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ABSTRACT: Foundation models in computer vision, such as the Segment Anything Model (SAM), have demonstrated remarkable 

zero-shot performance in image segmentation. Leveraging these models for automated building segmentation can contribute to the 

efficiency of Scan-to-BIM workflows. Automatic 3D modelling has become widely relied on point cloud data; however, the nature of 

this data hinders the direct application of the foundation models. This study explores the potential use of SAM for automatic point 

cloud segmentation, proposing a SAM-based approach for segmenting building components, such as rooms, doors, and windows. The 

proposed method employs SAM to generate masks for an image that represents projected point clouds. Point clouds are then retrieved 

for each mask, which are further classified to identify building components. Room segmentation starts with the extraction of a section 

that defines the room boundary, followed by horizontal projection of the section. In contrast, door and window segmentation starts by 

projecting planes containing wall points onto their normal vectors. The experiments have been performed using three real case studies. 

The findings demonstrate the method's effectiveness without requiring any pretraining process, highlighting that the application of the 

foundation models in point cloud segmentation is a promising direction. 

 

1. Introduction 

Scan-to-BIM is a process that converts point cloud data into 

detailed 3D models and typically comprises several stages 

including point cloud data acquisition, pre-processing, and 

processing. However, Scan-to-BIM remains a time-consuming 

and labour-intensive process, primarily relying on manual 

efforts. Advances in the acquisition system, such as laser 

scanners, have boosted interest in automated indoor modelling. 

A key challenge in automating the Scan-to-BIM workflows is 

achieving automatic and accurate point cloud segmentation. 

Automatic segmentation still faces challenges due to the massive 

raw data, the variable quality dependent on acquisition systems, 

and the occlusions that clutter indoor scans (Sun et al., 2024). The 

raw data are unstructured, presenting significant challenges for 

the direct application of advanced 2D segmentation techniques to 

3D point clouds. In recent years, 2D and 3D-based methods have 

been presented for indoor point cloud segmentation. Though 

these methods have demonstrated their effectiveness in recent 

studies, more robust and general approaches are still needed.  

 

Recent advances in Artificial Intelligence (AI) have introduced 

successful foundation models in the Large Language Models 

(LLM) such as Generative Pre-trained Transformers (GPT) 

(Radford et al., 2019) and DeepSeek (Bi et al., 2024). The 

foundation models are being extended to the field of vision such 

as the Segment Anything Model (SAM) (Kirillov et al., 2023). 

SAM was trained on extensive datasets of images and masks and 

delivers exceptional zero-shot performance without requiring 

task-specific training. This model is based on automatically 

generating masks for image segmentation and is a highly 

versatile model in fields like healthcare, robotics, augmented 

reality, autonomous systems, and construction, offering a 

promising alternative to traditional methods by reducing 

computational and data-intensive demands.  

 

This study investigates SAM's potential for segmenting indoor 

point clouds to facilitate the automatic 3D reconstruction of 

existing buildings. The study proposes a SAM-based approach to 

segment building components such as rooms, doors, and 

windows. The proposed approach aims to use SAM to create 2D 

masks of images created from rasterized point clouds, followed 

by retrieving points belonging to each mask from the rasterized 

point cloud and finally classifying these retrieved points. The 

method focuses on single-storey indoor point clouds. 

 

The rest of the paper is organized as follows. Section 2 reviews 

indoor point cloud segmentation methods and the recent use of 

SAM in the construction sector.  The proposed method is then 

detailed in Section 3 and evaluated with different case studies in 

Section 4. Finally, section 5 presents the conclusions of this 

work. 

