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Abstract 
 
National Land Surveys (NLS) worldwide extensively utilize LiDAR (Light Detection and Ranging) technology for forest inventory, 
integrating airborne (ALS) and terrestrial/mobile (TLS/MLS) LiDAR to obtain detailed 3D forest structure data. Efficient multi-modal 
data co-registration is essential for applications such as biomass estimation, forest volume assessment, growth monitoring, and tree 
mapping. Given the vast scale of NLS projects, often covering thousands of kilometres, efficient data processing is crucial. TerraScan 
provides two fully automated methods for co-registering TLS/MLS and ALS datasets: (1) signal marker-based registration and (2) tree 
stem-based registration. These methods achieve an average planimetric RMSE of 1.3–4.8 cm, offering state-of-the-art registration 
accuracy. The methods have been tested for robustness against ALS resolution deterioration, maintaining statistically similar 
performance even when point density is reduced to 26 pts/m². Also, the ALS data from National Land Survey (NLS) of Finland with 
5-8 pts/m2 were tested and demonstrated the average co-registration RMSE comprising 7.5 cm. Optimized multi-threaded CPU 
processing enables rapid co-registration of massive datasets, making these methods highly suitable for large-scale national and global 
land surveys. Specifically, TerraScan tools enable the rapid co-registration of hundreds of millions of points within seconds. 
 
 

1. Introduction 

Forests are vital ecosystems that play a key role in regulating the 
global carbon cycle, maintaining climate stability, and preserving 
biodiversity. Covering approximately one-third of the Earth's 
land area, forests store substantial amounts of carbon, influence 
climate dynamics, and impact atmospheric greenhouse gas levels 
(Shestakova et al., 2016; Mori et al., 2017; Benson et al., 2020; 
Tian et al., 2023). Given their ecological significance, accurately 
capturing the three-dimensional structure of forests is a major 
scientific challenge. In recent years, Light Detection and Ranging 
(LiDAR) has become a preferred technology for forestry surveys 
due to its ability to penetrate dense vegetation and minimize 
external interference, enabling the efficient and precise 
acquisition of forest structural data (Pang et al., 2008; Guo et al., 
2014; Liu et al., 2016). 
 
In forest data acquisition, LiDAR technologies commonly 
include Terrestrial Laser Scanning (TLS) (Liang et al., 2018),  
Mobile Laser Scanning (MLS), and Airborne Laser Scanning 
(ALS) (Wehr et al., 1999). Ground-based LiDAR acquisition 
includes both Terrestrial Laser Scanning (TLS) and Mobile Laser 
Scanning (MLS), where the primary distinction lies in the 
platform's mobility. TLS operates from fixed positions, capturing 
high-resolution 3D data of tree trunks, understory vegetation, and 
lower canopy structures. In contrast, MLS utilizes a moving 
platform, such as a vehicle, to acquire LiDAR data continuously 
along a trajectory, improving efficiency over large areas. 
TLS/MLS, which operates from the ground level, excels at 
capturing detailed structural information on tree trunks and 
understory vegetation. However, the effectiveness of both TLS 
and MLS is constrained by canopy occlusion, limiting their 
ability to fully capture the upper canopy. Additionally, single-
scan TLS data collection is often incomplete due to tree cover 
interference, necessitating multiple scans to achieve 
comprehensive coverage (Kelbe et al., 2015; Liu et al., 2017b; 
Zhang et al., 2021). 
  

ALS, encompassing both manned and unmanned aerial vehicle 
laser scanning (ULS), offers a complementary approach by 
capturing structural information from above the canopy. It 
efficiently records canopy-level attributes such as tree height, 
crown width, and tree density, which are difficult to obtain using 
ground-based methods in dense forests (Kukkonen et al., 2021). 
ALS enables large-scale data collection in a short time, providing 
extensive coverage and high acquisition efficiency. However, its 
ability to penetrate dense canopies is limited, restricting the 
amount of information captured from lower forest layers (Paris 
et al., 2017; Liu et al., 2021). Moreover, differences in scanning 
perspectives and distances result in variations in the resolution 
and detail of ALS and TLS/MLS data, making them 
complementary rather than interchangeable for forest mapping. 
When these two data sources are co-registered, their 
compatibility enhances forest inventory accuracy by enabling the 
simultaneous extraction of individual-tree Diameter at Breast 
Height (DBH) from TLS or MLS and tree height from ALS, 
leveraging the strengths of each system.  
 
