canny, J., 1986. A computational approach to edge detection. 
IEEE TPAMI-8(6), pp. 679-698. 
 
Ester, M., Kriegel, H.-P., Sander, J., Xu, X., 1996. A density-
based algorithm for discovering clusters in large spatial 
databases with noise. Proc. of the 2nd Intern. Conference on 
Knowledge Discovery and Data Mining (KDD), pp. 226-231. 
 
Gosavi, A., Le, V.K., 2024. Maintenance optimization in a 
digital twin for Industry 4.0. Ann. Oper. Res. 340, 245–269. 
 
Hu, K., Han, D., Qin, G., Zhou, Y., Chen, L., Ying, C., Guo, T., 
Liu, Y., 2023. Semi-automated Generation of Geometric 
Digital Twin for Bridge Based on Terrestrial Laser Scanning 
Data. Advances in Civil Engineering, 1–13. 
 
Jabi, W., Chatzivasileiadi, A., 2021. Topologic: Exploring 
spatial reasoning through geometry, topology, and semantics. 
Formal methods in architecture, 277-285.  
 
Lin, D., Jarzabek-Rychard, M., Tong, X., Maas, H.-G., 2019. 
Fusion of thermal imagery with point clouds for building façade 
thermal attribute mapping. ISPRS Journal of Photogrammetry 
and Remote Sensing, 151, 162-175.  
 
Liu, S., Zeng, Z., Ren, T., Li, F., Zhang, H., Yang, J., Li, C., 
Yang, J., Su, H., Zhu, J., Zhang, L., 2023. Grounding dino: 
Marrying dino with grounded pre-training for open-set object 
detection. arXiv preprint arXiv:2303.05499.  
 
Liu, S., Zheng, P., Bao, J., 2024a. Digital Twin-based 
manufacturing system: a survey based on a novel reference 
model. J. Intell. Manuf. 35, 2517–2546. 
 
Liu, Z., Lang, Z.-Q., Gui, Y., Zhu, Y.-P., & Laalej, H., 2024b. 
Digital twin-based anomaly detection for real-time tool 
condition monitoring in machining. Journal of Manufacturing 
Systems, 75, 163-173. 
 
Logg, A., Wells, G., Mardal, K.-A., 2011. Automated Solution 
of Differential Equations by the Finite Element Method: The 
FEniCS Book. Lecture Notes in Computational Science and 
Engineering, 84. Springer, Berlin, Heidelberg. 
 
Ma, R., Li, Q., Zhang, B., Huang, H., Yang, C., 2024. An 
ontology-driven method for urban building energy modelling. 
Sustainable Cities and Society. 
 
Maduta, C., D'Agostino, D., Tsemekidi-Tzeiranaki, S., 
Castellazzi, L., Melica, G., Bertoldi, P., 2023: Towards climate 
neutrality within the European Union: Assessment of the 
Energy Performance of Buildings Directive implementation in 
Member States. Energy and Buildings, 301, 113716. 
 
Olasolo-Alonso, P., López-Ochoa, L. M., Las-Heras-Casas, J., 
López-González, L. M., 2023. Energy performance of buildings 
directive implementation in Southern European countries: A 
review. Energy and Buildings, 281, 112751. 
 

OpenCFD Ltd., OpenFOAM: The Open Source CFD Toolbox, 
Available at: https://www.openfoam.org.  
 
Pan, Y., Wang, M., Lu, L., Wei, R., Cavazzi, S., Peck, M., & 
Brilakis, I., 2024. Scan-to-graph: Automatic generation and 
representation of highway geometric digital twins from point 
cloud data. Automation in Construction, 166, 105654. 
 
Ramón-Constantí, A., Adán-Oliver, A., Castilla-Pascual, F.J., 
Pérez-Andreu, V., 2024. An experimental methodology for the 
calibration of indoor building environment models using thermal 
point clouds and CFD simulation. Advances in Building Energy 
Research, 18(3), 261–294.  
 
Roman, O., Farella, E. M., Rigon, S., Remondino, F., Ricciuti, 
S., Viesi, D., 2023. From 3D surveying data to BIM to BEM: the 
InCUBE dataset. ISPRS Arch. Photogramm., Remote Sens. and 
Spatial Inf. Sci., XLVIII-1/W3-2023, 175–182. 
 
Roman, O., Mazzacca, G., Farella, E. M., Remondino, F., 
Bassier, M., Agugiaro, G., 2024a. Towards Automated BIM and 
BEM Model generation using a B-Rep-based Method with 
Topological Map. ISPRS Annals of the Photogramm., Remote 
Sens. and Spatial Inf. Sci., X-4-2024, 287–294. 
 
Roman, O., Bassier, M., De Geyter, S., De Winter, H., Farella, E. 
M., and Remondino, F., 2024b. BIM Module for Deep Learning-
driven parametric IFC reconstruction. ISPRS Arch. Photogramm. 
Remote Sens. Spatial Inf. Sci., XLVIII-2/W8-2024, 403–410. 
 
Stokes, G.G., 1851. On the effect of the internal friction of fluids 
on the motion of pendulums. Trans. Camb. Philos. Soc., 8, 287–
305. 
 
Wandel, N., Weinmann, M., Klein, R., 2020. Fast Fluid 
Simulations in 3D with Physics-Informed Deep Learning. arXiv 
preprint arXiv:2012.11893. 
 
Wu, X., Jiang, L., Wang, P.-S., Liu, Z., Liu, X., Qiao, Y., 
Ouyang, W., He, T., Zhao, H., 2024. Point Transformer V3: 
Simpler, Faster, Stronger. arXiv preprint, arXiv:2312.10035.  
 
Yang, Z., Gaidhane, A. D., Drgoňa, J., Chandan, V., 
Halappanavar, M. M., Liu, F., Cao, Y., 2024. Physics-
constrained graph modeling for building thermal dynamics. 
Energy and AI, 16, 100346. 
 
Yue, Y., Kontogianni, T., Schindler, K., Engelmann, F., 2023. 
Connecting the Dots: Floorplan Reconstruction Using Two-
Level Queries. Proc. CVPR. 
 
Zhao, H., Jiang, L., Jia, J., Torr, P., Koltun, V., 2021. Point 
Transformer. Proc. ICCV, 16259–16268.  
 
Ziozas, N., Kitsopoulou, A., Bellos, E., Iliadis, P., Gonidaki, D., 
Angelakoglou, K., Nikolopoulos, N., Ricciuti, S. and Viesi, D., 
2024. Energy Performance Analysis of the Renovation Process 
in an Italian Cultural Heritage Building. Sustainability, 16(7), p. 
2784. 
 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-G-2025 
ISPRS Geospatial Week 2025 “Photogrammetry & Remote Sensing for a Better Tomorrow…”, 6–11 April 2025, Dubai, UAE

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-1291-2025 | © Author(s) 2025. CC BY 4.0 License.

 
1298