 

2. Related Work  

2.1 Room segmentation 

Room segmentation is the process of identifying and isolating 

distinct surfaces within an indoor environment. Room 

segmentation methods are categorized into two main approaches: 

2D-based and 3D-based approaches. Each category leverages 

different assumptions and computational strategies to achieve 

room segmentation. While 2D methods typically rely on 

projecting point cloud data, 3D segmentation methods process 

the data directly in its three-dimensional space. In 3D methods, 

Frías et al. (2020) and (Túñez-Alcalde et al., 2024) developed a 

3D mathematical morphology strategy to segment rooms based 

on the study of the continuity of the empty space. Ochmann et al. 

(2016) proposed a segmentation technique that relies on prior 

knowledge of scanning positions to segment rooms. In contrast, 

2D segmentation methods simplify the problem by assuming that 

walls are vertical. These methods segment rooms by analysing 

empty spaces in 2D projections of point clouds. The transition 

back to 3D is achieved by identifying projected points that define 

each 2D room area. Macher et al. (2017) presented a projection-

based method to create a floor map. They projected a slice of 

point clouds above the doors including the ceiling. They analysed 

projected images to generate the map using a region-growing 

algorithm. Gourguechon et al. (2023) proposed a methodology 

composing image analysis processing and the trajectory data, 

along with refinement steps to produce planimetric masks for 

room segmentation. More recently, Tang et al. (2024) introduced 

a hybrid method that integrates both 2D and 3D geometric 

constraints. By leveraging the strengths of both 2D projections 

and 3D spatial analysis, the proposed method addressed 

challenges posed by complex indoor environments. 
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2.2 Door and window segmentation 

Doors and windows are building elements embedded within 

walls and normally have regular shapes. The literature has 

different techniques to segment open and closed doors and 

windows. Díaz-Vilariño et al., (2017) and   Staats et al. (2017) 

presented methods to detect open doors based on the trajectory. 

The closed doors and windows can be also detected based on 

finding parametric shapes in images as presented by (Díaz-

Vilariño et al., 2015).  They introduced an approach to detect 

closed and open doors based on images and point clouds.  In the 

realm of AI, Mehranfar et al. (2024) proposed a projection-based 

method to detect doors and windows in point clouds using the 

YOLOv8 object detection network. Points belonging to walls 

were projected to x-z and x-y planes in the proposed method. The 

YOLOv8 network was trained on image datasets from various 

buildings. 

 

2.3 SAM 

SAM generates masks for image segmentation and the process is 

controlled by six parameters. The first parameter is points_, 

which controls the number of equidistant points placed along 

each side of the input image to create a uniform grid of prompts 

that guide the mask image generation process. Increasing the 

value of points_ will increase the density of points, potentially 

improving mask generation accuracy for small details. 

Additionally, iou_, stability, and min_mask parameters 

control the Intersection over Union, stability score, and minimum 

area (in pixels) for a mask to be retained respectively. Finally, the 

n_layers and down_factor parameters are the crop layers 

and point sampling respectively. SAM has been reported across 

a wide range of applications in different sectors (Hazzaa et al., 

2024). In the construction sector, SAM has been implemented for 

structural corrosion inspection (Chai et al. 2024), and structural 

surface damage detection (Ye et al., 2024) based on image 

datasets. SAM was also employed to segment point clouds of the 

underground tunnels (Ye et al. 2025).  Wang et al. (2024) 

proposed an approach to segment mechanical, electrical, and 

plumbing (MEP) systems using two data sources: camera data 

and LiDAR point cloud data. The presented approach was based 

on different vision foundation models including SAM. Yang et 

al. (2023) introduced a method that segments 3D point clouds 

using SAM in RGB-D images. The proposed method used SAM 

to generate masks in RGB images and then project the 2D masks 

into 3D point clouds based on the depth information provided by 

the RGB-D images. To the best of our knowledge, the capabilities 

of SAM for segmenting building indoor elements have yet to be 

explored.   