Ensuring precise alignment of ALS and TLS/MLS point clouds 
is crucial for comprehensive forest mapping, encompassing tree 
trunks, canopies, and understory vegetation, while also 
maintaining consistency across platforms and over time, leading 
to more reliable forest assessments. Currently, two main 
approaches are used for point cloud registration. The first relies 
on auxiliary reference data, such as Global Navigation Satellite 
Systems (GNSS), artificial markers, or color images (Hohenthal 
et al., 2011; Yang et al., 2011; Pueschel et al., 2013; Abayowa et 
al., 2015; Avbelj et al., 2015; Zhang et al., 2016; Zhang et al., 
2018). However, dense forest canopies present significant 
challenges for both artificial markers and GPS-based navigation 
systems. The thick foliage often obstructs artificial markers, 
making them difficult to detect or use as reference points for 
ground-based navigation. Additionally, dense canopies can block 
or attenuate satellite signals, leading to substantial GPS 
positioning errors. This issue is further compounded by multipath 
interference, where GPS signals are reflected off nearby objects 
such as tree leaves and branches, causing signal distortion and 
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large positional inaccuracies (Bastos and Hasegawa, 2013). For 
example, forest point clouds collected using TLS and MLS are 
often captured in a local coordinate system to prevent 
inaccuracies caused by unreliable GNSS conditions. Converting 
these datasets into a georeferenced coordinate system 
necessitates additional processing steps (Campos et al., 2024). 
 
The second approach focuses on geometric feature-based 
alignment, providing a more data-driven and adaptable solution. 
Due to the intricate nature of forest structures, most studies rely 
on specific features as reference points during the registration 
process. These features include tree positions (Liang et al., 2013; 
Polewski et al., 2016; Liu et al, 2021), canopy height (Hauglin et 
al., 2014; Paris et al, 2017), canopy density (Dai et al., 2019; 
Zhou et al., 2023), tree trunk attributes (Liu et al.,  2017a; 
Tremblay and Béland, 2018), and digital terrain models (Puletti 
et al., 2022). Notably, most existing LiDAR point cloud 
registration techniques have not been specifically developed or 
tested in highly complex environments with significant feature 
variability and a lack of external reference data (Castanheiro et 
al., 2023; Cheng et al., 2024) and suffer low accuracy and poor 
applicability.  
 
Most geometric feature-based forest point cloud registration 

methods use a coarse-to-fine strategy. Liang and Hyyppä (2013) 

pioneered the use of tree stems for LiDAR registration, achieving 

robust results in boreal forests. Hauglin et al. (2014) improved 

this by matching TLS and ALS data using tree positions and size 

attributes, achieving 0.5–1 m accuracy. Polewski et al. (2016) 

introduced a stem descriptor based on tree distances, achieving 

66 cm accuracy without requiring external GNSS data. Later, 

Polewski et al. (2019) enhanced this method with a weighted 

graph matching approach, further improving robustness. 

  
Other studies explored canopy features. Liu et al. (2021) used 
canopy height and crown centers for TLS-UAV registration, 
achieving 43 cm accuracy. Shao et al. (2022) and Zhou et al. 
(2023) utilized canopy shapes and gaps, achieving 15 cm 
accuracy after fine-tuning with ICP. Pohjavirta et al. (2022) 
combined stem and ground points for TLS-UAV registration, 
achieving 7.2–13.6 cm accuracy in boreal forests. 
  
Recent advancements include semantic key point detection (Dai 
et al., 2022) and hierarchical clustering with Fast Point Feature 
Histogram (FPFH) (Chen et al., 2024), achieving 29 cm and 15 
cm accuracy, respectively. Overall, stem-based methods remain 
highly effective, with coarse registration typically achieving 10–
50 cm accuracy, while fine registration often improves results to 
<15 cm. 
 
In this study, we introduce two advanced co-registration methods 

implemented in Terrasolid software: 

  

1) Artificial Markers – A traditional approach that 

leverages predefined markers for precise alignment. 

