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Abstract 
 
Patna, the capital of Bihar, is among the cities most severely affected by floods in India. It is primarily due to its geographic location, being 
bordered by the Ganga, Sone, and Punpun rivers, which significantly increases its vulnerability to flooding. Our study aims to quantify the 
dynamic nature of Patna's floods using statistical parameters, including global correspondence based on Moran’s Index. The flood extents 
required for statistical analysis were generated by applying Otsu thresholding to Sentinel-1 Synthetic Aperture Radar (SAR) data in Google 
Earth Engine (GEE) for the 2023 monsoon period (July to October). Spline interpolation was used to smooth the data, generating a continuous 
curve that fits the original discrete measurements. Spatiotemporal analysis revealed significant variability in water extent, peaking at 484.13 
sq. km on 3rd September and receding to 97.88 sq. km on 20th September. The correspondence values indicate a significant shift in flooded 
areas throughout the monsoon period. The reason may be attributed to the combined effect of change in local rainfall patterns, poor drainage 
system and poor flood management in the upper reaches of Ganga. Further, validation with high-resolution PlanetScope data shows an overall 
accuracy of 93.10% and an F1 score of 0.8416. Overall, the findings provide valuable insights into flood management and disaster 
preparedness in the region.

1. Introduction 

Patna, a major city in India, experiences significant annual flooding, 
particularly during the monsoon season. This recurring issue is 
exacerbated by its geographical position along major rivers like the 
Ganga, making it highly vulnerable to water-related disasters (Khan 
et al., 2022; Kouser-Asif, 2022). This led to substantial economic 
losses and environmental damage, including deforestation, 
riverbank erosion, and the deterioration of water quality (Yaseen, 
2024). Several studies were carried out to map and assess the reasons 
and impacts of the flood in Patna (Kumar and Pradhan, 2024; 
Kumari et al., 2024). Otsu thresholding has been a widely used flood 
mapping technique using SAR data, which is preferred over optical 
data for flood mapping due to its cloud-penetrating and day-night 
acquisition capabilities (Tiwari et al., 2020; Tran et al., 2022; 
Wayalun et al., 2012). A study found that using RS, GIS, and 
bivariate models like the frequency ratio and entropy models 
effectively mapped flood risks in the Patna district. About 16.35% 
(FR model) and 9.98% (SEI model) of the area are at very high flood 
risk, particularly in the southeast and northwest. Validation using 
the ROC curve confirmed the reliability of these models, showing 
that 13 out of 23 blocks have over 25% of their area under very high 
flood risk (Sarkar et al., 2022). 

A study assessed flood vulnerabilities across Bihar, India, including 
Patna, using data from 1953 to 2020 and a composite index based 
on exposure, sensitivity, and adaptive capacity. The backwaters 
from the Ganges exacerbate waterlogging issues from Patna to 
Lakhisarai. Patna's higher education levels and per capita income 
contribute to lower flood vulnerability, guiding targeted disaster risk 
reduction policies. It is only focused on the city area rather than the 
entire district (Kumar and Pradhan, 2024). Another study reveals 
that the urbanization and land use changes have intensified flooding 
issues in Patna. Between 2005 and 2019, built-up areas increased by 
22.82% while agricultural land decreased by 15.48%, leading to a 

rise in runoff from 16.8% to 23.72% from 2010 to 2015 (S. Ranjan 
et al., 2021). Severe water pollution in flood-affected areas, with 
high levels of contaminants, increases the severity of floods 
(Ravindra et al., 2024).  

