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Abstract 

 

In multispectral image fusion, edge distortion, spectral loss, and geometric mismatch seriously affect the fusion accuracy, especially 

in complex road scenes with shadows or occlusions. Multispectral image fusion aims to preserve surface details and spectral data. In 

order to solve the problems of edge distortion and spectral loss in image fusion, this paper proposes a multispectral and hyperspectral 

fusion method based on edge chromatic aberration. Swin Transformer is used for multi-scale feature extraction, and the GRDB module 

is added to preserve edge details, which improves the clarity and accuracy of diseased edges in road scene fusion images. In addition, 

saliency weight mapping can identify and highlight key disease areas, ensuring that they are prominent in the fused image.  

Experiments show that the multispectral image fusion method based on edge color difference significantly improves the performance 

of road damage analysis on the self-built BUCEA-MS-Road-Damage dataset: the edge IoU in the detection task is increased to 80.1% 

(+1.3%), and the target detection accuracy is 92.3% (+3.6%); the accuracy and recall of the classification task are increased to 91.3% 

(+3.0%) and 89.8% (+3.0%) respectively; the Dice coefficient of the segmentation task is 83.3% (+3.0%). In the cross-sensor test, the 

fusion result is still robust (SSIM=0.93, SAM=2.7°), and the edge color difference index (ECD-Index=6.3) is 25.9% lower than the 

baseline. This method effectively solves the problems of multi-scale feature extraction and texture distortion of cracks through adaptive 

color difference correction and spectral consistency constraints, providing high-precision data support for intelligent road maintenance. 

 

 

1. Introduction 

Multispectral image fusion (MIF), as a core technology in remote 

sensing, medical imaging, and computer vision, aims to generate 

comprehensive images combining high spatial resolution with 

rich spectral characteristics by integrating complementary 

information from different spectral bands such as visible light, 

near-infrared, and thermal infrared (Ma et al., 2021). In multi-

band imaging systems, varying imaging principles lead to distinct 

interpretations of the same scene, particularly crucial for road 

damage detection where multispectral characteristics prove vital 

(Liu et al., 2010). Visible light imaging captures reflected light to 

clearly reveal surface defects like cracks and potholes (Liu et 

al.,2021). Infrared imaging detects thermal radiation to identify 

moisture-filled cracks through temperature variations, while 

near-infrared imaging combines reflectance and radiation 

properties to reveal material degradation and structural defects. 

The integration of these multimodal insights becomes essential 

for comprehensive damage interpretation, especially under 

complex road conditions (Bai et al., 2015). 

Recent advancements in image fusion have witnessed various 

algorithms primarily categorized into deep learning-based 

methods and traditional fusion approaches. Deep learning 

techniques simulate human cognitive processing through neural 

networks, establishing complex feature relationships via data-

driven learning to reconstruct fused images with enhanced details 

(Hi et al., 2018). Network modules originally designed for low-

level vision tasks have been successfully adapted for fusion 

applications, including attention mechanisms, dilated 

convolutions, encoder-decoder architectures, and generative 
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models. Traditional fusion methods typically employ multiscale 

transformations and saliency-based algorithms (Li et al., 2023). 

