
 

 Roof Geometrical Component Extraction Using Bimodal Data and Graph Neural Network 

 

Faezeh Soleimani Vostikolaei *1, Shabnam Jabari 1 

 
1 Department of Geodesy & Geomatics Engineering, University of New Brunswick, Fredericton, NB, Canada- (fsoleima, 

sh.jabari)@unb.ca 

 

 

 

 

Keywords: Roof Line Detection, 3D City Modeling, Building Wireframe Modeling, Graph Neural Network, Building Segmentation 

 

 

Abstract 

 

Accurate extraction of roof geometrical elements is essential for creating 3D building models, which play a critical role in urban 

planning, city management, infrastructure development, and disaster management. Roof geometrical elements consist of lines, which 

represent the intersections of roof planes, and vertices, which define the intersections of roof lines. Due to the presence of shadowed 

areas or poor contrast in optical images, roof geometrical elements cannot be extracted efficiently in all areas. This study proposes a 

novel framework using optical imagery and Digital Surface Models (DSM) to extract these elements and construct 3D building models. 

The proposed approach uses convolutional neural networks (CNNs) to extract roof features from both RGB and DSM data. Next, a 

graph-based methodology is employed to create roof models, where roof lines and vertices are represented as nodes, and their spatial 

relationships are captured through an adjacency matrix. Finally, a Graph Neural Network (GNN) is used to analyze these relationships 

and refine roof component connectivity. In the first stage, the framework was evaluated on a dataset comprising 1,300 buildings in 

Fredericton, New Brunswick, achieving an Intersection over Union (IoU) of 0.73, an F1-score of 0.7645, and an F2-score of 0.7641. 

The mAP results of the second stage, 28.3, demonstrate the effectiveness of a graph-based approach in extracting and reconstructing 

roof components, contributing to more accurate and automated 3D city modeling. 

 

1. Introduction 
3D building models are the key element in the digital 

representation of urban landscapes. These models provide 

detailed spatial information about buildings and are crucial for 

various applications, including urban planning and management, 

construction, green energy efficiency, navigation, and disaster 

management (Soleimani Vostikolaei & Jabari, 2023). Among the 

building components, roofs play a key role in defining the 

building’s structure, and accurately modeling the roofs is the key 

step toward 3D building reconstruction. The complexity of roof 

structures—from simple gable and hip roofs to complex 

designs—makes automated extraction challenging. While 

significant progress has been made in reconstructing building 

models and extracting roof structures (Xiong et al., 2014; Xu et 

al., 2018; Zhao et al., 2022), developing automated and robust 

methods for roof component detection remains challenging. 

Various types of remote sensing data, including orthoimages, 

stereo optical images, point clouds, and DSM data, have been 

widely used for extracting building footprints and roof 

components (Awrangjeb et al., 2013; Zhao et al., 2022). In recent 

years, however, RGB imagery has emerged as the primary data 

source due to its high spectral information, making it suitable for 

detecting roof geometrical elements. These elements include roof 

planes, lines, and vertices which are the intersection of roof lines. 

For example, Campoverde et al. (2024) utilized airborne optical 

images with cadastral information to extract roof geometrical 

planes. To generate 3D building models, they converted the 2D 

planes into vectorized format and integrated DSM to create 3D 

roof planes. Similarly, (Schuegraf & Bittner, 2019) used optical 

images to extract roof sections and then vectorized them to 

generate 3D building models. While RGB imagery provides 

valuable optical and spectral information on buildings and roof 

elements, its performance is limited in areas with occlusions and 

shadows. To overcome these limitations, this study combines 
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DSM data with RGB imagery, leveraging both optical and 

elevation information to enhance roof element extraction and 

improve the accuracy of 3D roof reconstruction. 

Roof element recognition is a higher-level task than building 

footprint detection because it requires distinguishing and 

classifying multiple structural elements, such as ridges, valleys, 

eaves, and junction elements, rather than just detecting a 

boundary of buildings (Zhao et al., 2022). Moreover, in order to 

generate 3D building and wireframe models, the roof elements 

need to be converted to vector format. Hence, vectorization and 

finding the topological connections between roof elements is 

another high-level reconstruction task. 