  

2) Tree-Based Registration – A method inspired by the 

Markov Chain Monte Carlo (MCMC) sampling 

technique. This approach optimizes translation and 

rotation transformations by sampling tree stem pairs 

from ALS data, ensuring accurate alignment of 

detected tree stems. 

  

Both methods benefit from the software automation, which pre-

classifies ALS points into ground, low, medium, and high 

vegetation with subsequent tree stem detection. This detection 

accounts for the systematic distribution of ground points beneath 

individual tree canopies. Additionally, its highly optimized 

multi-threaded CPU processing enables the rapid co-registration 

of hundreds of millions of points within seconds.  

 

2. Datasets 

The datasets were obtained from a conifer-dominated boreal 

forest situated at Jämsänkoski Forest Institute (61°92’N, 

25°10’E). The MLS data on scanning area of 130 m x 126 m was 

acquired by FARO Orbis (wavelength comprised 905 nm) 

scanner on 20th of August 2024. The Orbis delivers high-speed 

data acquisition with a precision of 5 mm in mobile mode and 

120 m scanning range. The resulting point cloud contains 

72,824,331 points with point density comprising 4,626 pts/m2.  

 

The ALS data for scanning area of 317 m × 239 m were collected 

from UAV platform using YellowScan Mapper operated at 905 
nm wavelength. The system consists of YellowScan Mapper 
scanner, high-precision GNSS receiver integrated onto a UAV 
platform, and RGB camera and a flight computer recording 
LiDAR and GNSS, data for post-processing. Georeferencing of 
the scanned area was carried out using 5 Ground Control Points 
(GCPs) by bundle block adjustment with mean Root Mean 
Square Error (RMS) error comprising 0.014 m. The resulting 
point cloud contained 66,046,344 points and featured 557 pts/m2 
point density. The handheld scanner covered a subset of this 
region, located within the ALS-scanned area, see Figure 1. Figure 
2 displays the point clouds obtained from both scanning 
platforms.  
 
In addition, a bigger area scanned by NLS of Finland (0.69 x 0.52 
km) with a density of 5 pts/m2 was used for testing, as shown in 
Figure 2(c), containing 5,910,452 points. 
 

 
 
Figure 1. (a) Regions scanned with FARO Orbis (blue bottom 
region) and YellowScan Mapper with flight lines in different 
colours; (b) FARO Orbis (red) and YellowScan Mapper (green, 
local coordinate system) scanning areas.   
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Figure 2. Point clouds obtained with (a) FARO Orbis scanner and 
(b) YellowScan Mapper coloured by Intensity and elevation in 
TerraScan. (c) Area scanned by NLS of Finland (navy blue, 5 
pts/m2) and FARO Orbis scanner (light yellow). Signal markers 
are painted with the red dots. 
 
 

3. Pre-processing point clouds and registration methods 

The automated workflow, applied to both ALS and MLS LiDAR-
measured point clouds, including the final co-registration step, is 
summarized in Figure 3. Pre-processing includes splitting 
trajectories, cutting overlaps between the flight lines (see Figure 
1a), smoothing point clouds and removing noise, thinning, 
classifying ground and above ground objects using the TerraScan 
macros. The final co-registration is carried out after pre-
processing both ALS and MLS data.  
 

 

 

Figure 3. Software-implemented workflow applied to ALS and 

MLS LiDAR-measured point clouds in the present study. 

 

Both proposed registration methods (by artificial markers and 
trees) require preliminary ground detection and classifying point 
clouds (both MLS and ALS) into ground, low, and high 
vegetation classes. High vegetation corresponds to trees. These 
steps are elaborated in the next sections.  
 
3.1 Ground point selection and triangulation process 

Ground points are initially identified by selecting low-elevation 
points that are confidently classified as ground hits, based on the 
absence of buildings within their corresponding 80m×80m grid 
cell. The process begins with the triangulation stage, where a 
Triangulated Irregular Network (TIN) model is constructed. 
Initially, the TIN triangles are positioned below ground level, and 
in each iteration, an additional ground point is added to the set of 
ground points. 
 
The iterative process refines the ground classification by 
determining how close a point must be to an existing triangle 
plane before it is accepted as a ground point. At each step, the 
TIN is recomputed using the updated set of ground points, 
progressively improving the accuracy of the model, see Axelsson 
(2000). 
 