Significant performance disparities exist between these two 

categories, with deep learning methods demonstrating superior 

adaptability in complex scenarios through end-to-end 

optimization (Shao et al., 2024). For instance, Hu et al. proposed 

the Squeeze-and-Excitation network incorporating spatial-

channel hybrid attention mechanisms to enhance convolutional 

neural network (CNN) representation capabilities. The SE 

module adaptively prioritizes critical feature channels while 

suppressing irrelevant ones, particularly effective for capturing  

subtle crack edges . Dilated convolutions expand receptive fields 

through strategic kernel spacing, enabling multi-scale damage 

feature extraction without computational overhead.(Hu et al., 

2018) Yu et al. demonstrated their effectiveness in detecting road 

damages ranging from millimeter-scale cracks to meter-level 

network cracks (Yu et al., 2016). The encoder-decoder 

architecture preserves hierarchical spectral-textural features 

through skip connections, exemplified by Ronneberger's U-Net 

framework which combines low-level details with high-level 

semantics for precise damage localization (Ronneberger et al., 

2015). Generative adversarial networks (GANs) introduce 

discriminator constraints to align fusion results with real high-

resolution distributions, notably reducing artifacts in cross-modal 

infrared-visible fusion. Isola et al.'s Pix2Pix framework achieves 

high-quality image translation through adversarial training, 

providing effective solutions for image alignment and 

reconstruction (Isola et al., 2017).Despite computational 

efficiency and data independence, traditional methods suffer 

from limited generalization due to manual design constraints. 
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Multiscale transformation approaches like Zhao et al.'s PSPNet 

employ frequency decomposition to separate low-frequency 

contours from high-frequency details (Zhao et al., 2017). 

However, fixed frequency band  partitioning often causes 

spectral distortion and ghosting artifacts at heterogeneous regions 

such as asphalt-concrete interfaces. Saliency-based methods like 

Xie et al.'s PC-PADCPCNN framework utilize NSST  

decomposition and phase-consistent weighting for visual 

prioritization (Xie et al., 2023) yet struggle to quantify nonlinear 

inter-band correlations and detect low-contrast defects 

effectively. 

 

Current research focuses on synergistic optimization of deep and 

traditional methods. One direction embeds wavelet basis 

functions or saliency priors into neural networks to enhance 

interpretability (Su et al., 2010). Transformer-based fusion 

architectures incorporating super-feature attention mechanisms 

and wavelet-guided pooling operations demonstrate superior 

capability in processing complex backgrounds while preserving 

global-local feature balance (Li et al., 1994). Another trend 

develops lightweight designs for edge computing deployment, 

enabling simultaneous detection of surface cracks and internal 

structural damages through visible-infrared fusion. These hybrid 

strategies facilitate the transition from reactive maintenance to 

proactive prevention in road management. While existing 

methods improve spatial details, they typically suffer from edge 

blurring and spectral distortion, particularly at heterogeneous 

boundaries where chromatic aberrations degrade downstream 

task performance. To overcome these limitations, this paper 

proposes an Edge Chromatic Difference-guided Multispectral 

Image Fusion (ECD-MIF) method. Our approach effectively 

integrates multispectral information while addressing edge 

mismatch and detail loss in conventional sequential fusion 

processes, ultimately enhancing road damage detection accuracy 

through precise edge preservation. 

 

2. Method 

This study proposes an Edge Color Difference-Based 

Multispectral Image Fusion (ECD-MIF) framework that 

integrates Swin Transformer and Gradient Residual Dense 

Blocks (GRDB) for multiscale feature extraction, combined with 

an Adaptive Saliency Injection Module (ASIM) for feature 

optimization, and a Feature Reconstruction Decoder (FRD) to 

generate high-quality fused images. The framework, illustrated 

in Figure 1, comprises four core components: 

 

Multiscale Feature Extraction: Input visible and multispectral 

images undergo preprocessing using semi-sparse filters (SSF) to 

decompose them into texture and structure layers. The Swin 

Transformer extracts hierarchical multiscale features through its 

shifted window self-attention mechanism, which constructs 

global-local representations across scales. Patch partitioning and 

linear embedding progressively build hierarchical feature maps, 

enhancing deep semantic extraction. 

 

Edge Detail Enhancement: To address edge degradation in fusion 

tasks, the Gradient Residual Dense Block (GRDB) employs a 

multi-level convolutional architecture integrated with gradient 

operators. GRDB explicitly computes edge gradients to suppress 

blurring while preserving local textures. Gradient residual 

learning further refines high-frequency details, improving edge 

sharpness and structural continuity (Tang et al., 2022). 

 

Saliency-Aware Feature Optimization: The Adaptive Saliency 

Injection Module (ASIM) dynamically enhances target regions 

during fusion. First, multispectral input guides saliency region 

detection via intensity thresholding. ASIM then learns channel-

wise attention weights through adaptive feature recalibration, 

prioritizing spectrally salient targets (e.g., cracks with low 

reflectivity variance ΔR < 0.1). This ensures critical features are 

amplified during fusion. 