Traditional methods for extracting roof elements typically 

involve multiple steps, such as feature extraction, morphological 

processing, and data format conversion. These approaches are 

often time-consuming and need labor work, which makes them 

difficult for large-scale 3D reconstructions. The advancement of 

deep neural networks (DNNs) has drawn significant attention to 

segmentation purposes. These models enable the fusion of 

multimodal data by allowing for the extraction of 2D roof 

components from optical and height data sources and combining 

these two features in the backbone of the model. Additionally, 

leveraging Graph Neural Networks (GNNs) to model 

relationships between roof lines and vertices has introduced new 

possibilities for automated 3D reconstruction, making end-to-end 

trainable methods. However, to the best of our knowledge, 

extracting roof lines and vertices from bimodal data and 

converting the pixel-level masks to the vector format has not been 

thoroughly explored in existing literature. 

In this study, we propose an automated approach for extracting 

building roof structures using high-resolution airborne images 

and DSMs derived from LiDAR point clouds. The main 

contribution of this work is the development of an end-to-end 

framework that extracts roof lines and vertices RGB and height 
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features through a convolutional neural network (CNN) and 

combines them before passing them to the segmentation head. 

The extracted pixel-based roof components are then converted 

into a structured, vectorized format using GNN, enabling more 

accurate roof modeling. 

 

2. Related Works 
This work is classified into two stages; in the first stage, the roof 

elements are extracted using a CNN approach, while in the 

second stage, the extracted roof components are converted to the 

vector format. The literature review of each stage is presented in 

the following sections.  

2.1 Convolutional Neural Networks (CNNs) for Roof 

Element Extraction 

Using convolutional neural networks (CNNs) has significantly 

advanced the extraction of building footprints and geometrical 

elements directly from high-resolution aerial photos, satellite 

images, and point clouds. 

Several studies have explored CNN-based approaches for 

recognizing and segmenting building geometries. While some 

works focused on building footprint extraction(Crawshaw, 2020; 

Liu et al., 2022; Sang & Minh, 2018; Soleimani Vostikolaei & 

Jabari, 2023, 2024a), recent studies have shifted towards 

identifying detailed roof structures using different data sources. 

For example, a group of works utilized just aerial or satellite data 

to detect buildings and their footprints (Benjamin Bischke et al., 

2019; Das & Chand, 2021; Robinson et al., 2022) while other 

studies utilized LiDAR point clouds or DSM to detect building 

outlines(Li et al., 2019; Pawłowski et al., 2023; Soleimani 

Vostikolaei & Jabari, 2024a; Zhuang et al., 2019).  To detect the 

roof geometrical elements, Campoverde et al. (2024) employed 

CNNs to segment roof planes from aerial imagery, integrating 

cadastral data, they also used digital elevation models to generate 

structured 3D representations. Similarly, Schuegraf, Shan, and 

Bittner (2024) utilized CNN-based feature extraction from RGB 

images to identify and vectorize roof sections, producing LoD2-

level building models. (Soleimani Vostikolaei & Jabari, 2024b) 

used Unet to extract roof lines and plane masks that were further 

used for reconstructing building wireframes. They utilized 

LiDAR point clouds to assign elevation to each roof line segment 

and create 3D wireframes of buildings. Zhao et al., (2022) used a 

multi-task learning method to extract planar structures from 

optical images and the attraction field map (AFM) to convert the 

masks to vector format. 

While CNNs perform exceptionally at extracting visual features 

and segmenting roof components, they result in pixel-based 

segments, making it challenging to generate vectorized rooflines 

directly. Moreover, RGB imagery alone struggles in occluded or 

low-contrast areas, limiting its effectiveness in highly dense 

urban environments. To address these challenges, hybrid 

approaches integrating CNNs with additional data sources—

DSMs—have been proposed to extract both optical and height 

features of building elements and concatenate them before 

feeding them to the segmentation head.  

2.2 Graph Neural Networks (GNNs) for Roofline and 

Vertices Connectivity and Vectorization 

Beyond pixel-based segmentation, accurately modeling roof 

structures requires detecting spatial relationships between roof 

elements. Graph-based approaches have gained increasing 

attention for their ability to capture complex geometric 

dependencies in structured data. Graph Neural Networks 

(GNNs), in particular, provide a robust framework for reasoning 

about connections between building line segments and vertices, 

which help to convert the segmented roof features into a vector 

format. 

GNNs have been successfully applied in various geometric 

reasoning tasks, including scene parsing and architectural 

structure reconstruction (Wu et al., 2020; Xiong et al., 2014). For 

the purpose of building modeling, GNNs provide a robust 

solution for learning spatial relationships between rooflines and 

connecting key junctions. Some works, such as Nauata & 

Furukawa, (2019), used graphical relationship concept to 

recognize roof topology by constructing adjacency matrices that 

encode connectivity between detected line segments. These 

methods showed the potential of GNNs for structured roof 

reconstruction but often relied on multi-stage pipelines and 

handcrafted constraints, limiting their efficiency and scalability. 