 

3. Method  

Our approach encompasses four key stages: occupancy image 

creation, 2D mask image generation, point cloud segmentation, 

and classification. The first stage involves creating an occupancy 

image by rasterizing point clouds. The second stage applies SAM 

to generate a 2D mask image for the occupancy image. The third 

stage consists of retrieving point clouds based on the 2D mask 

image. Finally, the retrieved point clouds are classified during the 

fourth stage. The following subsections will explain the specific 

application of this workflow to room segmentation, as well as 

window and opening segmentation. 

 

3.1 Room segmentation 

Room segmentation is performed based on the assumption that 

rooms are horizontally bounded by vertical walls, regardless of 

their shape and orientation. Consequently, rooms are defined by 

the boundaries formed by their walls in the horizontal projection 

of a storey’s point cloud. The indoor point clouds typically 

include floor, furniture, beams, and ceiling, which cause 

occlusions that hinder the definition of room boundaries. A well-

defined room boundary is obtained at a section above the 

furniture and below the beams.  

 

 
Figure 1 Room segmentation process. A) 3D point cloud, B) C) 

Section extraction, C) Occupancy image creation, D) 2D mask 

image generation using SAM, E) Point cloud retrieval, and F) 

Segmented rooms. 

The SAM-based approach is applied to segment rooms within a 

single-story point cloud data (PCD), summarized in Figure 1. The 

input data is 3D point clouds (Figure 1A). Firstly, RANSAC 

detects a plane containing the ceiling from the PCD. The method 

then extracts a section (S) from the input PCD, excluding 

furniture, beams, and ceiling (Figure 1B). This section is situated 

below the ceiling (or the beams) by a specified distance (ds) and 

has a defined thickness (t). The section (S) is then horizontally 

projected to create an occupancy image (Ms), which is used in the 

mask generation step. Similarly, the input PCD is also projected 

into the x-y plane to create another occupancy image (Mf), which 

is used in the point cloud retrieval step. These images are created 

using the same pixel size (l) and represent the presence of points 

in the vertical columns above the pixels. Pixels containing point 

cloud data are assigned a black colour, indicating occupied 

regions (Figure 1C). 

 

In the mask generation step, the method uses SAM to create 2D 

masks for the Ms image by adjusting SAM’s parameters to 

control the mask creation process. SAM generates a mask for 

each area, with each mask assigned a distinct colour 

corresponding to a specific room area within the Ms image. An 

image (Mm) is then created containing the generated 2D masks 
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(Figure 1D). The Mm image matches the size of the Mf image to 

facilitate the retrieval of point clouds for the masks from the 

PCD. During point cloud retrieval, RGB values and pixel indices 

are obtained from the Mf image. Pixels sharing the same RGB 

values are grouped. Corresponding points for each RGB group 

are then extracted from the PCD (Figure 1E). Furthermore, SAM 

generates masks for not-room areas; therefore, a room or not-

room classification is performed. The retrieved point clouds with 

a cross-sectional area greater than a minimum room area 

threshold (A) are classified as rooms. The A threshold is 

identified based on the architectural standards of the buildings.  

 

Points representing walls potentially are not fully included in the 

classified rooms, since the proposed method segments the rooms 

based on indoor room areas. This can result in an incomplete 

representation of walls. To address this problem, a buffer is 

applied to enhance room segmentation. This involves expanding 

the horizontal room boundary outward by a distance (do) equal to 

half of the wall thickness. The do is adjusted based on prior 

knowledge of the average thickness of walls. The updated 

boundaries are then used to re-retrieve the corresponding point 

clouds for the rooms from the input PCD (Figure 1F). The 

remaining points (rest), which may include points corresponding 

to doors or windows, are preserved for use in subsequent 

processing. 

 

3.2 Door and window segmentation 

Doors and windows are embedded into walls and typically have 

regular shapes (e.g., doors are rectangular vertically oriented, 

while windows can be rectangular, squared, etc). In addition, 

doors usually have standard sizes and are installed at floor level 

while windows are typically installed at a certain distance above 

the floor level. Our method considers these general assumptions 

to explore the capabilities of SAM to detect doors and windows 

as shown in Figure 2. First, the method segments planes (πi,j) 

containing walls of each segmented room; πj,i for the j-th wall 

plane in the i-th room, 1 ≤ j ≤ ni, where ni is the number of walls 

in room i. RANSAC is used in the plane segmentation process. 