 

Feature Reconstruction Decoding: The Feature Reconstruction 

Decoder (FRD) progressively restores fused images through 

cascaded convolutional layers and parametric ReLU activations. 

It employs skip connections from earlier layers to preserve fine-

grained details, achieving optimal balance in sharpness (SSIM ≥ 

0.92), contrast (ΔCNR > 1.8 dB), and structural fidelity (edge 

retention rate > 94%). 

 

Integration Strategy: By synergizing Swin Transformer’s global 

context modeling, GRDB’s edge-sensitive refinement, and 

ASIM’s saliency reweighting, ECD-MIF achieves progressive 

optimization from low-level textures to high-level semantics. 

Experimental results demonstrate superior edge preservation 

(EPI improvement: 12.7%) and saliency retention (AUC gain: 

8.9%) compared to state-of-the-art methods, particularly for 

Figure 1: Framework of the Edge Color Difference-Guided Multispectral Image Fusion (ECD-MIF) Model. 
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submillimeter cracks under low-illumination conditions (SNR < 

15 dB). 

 

2.1 Multi-scale feature extraction module 

In this study, to effectively separate different feature information 

in images, an edge-preserving filter is utilized. This filter is 

capable of smoothing most of the texture and structural details in 

the source images while retaining the intensity of the structural 

edges. To better distinguish pixels representing different features, 

a semi-sparse filter (SSF) is first employed to decompose the 

source images. Specifically, the visible light image 𝐹vis and the 

corresponding multispectral image 𝐹ms across different bands are 

input to the system, and the structural layer SSS is obtained 

through the following operations: 

 

𝑆𝑚 = 𝑆𝑆𝐹(𝐹ms) (1) 
 

In the formula, 𝑚 ∈ {1,2,3}, where 𝑆𝑚 represents the structural 

layer corresponding to different source images. The texture layer 

is calculated as follows: 

 

𝑇𝑚 = 𝐹ms − 𝑆𝑚 (2) 

 

In the formula, 𝑇𝑚 represents the texture layer. Subsequently, the 

input image is divided into multiple non-overlapping 4×4 patches 

using a Patch Partition module, with each patch having a feature 

dimension of 4×4×3=484. Next, feature maps of varying sizes are 

progressively constructed through four stages. 

 

In the first stage, a Linear Embedding Layer projects the features 

into an arbitrary dimension C. In the next three stages (Stage 2–

4), a Patch Merging layer is used for downsampling, which 

gradually reduces the spatial resolution of the feature map while 

increasing the number of channels.The resulting feature maps are 

then fed into a Swin Transformer Block (STB) module for feature 

transformation. Each STB module comprises a varying number 

of Window Multi-Head Self-Attention (W-MSA) mechanisms. 

Each W-MSA mechanism comprises a Multi-Head Self-

Attention (MSA) mechanism and a Multi-Layer Perceptron 

(MLP). Layer Normalization (LN) is applied between the MSA 

and MLP modules, and residual connections are added after each 

module to facilitate information flow and prevent gradient 

vanishing. Initially, the input image is decomposed into a Texture 

Layer and a Structural Layer, which represent the texture and 

structural information of the image, respectively. The Patch 

Partition module divides the image into multiple non-overlapping 

patches, typically of size 4×4. This operation divides the input 

image into 𝐻/4 × 𝑊/4 patches, where each patch has a feature 

dimension of 4×4×3=48, where 3 is the number of color channels. 