3.2 Point cloud classification 

Following the detection of ground points, the software proceeds 
to classify the remaining points into three categories: low 
vegetation, medium vegetation, and high vegetation. This 
classification is based on an analysis of geometric features, 
including linearity, anisotropy, change of curvature, sphericity, 
and verticality (Shcherbacheva et al., 2023), which are computed 
for each point at multiple scales within individual 
neighbourhoods of a specified size. Threshold ranges for these 
statistical features, derived from the typical characteristics of the 
object classes under consideration, are applied to facilitate 
accurate classification. The typical values of the geometric 
features considered for a given class of objects are defined based 
on elevation. 

3.3 Registration with artificial markers 

Artificial markers were used as a baseline method for aligning 

the MLS and ALS data. The ALS dataset, which had centimetre-

level georeferencing accuracy, was considered the ground truth 

for performance evaluation. To ensure precise georeferencing, 

five GCPs were manually measured. 

  

The software automatically detects GCPs that are located at least 

2 m away from trajectories in the MLS data set. Among the 

detected five GCPs, the user can manually exclude any points 

that do not match the expected marker shapes. After filtering out 

false targets, the software uses the 3D coordinates of the 

remaining GCPs—referenced against ALS measurements—to 

compute the optimal 3D transformation for the scanned point 

cloud. Specifically, 2D rotation and translation parameters are 

estimated by minimizing the residual mismatches between the 

manually measured reference points and LiDAR-derived points. 

Two GCPs were employed for computing RMSE of the tested 

registration methods. 

 

3.4 Tree-Based Registration 
 
3.4.1 Tree Localization and Identification: After classification, 
individual trees are localized and isolated based on the structural 
integrity of the point cloud in the ground surface relative to high 
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vegetation. This approach is justified by the minimal occurrence 
of laser beam hits within trunk positions. Additionally, tree stems 
exhibit a systematically homogeneous point distribution across 
different elevation slices, distinguishing them from other 
vegetation components and branching structures. These spatial 
patterns are leveraged to accurately determine individual stem 
positions. 
 
3.4.2 Registration: Once individual stem locations are 
identified, a subset of paired stem positions in the ALS dataset is 
randomly sampled, inspired by the Markov Chain Monte Carlo 
(MCMC) method. Specifically, 5% of the possible stem pairs are 
selected for the registration process. A series of experiments has 
determined the minimum percentage of fixed pairs required to 
ensure robust registration. This number depends on the total 
number of stems detected in the ALS data and typically 
comprises several tens of thousands in practice. 
 
For each pair of ALS stems, a corresponding pair is matched in 
the MLS dataset based on the criterion that the respective 
pairwise distances should deviate by no more than 1 meter. Once 
the matched pairs are identified, a 2D transformation 

𝑇𝑖     (2D rotation and shift) is computed and applied to the MLS 
dataset, aligning the MLS stem pair with their ALS counterpart. 

To assess alignment quality for a given transformation 𝑇𝑖 ,    an 

alignment metric  𝑄(𝑇𝑖)             is computed:  
 

𝑄(𝑇𝑖) = ∑ 𝑞𝑗(𝑇𝑖)
𝑁
𝑗=1                ,  (1) 

 
where N is the total number of trees detected in the ALS dataset 

and 𝑞𝑗(𝑇𝑖)             represents the alignment score for the j-th 

stem. The individual pairwise alignment metric 𝑞𝑗(𝑇𝑖)             is 

defined as: 
 

 ,  (2) 
 

where 𝑑𝑗(𝑇𝑖) denotes the Euclidean distance between the 

registered stem position for the 𝑗   -th stem in the ALS dataset  

and its nearest neighbor in the transformed MLS dataset after 

applying  Ti. 
After computing transformations for all randomly sampled fixed 

stem pairs, the transformation 𝑇∗      that maximizes 𝑄(𝑇𝑖)            
is selected as the optimal one for co-registration: 
 

𝑇∗ = argmax
𝑇𝑖

𝑄(𝑇𝑖)              . (3) 

 
Figure 5 demonstrates tree-based alignment. Panels (a)–(c) 

depict a scenario with fair alignment, where the stem positions in 

the transformed MLS data closely match those in the ALS 

reference (see panel (c) for detail). In contrast, panels (d)–(f) 

show poor alignment, with significant discrepancies between the 

MLS and ALS stem positions. The left-hand panels display the 

MLS points—which represent a subset of the ALS points after 

transformation (see panels (b) and (e))—highlighting that in 

panel (c) the aligned stems correspond well, while in panel (f) the 

mismatches are evident.  