The segmented wall planes are refined by extracting the points 

aligned with each plane from the remaining points (rest). Planes 

corresponding to ceilings and floors are also segmented. Point 

clouds that do not correspond to the floor, ceiling, and wall planes 

are classified as others, which may include points corresponding 

to furniture or similar. Each πi,j plane is then rasterized based on 

its normal vector, and an occupancy image (Wi) is created (Figure 

2A).  

 

Second, 2D masks are generated using SAM for areas that 

represent doors, windows, and others. Closed doors and windows 

are typically represented in the wall planes, while open or 

uninstall doors and windows are not. To detect the open or 

uninstall doors and windows, the method expands the generated 

masks to include boundary points for their openings. A dilation 

method is used to extend the masks. Then, a 2D mask image (Wm) 

is created containing the generated 2D masks (Figure 2B). Third, 

point clouds belonging to each mask are retrieved from the 

projected πj,i plane (Figure 2C).  

 

Finally, the retrieved point clouds are classified into doors, 

windows, or others by analysing their shapes and positions 

(Figure 2D). A retrieved point cloud is classified as a door if its 

2D boundary has dimensions within standard door size 

thresholds, and the boundary’s bottom edge aligns with the floor 

level. On the other hand, windows are classified using the shape 

compactness presented in Equation (1) (Montero and Bribiesca; 

2009). Shape compactness is a measure widely used to analyse 

and compare the geometric properties of objects. 

 

C =
4𝜋 𝐴𝑟𝑒𝑎

(𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟)2
                                               (1) 

 

Where C is the value of shape compactness, calculated by the 

shape's area and perimeter. C value ranges from 0 to 1, with 1 

corresponding to a perfect circle, 0.7854 corresponding to a 

square, and 0.6046 corresponding to an equilateral triangle, while 

C → 0 corresponds to shapes with negligible area compared to 

their perimeter. Consequently, a retrieved point cloud is 

classified as a window when it has a significant C and the 

boundary’s bottom edge does not align with the floor level. A 

threshold (c) of shape compactness is used in the windows 

classification process. Since windows are most commonly 

rectangular, the threshold (c) is set as higher than the 

compactness (C) of an equilateral triangle. 

 

 
Figure 2. Door and window segmentation process.  

A) Occupancy image generation, B) 2D mask image generation, 

C) Point cloud retravel, and D) classification step. 

 

4. Results and discussion 

4.1 Case studies 

The proposed approach was tested on three real datasets (CS1, 

CS2, and CS3), containing 5.3 million, 8.2 million, and 24.3 

million 3D points, respectively. Each dataset represents a one-

storey, multi-room case study as shown in Figure 3. The CS1 and 

CS3 correspond to two storeys of different real residential 

buildings and CS2 is one storey from the ISPRS Benchmark 

(Khoshelham et al., 2017). The case studies vary in terms of 

rooms' size and shape, walls’ thickness, ceilings’ heights, and 

clutter, and include both open and closed doors and windows.   

 

4.2 Room Segmentation Results 

The experiment results at different stages are presented in Figure 

4. Figure 4A shows the ground truth which was created manually. 

The input data consisted of XYZ coordinates (Figure 4B). The 

method first detected the ceiling using a RANSAC threshold of 

0.07 m and extracted the section (S) at ds equal to 0.5 m and had 

t equal to 0.3 m across all case studies as shown in Figure 4C. A 

pixel size (l) of 0.01 m was selected to create the occupancy 

images (Ms and Mf). This pixel size was determined by exploring 

the impact of different pixel sizes.  Subsequently, the mask image 

(Mm) was generated using SAM’s parameters, as presented in 

Table 1. Five parameters were assigned the same values, while 

the parameter (points_) was changed across all experiments. 