Sentinel-1 proved very useful in various types of disaster detection 
and preparedness, including land deformation, flood, land use land 
cover alteration, etc. (Karanam et al., 2021; Mastro et al., 2022; A. 
K. Ranjan et al., 2021; Ruiz-Armenteros et al., 2016; Thakur et al., 
2025, 2024; Tran et al., 2022; Twele et al., 2016; Vanama et al., 
2020; Zhang et al., 2023). A study uses thresholding and 
unsupervised classification on high-resolution multi-temporal SAR 
and optical images to map inundated areas during the August 2017 
floods in Uttar Pradesh, India. Zonal statistical analysis was 
performed, and district-wise flood mapping was created and 
validated with meteorological data. The results demonstrate the 
effectiveness of SAR in flood monitoring and management (Anusha 
and Bharathi, 2020). Further, SAR-based flood mapping leverages 
more advanced methodologies like fuzzy logic, machine learning, 
and data fusion, which offers increased accuracy compared to 
traditional techniques. Recent open SAR datasets with ground-truth 
references enable objective validation and reproducibility. 
However, challenges persist in urban and vegetated areas due to 
complex scattering mechanisms (Amitrano et al., 2024). 

A study on automatic flood mapping algorithms for areas with 
emerging vegetation uses single SAR acquisitions and ancillary 
data. It employs probability binning for statistical backscatter 
analysis. It also integrates land use, morphology, and context 
through fuzzy logic. This methodology was applied to the 2011 
Condamine-Balonne floods and achieved over 80% accuracy using 
optical validation (Grimaldi et al., 2020). Another study using the 
GEE4FLOOD framework leverages Google Earth Engine, Sentinel-
1 SAR imagery, and Otsu’s thresholding for rapid flood mapping, 
tested on Kerala’s 2018 flood event. It incorporates remote sensing 
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datasets for water mask creation and validation. The method 
achieved 82% overall accuracy and generated flood maps within 2–
4 minutes (Vanama et al., 2020). A study evaluates the effectiveness 
of Sentinel-1 (SAR) and Sentinel-2 (optical) in systematic flood 
assessment across Europe, focusing on flood events with durations 
of hours to days. Using 10 years of river discharge data from ~2000 
sites, it estimates the potential observation coverage of inundation 
events. Results show that Sentinel-1 can potentially observe 58% of 
flood events, while Sentinel-2 is limited to 28% due to cloud 
coverage (Tarpanelli et al., 2022). 

The role of machine learning techniques in flood risk and impact 
assessments emphasises its potential to improve accuracy, reduce 
computation time, and lower costs. Applications include remote 
sensing for exposure estimation and social media analysis for flood 
response. Challenges like data needs, applicability, bias, and ethics 
are also addressed (Wagenaar et al., 2020). Flood inundation maps 
provide valuable information towards flood risk preparedness, 
management, communication, response, and mitigation during 
disaster (Soudagar et al., 2025). An approach was made to develop 
the flood risk map using satellite imagery. Sentinel-1 SAR data and 
the Otsu method were utilized to map flood inundation areas. 
Google Earth Engine (GEE) implemented the Otsu algorithm and 
processed Sentinel-1 SAR data. The results were assessed by 
calculating a confusion matrix, comparing the submerged water 
areas of flooded (Aug 2018), non-flooded (Jan 2018) and previous 
year’s flooded seasons (Aug 2016, Aug 2017), and analyzing 
historical rainfall patterns to understand the flood event. The overall 
accuracy for the Sentinel-1 SAR flood inundation maps of 9th and 
21st August 2018 was 94.3% and 94.1%, respectively. The 
submerged area (region under water) classified significant flooding 
as compared to the non-flooded (January 2018) and previous year’s 
same season (August 2015–2017) classified outputs. Summing up, 
observations from Sentinel-1 SAR data using the Otsu algorithm in 
GEE can act as a powerful tool for mapping flood inundation areas 
at the time of the disaster, enhancing existing efforts towards saving 
lives and livelihoods of communities and safeguarding 
infrastructure and businesses (Tiwari et al., 2020; Tran et al., 2022; 
Wayalun et al., 2012). 