 

 

 
 
Figure 4. Tree-based registration method illustrated: (a)-(c) Fair 
alignment and (d)-(f) poor alignment of ALS and MLS point 
clouds after applying the transformation computed for the pair of 
points A and B. (a) and (d): MLS points before transformation. 
(b) and (e): ALS reference points. (c) and (f): MLS points after 
transformation, aligned with ALS points. In panel (f), nearest 
neighbours (aligned ALS-MLS stems) are connected by arrows 
to highlight discrepancies in the alignment. 
 

4. Registration results 

Figure 6 presents a visual assessment of the transformed MLS 
point cloud, generated using two different methods implemented 
in the software: signal markers and tree trunks. The transformed 
MLS data is overlaid with the ALS reference dataset to facilitate 
a comparative evaluation of alignment accuracy. Panels (a) and 
(c) provide top-down views of the point cloud, allowing for an 
assessment of the horizontal alignment between the datasets. 
Panels (b) and (d) show a 1-meter-wide vertical cross-section, 
where the ALS reference data is represented in yellow and the 
MLS data in blue, enabling a detailed examination of vertical 
discrepancies. 
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Figure 5. Point-to-point MLS-ALS distance distribution for the 
applied registration methods: (a) signal markers, tree trunks 
with (b) 557 pts/m2, (c) 26 pts/m2, and (d) 5-8 pts/m2 ALS 
resolution. 
 
To quantify the accuracy of each transformation method, the 
estimated planimetric and altimetric RMSE are summarized in 
Table 1. Additionally, tree trunk registration with reference data 
having low spatial resolution is taken into consideration. These 
error metrics were derived from the differences between ALS 
reference coordinates and the respective nearest neighbouring 
points in the transformed MLS point cloud coordinates, 
providing insight into the relative performance of the two 
methods. Figure 4 shows a quantitative comparison of point-to-
point distances achieved through registration with signal markers 
and tree trunks using ALS data of varying density (original: 557 
pts/m2, 26 pts/m2, 5-8 pts/m2).    
 
As experimental setup testing adaptivity of the methods to 
density changes in reference ALS data, the ALS data were 
subsampled from 557 pts/m2 to 26 pts/m2 by density using 
TerraScan software (with planimetric distance less than 0.8 m 
used for sub-sampling). Subsequently, the registration 
procedures were repeated to assess the cross-section view and 
errors for registration quality. 
 
The histograms computed for registration using a reduced point 
density (26 pts/m²) and sparse ALS from NLS survey (5-8 
pts/m2) showed small differences compared to those generated 
from the original full density point cloud (557 pts/m²), see Figure 
5.  Additionally, we test sparse reference ALS data (5 pts/m2) for 
tree trunk-based registration assessing vertical cross-section view 
(Figure 7). 
 
For the first registration method based on signal markers, the 
reference ALS data density does not affect the detection and 
matching of the markers. Consequently, testing for this type of 
registration was not conducted, as variations in ALS density do 
not influence its performance. 

As seen in Table 1, most of the mismatches between the reference 
GCPs and their MLS equivalents occur in altimetry, although 
matching discrepancies in planimetry are smaller. 

 

 

Method RMSE (m)  

  
 

Planimetry Altimetry Combined 

Signal 
marker 

0.013 0.01 0.018 

    

Tree trunks 0.035 0.078 
 
 
 

0.087 

Tree trunks  
(26 pts/m2) 

0.048 0.074 0.09 

 
Tree trunks 
(5-8 pts/m2) 

 
0.039 

 
0.064 

 
0.075 

    

 
Table 1. RMSE of the differences between the estimated point 
cloud coordinates obtained from FARO Orbis and the manual 
reference expressed in terms planimetry and altimetry. 
 