For an input image with dimensions 𝐻 × 𝑊 × 𝐶in , the output 

feature matrix after the Patch Partition operation has dimensions 

(𝐻/4) × (𝑊/4) × 48 . Next, the features of each patch are 

projected through linear embedding. The linear embedding 

operation projects the dimensions of each patch from 4×4×3 to 

an arbitrary dimension C: 

 

X𝑙 = Wembed ⋅ X𝑙 (3) 

 

In the formula, X𝑙  represents the image patch, Wembed denotes 

the linear embedding weight matrix, and the dimension of the 

projected feature map becomes 𝐻 × 𝑊 × 𝐶 . The projected 

feature map then proceeds to the Stage-wise Processing part, 

where the features are further refined in each stage using Swin 

Transformer modules. Each stage includes a linear embedding 

operation and a Swin Transformer module, which are designed 

to extract global features. 

 

In the stage 1 process, the linear embedding operation is first 

applied to project the feature map into a new dimension. 

Subsequently, the Swin Transformer module performs feature 

transformation on the projected feature map: 

 

X1 = Swin Transformer(W1, X𝑙) (4) 

 

In the formula, X𝑙  represents the input features, and after 

processing through the Swin Transformer module, new features 

X1 are obtained. The subsequent three stages (stage 2 to stage 4) 

follow the same procedure, with each stage employing linear 

embedding and the Swin Transformer module for feature 

extraction. The output features from each stage are sequentially 

passed to the next stage: 

 

X2 = Swin Transformer(W2, X1) 
X3 = Swin Transformer(W3, X2) (5) 
X4 = Swin Transformer(W4, X3) 

 
In the formula, W𝑖 represents the weights of the Swin 

Transformer module at each stage. 

 

2.2 Gradient residual dense block 

In the Gradient Residual Dense Block module, deep features are 

first extracted from the multispectral image and the visible light 

image. This process is carried out through a series of convolution 

operations aimed at capturing critical information from the 

images, including edges, textures, and other details. The 

multispectral image and visible light image are fed into the 

feature extraction module separately to obtain their 

corresponding feature representations. The feature extraction 

from the multispectral and visible light images can be expressed 

as: 

 
{𝐹ms, 𝐹vis} = {𝐸𝐹(𝐼ms), 𝐸𝐹(𝐼vis)} (6) 

 

In the formula, 𝐹ms and 𝐹vis represent the features extracted from 

the multispectral image and the visible light image, respectively. 

𝐸𝐹(⋅)  denotes the feature extraction operation, typically 

implemented as a neural network module composed of multiple 

convolutional layers, which are designed to extract high-level 

semantic features from the images.Next, the GRDB (Gradient 

Residual Dense Block) module processes the extracted features. 

The GRDB enhances fine-grained features through gradient 

residual connections, particularly by leveraging gradient 

information to improve the representation of image details. In the 

GRDB module, fine-grained details are enhanced by fusing the 

input features with gradient information. The specific process is 

as follows: 

 

𝐹𝑖+1 = 𝐺𝑅𝐷𝐵(𝐹𝑖) = 𝐶𝑜𝑛𝑣𝑛(𝐹𝑖) ⊕ 𝐶𝑜𝑛𝑣(∇𝐹𝑖) (7) 

 

In the formula, 𝑐𝑜𝑛𝑣(⋅)  represents the convolutional layer 

operation, which is used to convolve the input features and 

extract higher-level features. 𝐶𝑜𝑛𝑣𝑛(⋅)  denotes the n-layer 

convolution operations applied in the main feature pathway to 

progressively extract deeper features. ∇ represents the gradient 

operation, which typically employs a Sobel operator to calculate 

the image gradient, extracting edges and detailed information 

from the image. 

The Sobel operator captures high-frequency details, helping the 

network focus on subtle variations in the image and enhancing 

the representation of fine details. ⊕  denotes element-wise 

addition, where the features obtained through convolution are 

combined with gradient information. This step reinforces the 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-G-2025 
ISPRS Geospatial Week 2025 “Photogrammetry & Remote Sensing for a Better Tomorrow…”, 6–11 April 2025, Dubai, UAE

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-1331-2025 | © Author(s) 2025. CC BY 4.0 License.

 
1333



 

feature information through residual connections, effectively 

enhancing the extracted features. 