Zhao et al., (2022) also used GNN to find the relation between 

roof junctions and connect them to vectorize roof lines.  

In contrast, our approach integrates GNNs directly into an end-

to-end learning framework, where rooflines and vertices are 

represented as graph nodes, and their relationships are learned 

through the network. By using GNNs for roofline and vertices 

connectivity reasoning, we aim to overcome the pixel-based 

limitations of conventional segmentation-based methods, 

ensuring that extracted roof components form topologically 

accurate structures.  

 

3. Methodology 
The proposed approach for roof element extraction consists of 

two main stages: (1) Deep learning-based bimodal feature 

extraction for roof element segments and (2) Graph-based neural 

network to find the relation between roof elements. This section 

describes the methodology in detail. 

3.1 Stage 1: Bimodal Feature Extraction and Segmentation 

The overall pipeline of the stage1 method is shown in Figure 1. 

 
Figure 1. The overall pipeline of the proposed method. (a) 

represents the feature extraction section from two different 

branches. (b) shows the combination of the extracted features in 

each modality. 

3.1.1 Feature Extraction with ResNet Backbone 

To extract low- and mid-level spatial features, we employ a 

ResNet-50 backbone pre-trained on ImageNet. This allows for 

hierarchical semantic feature extraction using multiple 

convolutional layers. Each dataset is fed to the ResNet backbone, 
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resulting in different depths of optical and height feature maps. 

The RsNet operation can be formulated as follows: 

Fres = ResNet (I) ∈ ℝ C × H/4 × W/4 

Where H, and W are the height and width of image, tensor I = [I1, 

I2], and C is the number of feature channels after convolutional 

processing. 

3.1.2 Feature Pyramid Network (FPN) for Multi-Scale 

Representation 

To upsample and fuse features from different levels of ResNet, a 

Feature Pyramid Network (FPN) is applied to each branch. FPN 

constructs multi-scale pyramidal feature maps by fusing top-

down and bottom-up optical and height features separately. 

This structure enhances the detection of both fine roof junctions 

and large-scale structural lines, crucial for subsequent graph-

based reasoning. 

FFPN = FPN (Fres), {Pi = [P2, P3, P4, P5]} 

Where Pk represents feature maps at different scales. 

3.1.3 Feature Fusion 

To have a unified feature map containing both modality 

attributes, we combined the optical and height features resulting 

from FPN layers.   

The concatenation operation can be formulated as: 

Fconcat = Concat(Fres_RGB, Fres_DSM) 

Where Concat(⋅) represents the concatenation operation FRGB 

and FDSM represents the optical and height features extracted 

from ResNet followed by FPN backbones, respectively.  

3.1.4 Region Proposal Network (RPN) and RoIAlign 

To segment individual roof elements, we employ a Region 

Proposal Network (RPN), followed by RoIAlign, for precise 

feature extraction. The RPN generates candidate bounding boxes 

for objects, and RoIAlign ensures high-resolution feature 

extraction for each region: 

Each bounding box is classified into: 

• Roof Junctions  

• Roof Lines 

The segmentation mask is generated through the segmentation 

head, producing pixel-wise delineations. 

3.2 Stage 2: Graph-Based Structural Reasoning 

The flowchart of the second stage of the proposed method is 

presented in Figure 1, section c. 

3.2.1 Constructing the Graph from Detected Roof Elements 

Once roof junctions and lines are segmented, we construct a 

graph representation where: 

• Nodes (V): Represent roof line segments. 

• Edges (E): Encode geometric and structural relationships 

between roof line elements. 

The features of each node are the semantic features extracted 

from final feature maps of the previous stage and geometric 

features of roof lines, which are: 

• Start and end coordinates  

• Midpoint coordinates  

• Line length (euclidean distance between endpoints) 

• Optical RGB values of the midpoint of each line segment 

• Feature map aggregation along the segment: 

3.2.2 Edge Construction and Feature Extraction 

Edges are formed based on geometric constraints. The two line 

segments are connected if they share an endpoint and form a valid 

structural connection. 

Each edge is assigned features: 

• Euclidean Distance: Between nodes. 

• Angle Difference (θ): Between connected lines: 

θi,j = |arctan (
y

2
− y

1

x2 − x1

) − arctan (
y

4
− y

3

x4 − x3

)| 

 

Where i and j are two connected line segments. 