The points_ parameter was tuned based on the quality of the 

generated masks.  
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The retrieved point clouds are presented in Figure 4D. Room or 

not classification was performed by setting the A threshold as 1.5 

m2. The classified rooms were refined by buffering their 

boundaries by 0.07, 0.1, and 0.12 m of CS1, CS2, and CS2 

respectively. The new boundaries were used to re-retrieve the 

corresponding points for the rooms from the input data. The 

segmented rooms of all case studies are presented in Figure 4E.  

 

           Case  

           studies 

SAM 

parameters 

CS1 CS2 CS3 

points_ 11 15 30 

iou_  0.85  

stability_  0.95  

n_layers  1  

down_factor  2  

min_mask  100  

Table 1. SAM’s parameters for all case studies. 

As shown in Figure 4E, corridors in CS2 and CS3 were not 

segmented because SAM did not generate masks for the corridors 

during the mask generation step. Consequently, a reprocessing 

was conducted to segment the corridors. This reprocessing was 

applied only to the remaining points, which contain points 

corresponding to the corridors. The same parameter values were 

applied except the points_ parameter was set to 5 for both 

case studies. Figure 4F shows all segmented rooms of CS2 and 

CS3 after the reprocessing. Points not corresponding to the 

segmented rooms were preserved as remaining points (rest) 

(Figure 4G). 

 

To evaluate the performance of the proposed method, 

Intersection over Union (IoU) was used. IoU is widely used as an 

evaluation metric in 2D segmentation. IoU quantifies the overlap 

between segmented and ground truth regions after the point 

clouds have been projected onto a 2D plane. Firstly, the 

segmented rooms were classified as corresponding to their 

respective ground truth rooms. Let Pi represent a set of 2D points 

for a segmented room (in X-Y projection) obtained from the 

proposed approach, and Gi for a ground truth room. The 

intersection I (Equation 2) represents the number of common 

points between Pi and Gi. Then, the intersection ratios pi and gi 

are calculated as expressed in Equations 3 and 4. pi represents the 

proportion of intersected points relative to the total points in the 

segmented room. gi represents the proportion of intersected 

points relative to the total points in the ground truth room. These 

ratios provide insight into the correspondence between the 

segmented and ground truth rooms. Moreover, they allow over-

segmented and under-segmented rooms to correctly match their 

respective ground truth rooms.  

 

 

I  = Pi ∩ Gi                                        (2) 

 

pi  = 
| 𝐼|

|𝑃𝑖|
                                               (3) 

 

gi = 
| 𝐼|

|𝐺𝑖|
                                               (4) 

 

Where |·| denotes the cardinality of a set. The Pi and Gi  are 

classified as corresponding rooms if at least one of these ratios 

exceeds a predefined threshold th of 75%, as expressed by: 

 

If   pi  ≥ th  or gi  ≥ th, 

                                                                                                  (5) 

      then Pi and Gi are corresponding rooms. 

 

Once the ground truth rooms were matched with the segmented 

rooms, the IoU was calculated for the corresponding rooms as 

expressed in Equation 6. The mean of IoU for all rooms in each 

case study was also computed by Equation 7.  

 

IoU = 
| 𝐼|

|𝑃𝑖 𝑈 𝐺𝑖|
                                      (6) 

 

Mean IoU = 
∑ IoU𝑖

𝑁
𝑖=1

𝑁
                          (7) 

 

Where IoUi represents the IoU for the i-th room and N denotes 

the total number of rooms. Figure 5 presents the IoU values for 

all case studies. 