 

Figure 6. Top views of co-registered ALS-MLS point clouds 
obtained using (a) signal markers and (c) tree trunks, 
respectively. (b) and (d): sampled 1 m vertical cross-sections 
corresponding to (a) and (c), respectively. 

 
 

Figure 7. Vertical cross-section (width comprising 1 m) view 
for NLS of Finland (white, 5 pts/m2) and FARO Orbis (blue) 
point clouds aligned using tree trunk method. 
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5. Conclusion 
 

In this study, we demonstrated the capabilities of our software for 
ALS and MLS data co-registration using data from the FARO 
Orbis handheld scanner and the YellowScan Mapper UAV-based 
scanner. Our registration approach achieved an average RMSE 
of 8.7 cm for tree stem-based co-registration and 2 cm for signal 
marker-based co-registration. These accuracy levels exceed the 
accuracy reported in many of the earlier published results. For 
instance, benchmarked methods specifically designed for forest 
environments, as well as global methods such as ICP (plane-to-
plane) and NDT, achieved alignment accuracy better than 20 cm 
in both planimetric and altimetric dimensions. Additionally, 
stem-based methods demonstrated consistent stability across 
boreal and temperate forest datasets, with Hyyppä et al. (2021) 
reporting a planimetric RMSE of 12 cm in boreal forest 
applications, see Campos et al, 2024. The experiments conducted 
in this study demonstrate that, when comparing transformed 
MLS point clouds directly to ALS data, over 68% of the points 
aligned within 15 cm using the tree stem-based method, whereas 
the signal marker-based alignment achieved a slightly higher 
accuracy, with 72.2% of points falling within this threshold. 
These results confirm that our software provides competitive 
registration accuracy comparable to state-of-the-art methods. 
 
Both registration approaches evaluated offer a universal and 
automated solution due to software’s ability to pre-classify ALS 
points into ground, low, medium, and high vegetation with 
subsequent tree stem detection. This detection leverages the 
systematic distribution of ground points beneath individual tree 
canopies, ensuring reliable alignment. Additionally, the 
registration methods are computationally efficient, utilizing 
highly optimized multi-threaded CPU processing the rapid co-
registration of hundreds of millions of points within seconds. A 
baseline signal marker-based registration produced RMSE 
comprising 1.8 cm, while tree trunk-based method with the 
original YellowScan Mapper point density produced RMSE 
comprising 8.7 cm. 
 
When the point cloud density of the ALS data has been reduced 

from 557 pts/m2 to 26 pts/m2, the RMSE comprised 9 cm. Also, 

the resulting point-to-point MLS-ALS distance distributions 

displayed no statistical difference, demonstrating high adaptivity 

to point density deterioration. Additionally, we tested sparse ALS 

data from NLS of Finland with 5-8 pts/m2 point density covering 

larger area for tree trunk-based registration and achieved fair 

vertical cross-section alignment with the MLS point cloud and 

RMSE comprising 7.5 cm. Centimiter-level variations in the 

RMSE can be caused by different scanning geometries and 

random deviations in the measurement procedures. Altimetric 

alignment may also produce variations because of 2D 

transformation alignment. Planimetric alignments measure 1.3-

4.8 cm, whereas altimetric alignments measure 1-7.8 cm. 

Statistically tree-trunk based registration is similar regardless of 

the ALS reference point density.  

 

It is worth noting that airborne scanning has fair GNSS location 

and can scan treetops, allowing for accurate tree height 

estimation. Simultaneously, ground-based mobile platforms 

provide height point cloud density on tree trunks, allowing for 

the measurement of trunk diameters; however, treetops are 

frequently inaccessible for these platforms due to dense canopy. 

If satellites are not visible or there is no GPS sensor present, 

terrestrial scanning frequently requires a geolocation approach. 

Co-registering terrestrial and airborne LiDAR data allows for the 

simultaneous computation of tree height and diameter properties.   

  

Overall, our results highlight the effectiveness of the proposed 
methods, confirming their suitability for high-accuracy forest 
mapping and ALS-MLS data integration. However, the tree 
trunk-based registration method has limitations and cannot be 
used when the point cloud pattern is uniform and there are no 
point density variations. Also, if MLS data drifts due to poor 
GNSS location, a simple 3D transformation cannot correct for the 
misalignment, hence another registration technique must be 
incorporated in the software. 
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