 

2.3 Adaptive module 

First, the saliency value of each pixel is calculated, followed by 

a binarization operation to remove irrelevant salient regions. The 

saliency value is determined by calculating the Euclidean 

distance between pixels, as expressed by the following formula: 

 

𝑆(𝑖) = ∑  

𝑗∈Ω

𝐷(𝑖, 𝑗) (8) 

 

In the formula, 𝑆(𝑖)  represents the saliency value of pixel i, 

𝐷(𝑖, 𝑗) denotes the Euclidean distance between pixels i and j, and 

Ω is the set of all pixels in the image. To simplify the calculation, 

the pixel features are first normalized to the range [0,255]. The 

frequency of pixel values is then calculated using a histogram, as 

expressed by the following formula: 

 

𝑆(𝑖) = ∑  

255

𝑖=0

𝐻(𝑖) × 𝑉(𝑖) (9) 

 

In the formula, 𝐻(𝑖) represents the histogram frequency of pixel 

value iii, and 𝑉(𝑖) denotes the normalized distance of the pixel 

value. The binarization operation is used to remove irrelevant 

salient regions, and it is expressed as follows: 

 

𝐵(𝑖) = {
1,     𝑆(𝑖) > 𝑈(𝜇[𝑆] + 𝑓[𝑆])
0,     otherwise    

(10) 

 

In the formula, 𝜇[𝑆] is the mean value of the saliency map, 𝑓[𝑆] 
is the standard deviation, U is a threshold control parameter, and 

𝐵(𝑖) represents the binarized result. After obtaining the binarized 

result, it is fed into the Adaptive Saliency Injection Module. This 

module computes weights based on the salient targets in the 

multispectral image to preserve the intensity and edge 

information of salient targets in the source image. This process is 

achieved through an adaptive module that calculates the fusion 

weights for each feature channel. Based on the saliency detection 

results, the fusion weights are calculated according to the features 

of different channels, expressed as follows: 

 

𝑊ms = 𝒳 (MaxPool (𝐸(�̂�)) + 𝐸(�̂�)) (11) 

 

In the formula, 𝑊ms  represents the channel weight of the 

multispectral image, 𝐸(�̂�) denotes the features obtained through 

the saliency map �̂�, and the MaxPool operation is used to enhance 

salient regions. Based on the calculated weights, the features of 

the multispectral image and the visible light image are fused 

through weighted addition, expressed as follows: 

 

𝐹fused = 𝑊ms × 𝐹ms + (1 − 𝑊ms) × 𝐹vis (12) 

 

In the formula, 𝐹ms and 𝐹vis represent the features of the 

multispectral image and the visible light image, respectively, 

while 𝐹fused is the feature map obtained after weighted fusion. 

After feature fusion, the feature reconstruction decoder is used to 

generate the final fused image. The decoder progressively 

restores the fused features and reduces the number of channels 

through several convolutional layers, thereby minimizing 

information loss. The reconstruction process is expressed as 

follows: 

 

𝐼fused = 𝐸(𝐹fused) (13) 

 

In the formula, 𝐸(⋅) represents the convolutional layer operation, 

and 𝐼fused is the final fused image. To optimize the network, a 

loss function is designed to ensure the preservation of the 

intensity and edges of salient targets while maintaining detailed 

texture information. The loss function is expressed as follows: 

 

𝐿texture =
1

𝑁
∥ |∇𝐼fused| − 𝑚𝑎𝑥(|∇𝐼ms|, |∇𝐼vis|) ∥1      (14) 

 

In the formula, N represents the number of pixels, which is used 

for normalization to ensure consistency in the scale of the loss 

values. ∇𝐼fused denotes the gradient of the fused image, 

representing the texture information by capturing the variations 

of each pixel in both horizontal and vertical directions. ∇𝐼ms and 

∇𝐼vis represent the gradients of the multispectral image and the 

visible light image, respectively. 

 

3. Experiment and Discussion 

To rigorously validate the proposed ECD-MIF framework, this 

section systematically evaluates its performance through 

Qualitative analysis and Quantitative Analysis.  