 

The results presented in Table 2 show that the method correctly 

segmented the 17 rooms for CS1. Most of the segmented rooms 

in CS1 had IoUs exceeding 90% (Figure 5). Regarding CS2 

results, seven rooms were accurately segmented, with IoU 

exceeding 90% (Figure 5). However, the method did not 

accurately segment the two corridors at the centre of CS2, in 

Figure 6, because SAM did not create accurate masks for these 

corridors. This inadequate mask generation resulted in over and 

under-segmentation as shown in Figure 6 CS2. 

 

 

Figure 3. Overview of the case studies. 
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Figure 4. Room segmentation results in three dimensions (top view) for all case studies. A) Ground truth, B) Input point cloud, C) 

Section extraction, D) Point cloud retrieval, E) The segmented rooms, F) The results after reprocessing for CS2 and CS3, G) 

Remaining points. 

 

Figure 5. IoU values for room segmentation across the three case studies. The markers represent the IoU 

values for rooms; blue circular markers to CS1, green square markers to CS2, and red triangular markers 

to CS3. Each marker illustrates the percentage of rooms that achieved specific IoU values. 
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No. of rooms 

Ground 

truth 

Segmented 

rooms 

Over-

segmentation 

Under-

segmentation 

CS1 17 17 0 0 

CS2 9 10 2 1 

CS3 41 43 2 0 

All 67 70 4 1 

Table 2. Room segmentation results. 

In CS3, the method segmented 43 rooms; only two were Over-

segmented (Figure 6 CS3). This over-segmentation occurred 

because SAM had created separate masks for the entrances in 

these two rooms and these entrances had areas more than the A 

threshold. Additionally, the corridor and the adjacent room in 

CS3 (Figure 6b) were not correctly separated because SAM did 

not exactly recognize the corridor and room boundaries, which 

resulted in inaccurately generated masks. Generally, most of the 

segmented rooms in CS3 had an IoU of more than 80% (Figure 

5).  

 

Overall, the results indicate that the method can successfully 

handle room segmentation with minimal errors, though 

improvements are needed for more complex areas like long 

corridors and room entrances. The method showed significant 

performance and correctly segmented 65 out of 67 rooms across 

the three case studies.  Despite some challenges, most of the 

segmented rooms achieved IoU exceeding 85%, highlighting the 

method's effectiveness. Furthermore, the points_ parameter 

plays a crucial role in the method, and selecting an appropriate 

value can further enhance the method’s efficiency. 

 

 

Figure7. CS2 and CS3 room segmentation results. Red triangles 

localize over-segmentations and black triangles for under-

segmentations, (a) focus on under-segmentation, and (b) on 

inaccurate segmentation of the corridor and adjacent room. 

4.3 Door and window segmentation  

The door and window segmentation experiments were conducted 

on the CS1 and CS2. A RANSAC threshold of 0.07 m was used 

to segment planes containing floor, ceiling, and walls for each 

room. Planes containing walls were enhanced from the remaining 

points (rest) shown in Figure 4G. The remaining points aligned 

with a plane were added to this plane. A pixel size (l) of 0.01 m 

was used for occupancy image generation. SAM’s parameter 

values presented in Table 1 were applied for 2D mask image 

generation, except the parameter (points_) was set as 5. 

After the point cloud retrieval, the door classification was 

performed using thresholds of door dimensions, with widths 

ranging from 0.7 to 1 meter and door heights ranging from 1.9 to 

2.5 meters. Retrieved point clouds within these thresholds and 

aligned with the floor levels were classified as doors. On the other 

hand, retrieved point clouds with shape compactness (C) of more 

than 0.65, and did not align with the floor level, were classified 

as windows.  

 

 CS1 CS2 

Doors 

Ground truth 16 42 

Segmented 16 38 

Precision % 100 94.74 

Recall % 100 85.71 

Windows 

Ground truth 16 13 

Segmented 14 12 

Precision % 85.7 100 

Recall % 75 92.31 

Table 3. Door and window segmentation results. 