 

3.2.3 Graph Neural Network (GNN) for Structural Connectivity 

To infer relationships between roof elements, we use a Graph 

Convolutional Network (GCN), where node embeddings are 

iteratively updated using neighboring connections: 

H (l+1) = σ (D−
1

2AD−
1

2H(l)W(l)) 

Where H(l) represents node embeddings at layer l, A is the 

adjacency matrix, D is the degree matrix, diagonal matrix with 

node degrees, W(l) is a learnable weight matrix, and D−
1

2AD−
1

2 is 

the normalized adjacency matrix which ensures feature 

aggregation is scale-invariant and prevents node influence from 

growing arbitrarily. 

We train the GNN with a binary classification objective in which 

positive edges represent the valid connections between roof 

elements and negative edges meaning that there are non-

connected elements. Using a contrastive loss function, we 

optimize the model to learn meaningful structural relationships. 

 

L =  − ∑ log (σ (Hi. Hj)) − ∑ log(1 −  σ (
(I,j)∈E−(I,j)∈E+

Hi. Hj)) 

Where E⁺ and E⁻ represent positive and negative edges, 

respectively. 

 

 

4. Experiment 

4.1 Data Preparation 

We created a rooftop dataset to extract all roof elements.  

Each input consists of: 

• RGB Image (I₁ ∈ ℝ³ × H × W): Three-channel data 

representing color intensity in red, green, and blue. 

• DSM Map (I₂ ∈ ℝ¹ × H × W): Single-channel DSM 

representing elevation values. 

• Mask (I3 ∈ ℝ¹ × H × W): single-channel masks of roof 

lines and vertices. 

The dataset was gathered from buildings located in New 

Brunswick, Canada. To generate a high-resolution digital surface 

model, we interpolated the first returns of LiDAR point clouds 

with a density of six points per square meter, resulting in a 41 cm 

spatial resolution. In addition, we incorporated high-resolution 

airborne orthophotos with a 7.2 cm spatial resolution, which were 

annotated to mask out roof lines and junctions. These annotated 
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orthoimages were used to construct an optical dataset. The 

dataset consists of 1,300 buildings, of which 70% were assigned 

for training and validation, while the remaining 30% was held out 

for testing the model’s performance. 

To mitigate overfitting in deep learning, we used data 

augmentation for the training samples. Specifically, 

augmentation included vertical and horizontal flipping of the 

images, ensuring the model learned robust and invariant 

representations of roof structures. 

We also used Roof3D1 to further assess the performance of our 

proposed method. This dataset includes optical and DSM photos 

of roofs but doesn't contain the label required for segmentation 

purposes. Hence, we manually labeled 50 data samples for testing 

the performance. 

4.2 Evaluation Metrics 

To assess the performance of the proposed multi-output 

segmentation network, in the first stage, we utilized three key 

metrics: Intersection over Union (IoU), Dice Coefficient (F1-

score), and F2-score. These metrics provide an evaluation by 

considering the accuracy of predicted roof vertices and line 

elements and their alignment with ground truth data. 

Intersection over Union (IoU) measures the degree of overlap 

between the predicted roof elements and the ground truth. It is 

computed by comparing the shared area of correctly identified 

roof elements to the total area covered by both predictions and 

ground truth. A higher IoU value indicates a greater level of 

agreement between the predicted and actual roof structures. 

F1-score serves as an alternative to IoU, placing more emphasis 

on the overlapping regions. Unlike IoU, it assigns double weight 

to the correctly predicted areas, making it a balanced measure of 

both precision and recall. This metric ensures that both false 

positives and false negatives are considered when evaluating the 

quality of roof segmentation. 

The F2-score is a variation of the F1-score that prioritizes recall 

over precision. This adjustment is particularly useful in 

applications where missing parts of roof elements (false 

negatives) are more detrimental than predicting extra, incorrect 

components (false positives). By increasing the importance of 

recall, the F2-score helps ensure that essential roof details are 

accurately captured in the segmentation process. 

To evaluate the performance of the graph neural network in the 

second stage, we used the mean Average Precision (mAP) metric. 

This metric evaluates how well the GNN predicts valid edges 

compared to the invalid edges. 

mAP = 
1

|N|
∑ APi

N
i=1  

Where AP is the average precision for each IoU threshold and N 

is the number of IoU thresholds. 

4.3 Network Details 

We developed a bimodal multi-output segmentation framework 

to separately extract and fuse optical and elevation features for 

detecting essential rooftop elements required for roof modeling 

in two stages.  