 

3.1 Experimental Settings 

Dataset: The BUCEA-MS-Road-Damage multispectral road 

damage dataset used in this study is based on the AQ600 

multispectral camera (wavelength range: 400–1700 nm) and was 

collected from road scenes within the campus of Beijing 

University of Civil Engineering and Architecture. The dataset 

includes high-resolution road image data covering visible, near-

infrared, and shortwave infrared bands. It spans five spectral 

bands: blue light (450 ± 10 nm), green light (550 ± 10 nm), red 

light (660 ± 10 nm), near-infrared (800 ± 15 nm), and shortwave 

infrared (1550 ± 30 nm). The data was collected across different 

seasons (spring, summer, autumn, and winter) and weather 

conditions (sunny, cloudy, post-rain), comprehensively 

documenting the spectral responses of road surfaces under 

varying humidity and lighting conditions. 

 

During data acquisition, a spatial resolution of 0.05 m/pixel 

(flying height of 100 m) was used, along with standard 

reflectance whiteboard-based radiometric calibration and 

GPS/IMU tightly coupled positioning technology, ensuring 

pixel-level alignment across all spectral bands (geometric 

registration error <0.5 pixel) and radiometric consistency. The 

dataset comprises 12,580 multispectral images with a resolution 

of 4000×3000 pixels, covering a total road area of 35 km. 

Annotations include pixel-level damage masks (e.g., crack width 

and pothole area), damage types (e.g., longitudinal cracks, 

alligator cracks, repair marks), and severity levels (mild, 

moderate, severe). The dataset is split into training, validation, 

and test sets in a 7:2:1 ratio, and balanced subsets for campus 

main roads, parking lots, and sidewalks are provided to support 

the robustness evaluation of road damage detection algorithms. 

 

Comparison Methods: The proposed Edge Chromatic 

Aberration-based Multispectral Image Fusion (ECD-MIF) 

method is compared with four state-of-the-art methods: 

DenseFuse (Li et al., 2019), Pix2Pix (Isola et al., 2017), PCNN 

(Xie et al., 2023), and PSPNet (Zhao et al., 2017). These methods 

encompass traditional transform-based approaches, deep 

learning models, and edge optimization techniques to ensure the 

comprehensiveness of the comparison. 
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Evaluation Metrics: To evaluate the fused images, several 

metrics were selected, including QNR (Khan et al., 2008), SSIM 

(Li et al., 2010), MI (Guihong et al., 2022), Spectral Angle 

Mapper (SAM) (Qu et al., 2022), Edge Chromatic Aberration 

Index (ECD-Index), Joint Gradient Magnitude (calculated using 

the Sobel operator), and Band-to-Band Chromatic Aberration 

(CIE-Lab ΔE\Delta EΔE) for calculating edge chromatic 

aberration intensity in edge regions. The formula is expressed as: 

 

ECD =
1

𝑁
∑  

𝑁

𝑖=1

(∥ ∇𝐼𝑖 ∥⋅ Δ𝐸𝑖) (15) 

 

In the formula, ∇𝐼𝑖   and Δ𝐸𝑖  represent the CIE-Lab chromatic 

aberration, where a lower value indicates stronger edge 

chromatic aberration suppression capability. SSIM and QNR 

focus on global quality assessment, SAM directly quantifies 

spectral fidelity, and ECD-Index is specifically designed for edge 

chromatic aberration analysis, forming a complementary 

evaluation framework. For downstream task performance, 

Accuracy, IoU, Recall, and Dice coefficient are selected as core 

metrics to construct a multidimensional evaluation system. 

Accuracy reflects global detection confidence, while IoU 

quantifies the overlap between the predicted bounding box and 

the ground truth boundary, particularly sensitive to elongated 

targets such as cracks with widths ≤5 mm. Recall monitors 

missed detection risks, effectively reflecting the ability of 

multispectral features to capture low-contrast damages. Dice 

coefficient assesses pixel-level prediction quality, with its 

symmetrical property balancing the asymmetric errors caused by 

false positives (FP) and false negatives (FN) due to road texture 

noise. 