The door and window segmentation results for CS1 and CS2 are 

presented in Table 3.  The main challenges encountered across 

the experiments were (1) detecting multiple doors embedded into 

a single wall, (2) detecting doors and windows in the case of 

occlusions and low-resolution data, and (3) detecting closed 

doors and windows. Figure 7 shows the results for six selected 

rooms, summarizing the outcomes. All doors and windows were 

correctly detected in Rooms 1, 2, and 3, while the challenges 

arose in Rooms 4, 5, and 6 (see Figure 7).  To address these 

challenges, the segmentation process was reprocessed for rooms 

facing these issues. The pixel size (l) and the points_ 

parameters were adjusted during the reprocessing. This 

reprocessing successfully resolved the first and second 

challenges as the method segmented the multiple doors 

embedded into a single wall and doors with partially captured 

data, see Figure 8 Rooms 4 and 5. Only two doors and one 

window in CS2 were undetected due to these two challenges. The 

third challenge persisted because SAM did not recognize the 

regions of the closed doors and windows in the occupancy 

images. Figure 8 shows an undetected window in Room 6 (red 

plane) because the window was closed. 

 

The method performance was evaluated using precision and 

recall metrics as presented in Equations 8 and 9. The metrics were 

calculated by analysing the doors and windows classified as True 

Positive (TP), False Positive (FP), and False Negative (FN). 

 

 

Precision = ( 
TP

TP+FP
  ) × 100                       (8) 

 

Recall = ( 
TP

TP+FN
  ) × 100                           (9) 

 

Where TP refers to doors and windows presented in both the 

segmentation results and the ground truth, while FP refers to 

those presented in the segmentation results, that do not actually 

exist in the ground truth. FN refers to doors and windows 

presented in the ground truth, and they are not detected in the 

segmentation results. 
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The door segmentation results had significant precision for both 

case studies, highlighting that the method was effective in 

detecting doors (Table 3 and Figure 9 A). All doors in CS1 were 

correctly detected, while only six doors in CS2 were not detected. 

The most likely explanation for this malfunctioning is that four 

of these undetected doors were closed during the data capturing, 

one was embedded with multiple doors in a single wall, and the 

sixth door was only partially captured. As a result, this 

contributed to a lower recall for CS2.  

 

 

Figure 8. Reprocessing results of doors and windows 

segmentation, A) planes continuing walls and B) segmented 

doors and windows. 

Overall, the method correctly detected and classified 52 doors 

across both case studies and mistakenly classified only two 

segments as doors in CS2. These segments have similar 

dimensions and locations to doors, which resulted in the method 

to classify them as doors. On the other hand, the proposed method 

detected 24 windows across the case studies (Figure 9B). Five 

windows were not detected because four of them were closed 

during data capture and the fifth was partially captured. Two 

segments were incorrectly classified as windows because of their 

shape and location similar to actual windows. In general, the 

method can effectively perform open door and window 

segmentation; closed elements remain undetected, as one could 

reasonably expect.  

 

 

Figure 9. Confusion matrix of segmentation results for all doors 

and windows in the two case studies, A) for doors and B) for 

windows. 

5. CONCLUSION  

This paper explores the potential use of SAM for indoor point 

cloud segmentation, demonstrating its ability to effectively 

segment rooms, doors, and windows. The proposed SAM-based 

approach achieves significant performance across different 

architectural case studies, highlighting SAM’s adaptability to 

varying indoor environments. A key advantage of SAM is its 

ability to generate accurate masks without requiring any 

pretraining process, making it highly flexible and efficient. 

However, challenges persist in handling complex environments 

and detecting closed doors and windows. The study underscores 

that pre-trained vision foundation models can contribute to 

advancing automated indoor segmentation and 3D 

reconstruction. In future experiments, SAM will be explored to 

detect and segment furniture and other building elements.  

Figure 8. Door and window segmentation results for six selected rooms of CS1 and CS2, A) planes continuing walls and B) 

segmented doors and windows. 
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