In the first stage, RGB and DSM data were processed through 

two parallel ResNet branches followed by a feature pyramid 

network to extract multi-scale features, as illustrated in Figure 1, 

section a. The extracted bimodal feature maps were then 

concatenated to form a unified representation, which was 

subsequently fed into the region proposal network. The RPN 

 
1 https://github.com/dlrPHS/GPUB?tab=readme-ov-file 

generated region proposals, which were refined using RoIAlign, 

ensuring precise spatial alignment and accurate segmentation of 

roof components. The backbone architecture consisted of 

ResNet-50 with FPN, and the network was trained for 200 epochs 

using the Adam optimizer on an NVIDIA GeForce RTX 3090 

GPU with 64 GB memory. During both training and inference, 

input images were resized to 256 × 256 pixels. 

To find the relation between line segments, we employed a graph 

convolutional network to model relationships between roof lines 

and junctions extracted from bimodal aerial data. The graph was 

constructed by defining roof lines and junctions as nodes, while 

edges captured geometric and topological dependencies between 

them. GCN was trained for 200 epochs using the Adam optimizer 

with a learning rate of 0.01. 

5. Results and Discussion 

In our previous work (Soleimani Vostikolaei & Jabari, 2024b), 

we extracted roof planes and lines and then segmented point 

clouds using the 2D detected planes and used the point segments 

to create 3D lines. However, one of the challenges was 

converting pixel-based segmentation into vector representations 

and accurately finding relationships between line segments. In 

this study, we address this limitation by using a graph 

convolutional network to model the connections between 2D line 

segments. 

The raster-based segmentation of roof junctions and lines 

resulting from stage 1 of the proposed method is shown in Figure 

2.  

Orthoimage Line mask Junction mask 

   

   

 
 

 

   

Figure 2 . Line and junction masks resulting from the proposed 

network. Where the green and blue lines represent different 

instances of line segments and red points show the vertices 

detected from network. 
To assess the performance of our approach, we trained our 

segmentation model on a custom rooftop dataset and further 

evaluated it on the Roof3D benchmark dataset. Table 1 presents 

a comparative analysis of the segmentation performance for the 
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two datasets. The performance difference between these two 

datasets is attributed to differences in pixel size and spatial 

resolution between them. As we can see from Figure 2, our 

method demonstrates robust line and junction detection 

capabilities across diverse roof types. 

We used multi-output segmentation in phase 1. As demonstrated 

in prior research (Soleimani Vostikolaei & Jabari, 2024b), multi-

output segmentation consistently outperforms compared to 

single-output segmentation. A key advantage of the multi-output 

segmentation approach is the shared feature extraction backbone, 

which enhances learning across different output types. This 

shared learning network helps the model better recognize 

common features like edges and corners, leading to improved 

segmentation quality.  

 IoU F1-Score F2-Score 

Custom dataset 0.73 0.7645 0.7641 

Roof3D 0.69 0.7123 0.7056 

Table 1. Performance analysis of the proposed method 

In the second stage, we employ a graph convolutional network to 

find the relationships between roof line segments. The results, 

illustrated in Figure 3, show that our method successfully 

reconstructs connectivity between the roof structures. 

However, some challenges remain—a few line segments were 

not correctly detected in the segmentation stage, while others 

were misclassified as roof lines, introducing ambiguity in the 

graph construction process. the misclassified line segments 

usually have a image coordinates far from the existing lines, so 

the network can not find their relationship. Despite these 

challenges, our approach effectively captures topological 

relationships and provides a reliable basis for structured 3D roof 

modeling. 

Orthoimage Line mask Line vector 

   

   

   
 

Figure 3. The vector output resulted from the GCN network 

compared to the orthoimage and masks. 

To assess the accuracy of the second phase, we used the mAP 

metric. The mAP result shows an accuracy of 28.3 which proves 

the trustable connection among different line segments. 

6. Conclusion 

In this work, we developed an end-to-end learning bimodal 

segmentation framework to extract the optical and elevation 

features of roof elements and fuse them before feeding them to 

the segmentation head. The objective was to evaluate whether 

integrating both optical and DSM data enhances segmentation 

performance compared to processing each modality 

independently. The performance of the method was tested on two 

different datasets, one custom dataset created from rooftops of 

the eastern part of Canada and also Roof3D dataset.  

In the second stage of the proposed method, we converted the line 

segments to a graph structure and then used a graph-based 

convolutional network to find the relationship between line 

segments and connect them. We explored converting pixel-based 

segmentations into vectorized representations, which are crucial 

for 3D reconstruction. 

The original DSM data have an offset relative to the optical 

images, which causes an error in the segmentation stage. In future 

work, we aim to enhance the framework by integrating an end-

to-end learning approach to automatically correct this 

misalignment and improve the feature fusion accuracy. 
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