 

3.2 Experimental Results 

Qualitative analysis: This study conducts a comprehensive 

comparison between the proposed method and four other state-

of-the-art methods on the BUCEA-MS-Road-Damage dataset to 

demonstrate the advantages of the proposed approach in terms of 

spectral fidelity and edge chromatic aberration suppression. As 

shown in Figure 2, focusing on the crack main region, DenseFuse 

(Figure a) preserves the crack trajectory but suffers from blurred 

edges, and the internal texture loses fine crack microstructures 

due to over-smoothing (SSIM decreases by 18%). Furthermore, 

excessive interaction between high-level and low-level 

information leads to the mutual suppression of semantic and 

detailed features, which obscures salient targets and edges. 

Pix2Pix (Figure b), due to the adversarial network, introduces 

unreal purple color bleeding along crack edges (ΔE=12.7\Delta 

E = 12.7ΔE=12.7) and exhibits abnormal jumps in grayscale 

values in the middle sections of cracks. PCNN (Figure c) 

achieves clear object edges but suffers from reduced contrast and 

severe edge jaggedness (edge curvature standard deviation 

increases by 25%). PSPNet (Figure d) retains detail information 

in some windows but still shows certain weaknesses and 

blurriness. The proposed method (Figure e), using edge 

chromatic aberration constraints and adaptive gradient 

enhancement, preserves the natural morphology of cracks with 

internal crack grid patterns clearly distinguishable (local contrast 

improves by 22%). 

indicating the method’s reliability in identifying damage types 

under complex lighting conditions (e.g., water reflection). For 

semantic segmentation, the Dice coefficient improves from 80.3% 

to 83.3%, with significant improvements in segmentation 

continuity for high-density mesh cracks (more than 5 intersection 

points per m²). the Dice coefficient improves from 80.3% to 

83.3%, with significant improvements in  

Figure 3. The qualitative comparison of the performance gains 

in road damage detection, classification, and segmentation tasks 

between the proposed method and four state-of-the-art methods 

on the BUCEA-MS-Road-Damage dataset. From left to right, it 

illustrates (a) DenseFuse, (b) Pix2Pix, (c) PCNN, (d) PSPNet, 

and (e) our proposed method. 

 

for high-density mesh cracks (more than 5 intersection points per 

m²).While the IoU increases by only 1.2%, the edge-chromatic-

aberration-based fusion strategy improves the detection rate of 

microcracks with widths <2 mm by 18%, verifying the method’s 

unique advantages in edge-sensitive scenarios. Overall, while 

other methods retain information from the source images to some 

extent, they still fall short in focusing on local details. To address 

this, adaptive fusion weight learning is applied, integrating 

saliency detection results from multispectral images, leading to a 

significant improvement in fusion quality. Thanks to the 

Adaptive Saliency Injection Module, regardless of which source 

image contains the critical information, the proposed method 

ensures that target brightness and edge details are preserved 

while effectively retaining salient information. 

 

Quantitative Analysis: To validate the performance of the 

proposed edge chromatic aberration-based multispectral fusion 

method (ECD-MIF), we compared it with four mainstream 

methods (DenseFuse, FusionGAN, U2Fusion, STDFusionNet) 

on the BUCEA-MS-Road-Damage multispectral road damage 

dataset. The quantitative results for all test images are presented 

in Table 1. The MI value of ECD-MIF is significantly higher than 

those of other methods, indicating that the adaptive edge 

chromatic aberration module effectively transmits multispectral 

information and reduces information loss during the fusion 

process. The ECD-Index is 25.9% lower than the second-best 

method, demonstrating that the chromatic aberration correction 

mechanism significantly suppresses spectral aliasing in edge 

regions. The SAM value improves by 40% compared to 

traditional methods, verifying the effectiveness of the spectral 

consistency constraint. Both QNR and SSIM achieve the highest 

values, showing that the fusion results achieve optimal overall 

quality under both no-reference and full-reference evaluation 

metrics. Compared to STDFusionNet, the proposed method  

 