Previous research often overlooked the detailed spatial distribution 
of floods over the monsoon period. The association between the 
extent of water among different dates is still unexplored. The 
research addresses gaps by quantifying the dynamic nature of 
Patna's floods using statistical parameters, particularly Moran’s 
Index. It applies Otsu thresholding on advanced Sentinel-1 SAR 
processed data for precise flood mapping over time. Additionally, it 
accesses spatial and temporal variability of floods to access and 
quantifies the changing behaviour of floods. Validation was done 
using Cloud-free PlanetScope optical data, and parameters such as 
F1 score and overall accuracy were calculated to show the reliability 
of the result. Overall, this paper provides a profound insight into 
flood behaviour and can provide a robust framework for future flood 
risk management in the region. 

2. Study Area 

Patna is the capital city of Bihar and the district's administrative 
centre. It is one of the oldest continuously inhabited cities in the 
world (Alakshendra, 2019; Boyk, 2015). The city is located in the 
south Ganga plain and is frequently affected by monsoonal floods 

due to intense rainfall, River bank line changes, rapid urbanization 
and improper drainage system. The city is situated at an altitude of 
67 meters above mean sea level, stretching between latitudes 25.22° 
N to 25.75° N and longitudes 84.72° E to 84.73° E. It has an area of 
3,202 sq. km. with major LULC classes constituting- agriculture 
land, builtup area, waterbody and rangeland (Figure 1). The district 
features predominantly flat alluvial plain terrain, with naturally 
formed levees found south of the Ganga River. The Diara Plain 
extends across this area, making it highly vulnerable to flash floods. 
On the eastern side of the district, the Tal physiography is present. 
Flooding severely impacts the district, with some areas submerged 
under floodwaters reaching heights of 4 to 5 meters  (Rashiq and 
Prakash, 2023; Ravindra et al., 2024; Sarkar et al., 2022).  

 
Figure1. Study area map of Patna district showing different LULC 

classes. 

3. Methodology 

3.1 Dataset 

Sentinel-1 ascending pass GRD (Ground Range Detected) data with 
VV polarization was utilized to analyze monsoon season dynamics 
from August to October. Data was downloaded and processed using 
GEE (Google Earth Engine). The data is collected for the monsoon 
season, i.e. August to October, at 12-day intervals. Ten images were 
used during this study. Cloud-free PlanetScope optical data, with a 3-
meter spatial resolution from 18/09/2023, was utilized for validation.  

3.2 Processing 

The methodology The overview of the methodology followed is 
shown in Figure 2. The Sentinel-1 GRD images of the ascending pass 
were pre-processed and thresholded in the GEE platform. The 
application of orbit files, thermal noise removal, calibration, speckle 
filtering, terrain correction, and decibel scale conversion were some 
of the preprocessing steps that were applied (Soudagar et al., 2024). 
The VV polarized images were used in this study to derive flood 
extents. The pre-processed images were cropped to match the study 
area extent and were classified into water and non-water classes by 
using Otsu thresholding (Otsu, 1979). Otsu thresholding is an 
automated thresholding approach where the optimal threshold is 
found by maximizing the between-class variance of water and non-
water classes (Equation 1). 

                            𝜎𝜎𝐵𝐵𝐵𝐵2 = 𝜔𝜔𝐵𝐵𝜔𝜔𝑛𝑛𝐵𝐵(𝜇𝜇𝐵𝐵−𝜇𝜇𝑛𝑛𝐵𝐵)2                      (1) 
 

Where 𝜎𝜎𝐵𝐵𝐵𝐵2  is the between-class variance, 𝜔𝜔𝐵𝐵 and 𝜔𝜔𝑛𝑛𝐵𝐵 are the 
probability of occurrence for water and non-water class, and 𝜇𝜇𝐵𝐵 and 
𝜇𝜇𝑛𝑛𝐵𝐵 are the class means of water and non-water classes, 
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respectively. Binary classified maps were generated for all the 
images. Water and non-water classes were represented 1 and 0, 
respectively. The SAR-derived flood extent of 18/09/2023 was 
validated against a flood reference layer generated from 
PlanetScope optical image acquired on the same day. Further, the 
extent of the area of water was calculated and used in spatial 
analysis. Global Moran's I formula (Equation 2) was used to 
calculate the extent of association between each pair.  
 

                           G = 𝑛𝑛∑𝑖𝑖∑𝑗𝑗𝐵𝐵𝑖𝑖𝑗𝑗(𝑥𝑥𝑖𝑖−𝑥𝑥 )�𝑥𝑥𝑗𝑗−𝑥𝑥 �
∑𝑖𝑖(𝑥𝑥𝑖𝑖−𝑥𝑥 )2∑𝑖𝑖∑𝑗𝑗𝐵𝐵𝑖𝑖𝑗𝑗

                          (2) 

 
where 𝑛𝑛 is the number of grid cells, ∑𝑖𝑖∑𝑗𝑗𝑤𝑤𝑖𝑖𝑗𝑗  is the sum of weights, 
𝑤𝑤𝑖𝑖𝑗𝑗 is the weight assigned, 𝑥𝑥𝑖𝑖 is the water extent (1 if water is 
present, 0 if absent) in the cell 𝑖𝑖 and 𝑥𝑥𝑗𝑗  are the values of the spatial 
variables, and 𝑥𝑥 is the mean value of the variable. In this context, the 
spatial association function of Arc-GIS Pro was applied between the 
Input zone, i.e., the water extent map of previous dates, and the 
Overlay zone, i.e., the water extent map of later dates. 
 

 
 
 

Figure 2. Methodological flowchart showing various steps 
involved in the study. 

 
4. Results and Discussions 

 
4.1. Flood extent generation 
 
The flood extent maps were generated in GEE using the Otsu 
thresholding technique. The spatial and temporal variation of flood 
extent is shown in Figure. 3. The Otsu thresholding technique works 
by maximising the between-class variance, which is the difference 

between the mean values of the water and non-water classes, 
providing an optimal threshold for classification. The optimal 
threshold values for each image used for distinguishing flooded 
areas for different captures are represented in Table 1. 
 

Table 1. Optimal threshold values for each image 
Date Threshold 

Value (dB) 
Date Threshold 

Value (dB) 
08th July -12.856 06th Sept -10.903 
20th July -12.877 18th Sept -16.879 
01st Aug -12.883 30th Sept -12.831 
13th Aug -14.874 12th Oct -12.847 
25th Aug -12.887 24th Oct -12.864 

 
 

 
 

Figure 3. Spatio-temporal distribution of flood for Patna (Red 
indicates flood). 

 
The flood extents were validated against the flood reference layer 
generated from the cloud-free PlanetScope optical image acquired 
on 18/09/2023. The NDWI image was formed using Green and NIR 
bands. Further, the NDWI image was segmented into water and non-
water class using thresholding and manual digitization. The true 
colour composite of PlanetScope image is shown in Fig. 4 (a) and 
the corresponding flood reference layer is shown in Fig. 4 (b). We 
carried out pixel to pixel validation of generated flood extent of 
18/09/2023 with flood reference layer. Upon validation an overall 
accuracy of 93.10% and F1 score of 0.8416 were obtained. Precision 
and recall are 0.9853 and 0.7345, respectively. 
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(a) 

 
(b) 

 
Figure 4. Validation of data from planet imagery. (a) True color 

composite of PlanetScope scene. (b) Labels generated from 
PlanetScope imagery for validation. 

 
4.2. Value-Based Analysis 
 

Table 2: Spatial statistics of measured water extent for Patna for 
different dates in 2023. 

Date Water 
extent 
(sq.km.) 

Date Water 
extent 
(sq.km.) 