Figure 2. The qualitative comparison of fusion performance 

between ECD-MIF and four state-of-the-art methods on the 

BUCEA-MS-Road-Damage dataset. From left to right, it 

illustrates (a) DenseFuse, (b) Pix2Pix, (c) PCNN, (d) PSPNet, 

and (e) our proposed method. 
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Method QNR SSIM MI SAM ECD 

Dense 
0.76 

±0.03 

0.82 

±0.02 
1.25 

±0.08 

4.5 

±0.6 

12.3 

±1.1 

Pix2Pix 
0.71 

±0.04 

0.78 

±0.03 

1.12 

±0.07 

5.2 

±0.7 

14.8 

±1.3 

PCNN 
0.79 

±0.02 

0.85 

±0.01 

1.38 

±0.06 

3.9 

±0.5 

9.7 

±0.9 

PSPNet 
0.83 

±0.02 

0.88 

±0.01 

1.45 

±0.05 

3.2 

±0.4 

8.5 

±0.8 

Ours 
0.89 

±0.01 

0.93 

±0.01 

1.62 

±0.04 

2.7 

±0.3 

6.3 

±0.6 

Table 1. Quantitative Results of Multispectral Fusion Images on 

the BUCEA-MS-Road-Damage Dataset 

 

Task Type index Swin  ours 

Object Detection Accuracy 88.7 92.3 

IoU 81.2 82.4 

Disease classification Accuracy  88.3 91.3 

Recall 86.8 89.8 

Semantic Segmentation Dice 80.3 83.3 

Table 2. Comparison of Downstream Task Performance 

 

shows more pronounced advantages in boundary fusion 

processing of road cracks due to the introduction of the GRDB 

residual dense block. 

 

To further validate the practical value of the fusion results, we 

evaluated the performance gains of ECD-Fusion in road damage 

detection, classification, and segmentation tasks. In detection 

tasks, the clear crack edges and spectral consistency in the fused 

images increased the accuracy of the YOLOv5 detection model 

to 92.3%, with a 15% reduction in the missed detection rate for 

small-scale damages such as cracks with a width <2 mm. In 

classification tasks, the enhanced multispectral features 

improved the accuracy of the ResNet-50 classification model by 

3%, and the recall rate for the severe alligator crack category 

increased from 82.1% to 89.8%. In segmentation tasks, the Dice 

coefficient of the U-Net model on ECD-Fusion data improved by 

3%, which can be attributed to the more complete damage 

topology and reduced chromatic aberration interference in the 

fusion results. 

 

4. Conclusions 

To address the challenges in existing multispectral fusion 

algorithms for road scenarios, such as difficulties in adaptively 

suppressing edge chromatic aberration and maintaining spectral 

consistency, this paper proposes an edge chromatic aberration-

based multispectral image fusion method (ECD-MIF). An 

adaptive correction module guided by gradient residuals is 

designed to fuse structural saliency features from multispectral 

bands with texture details from visible light, effectively resolving 

issues like crack edge blurring and color deviation found in 

existing methods. This module combines the global attention 

mechanism of the Swin Transformer with the local gradient 

optimization strategy of the GRDB, enabling dynamic learning 

of multi-band fusion weights. This approach enhances the 

contrast of damage targets while suppressing cross-modal 

spectral distortion. Experiments conducted on the BUCEA-MS-

Road-Damage dataset and public remote sensing datasets 

demonstrate that ECD-MIF reduces the Edge Chromatic 

Aberration Index (ECD-Index) by 25.9% compared to 

mainstream methods and improves crack detection accuracy by 

3.6%, validating the robustness of the algorithm under complex 

lighting and heterogeneous terrain scenarios. Furthermore, this 

network can be extended to multispectral inspection tasks for 

infrastructure such as bridges and tunnels, providing high-fidelity 

input data for advanced visual tasks like damage semantic 

segmentation and material degradation assessment. 
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