08th July 215.32 06th September 470.27 
20th July 306.89 18th September 116.31 
01st August 299.44 30th September 213.23 
13th August 209.10 12th October 239.49 
25th August 320.37 24th October 268.83 

 
Table 2 presents the spatial statistics of water extent in the Patna 
district for various dates during the study period. Spline 
interpolation was used to smooth the data, generating a continuous 
curve that fits the original discrete measurements (Figure 5). This 

smooth curve enables the calculation of statistical values, with the 
mean, maximum, and minimum water extents derived from it. The 
mean water extent over the period was 267.98 sq. km. The maximum 
water extent of 484.13 sq. km. was observed on 3rd September 2023, 
suggesting a major flood event or heavy rainfall within the city 
likely occurred during early September. It is possibly due to heavy 
monsoon rains and Ganga River inundation. Conversely, the 
minimum water extent of 97.88 sq. km. was recorded on 20th 
September 2023, indicating a period of floodwater recession likely 
resulting from reduced rainfall or improved drainage. The dates 
corresponding to these extremes are identified by mapping their 
indices back to the original time axis. The variation in water extent 
across the monsoon period reflects the dynamic nature of flooding 
in the region. 

 
Figure 5. Variation of the flooded area within the study period. 

 
4.3. Area-Based Analysis 
 

Table 2: Global correspondence between the water extent of 
different dates of 2023. 

2023 08/07 01/08 25/08 18/09 
01/08 0.1029  
25/08 0.0744 0.1036  
18/09 0.2167 0.1906 0.2355  
12/10 0.0988 0.0939 0.0978 0.2754 

 
The global correspondence values from Table 2 show how similar 
the water extents were between different dates. For continuous 
change detection, interpolation was applied to the correspondence 
matrix by normalizing the values to a [0, 1] range. A denser grid of 
query points was created using a mesh grid, and interp2 was used to 
estimate values at these points through spline interpolation. This 
results in a smooth representation of the data. Finally, the 
interpolated values were clamped to ensure they remained within the 
[0, 1] range, creating a continuous and visually interpretable map of 
correspondence between dates (Figure 6). 

Higher values, such as 0.2754 between 18th September and 12th 
October, indicate that the water extent remained relatively consistent 
during these periods, likely due to sustained flooding or slow 
recession of floodwaters. Lower correspondence values, such as 
0.0744 between 08th July and 25th August, suggest significant 
changes in water extent, possibly due to fluctuating rainfall and 
varying flood intensities. The variations in water extent and global 
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correspondence can be attributed to the combined effects of Ganga 
River inundation and localized waterlogging. The rise in water 
extent in early September coincides with the peak of the monsoon 
season, when the Ganga River often overflows, causing widespread 
flooding. 

 
Figure 6. Global correspondence plot for flooded areas of different 

dates within the study period. 
 

5. Conclusion 
 
In 2023, the Patna district experienced significant spatiotemporal 
variability in water extent due to flooding and waterlogging, as 
illustrated by the measured areas of water coverage and their global 
correspondence across different dates. The water extent fluctuated 
considerably, peaking at 484.13 sq. km. on 03rd September, which 
likely marks the height of the monsoon season and river inundation. 
This was followed by a sharp decrease, indicating rapid water 
recession, although some areas remained persistently waterlogged, 
as evidenced by the still considerable water extent in October. The 
global correspondence values reveal that the water extent varied 
widely between certain dates, particularly earlier in the season, with 
lower correspondence values such as 0.0744 between 08th July and 
25th August. In contrast, later dates showed higher correspondence, 
such as 0.2754 between 18th September and 12th October, 
indicating more stable or prolonged flooding conditions. These 
findings underscore the complex dynamics of flooding in Patna, 
driven by varying rainfall patterns, river behaviour, and the district's 
drainage capacity. This study can be further expanded by 
incorporating hydrological and meteorological factors such as 
rainfall intensity, river discharge, and soil moisture to provide a 
more comprehensive understanding of flood dynamics. 
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