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Abstract: 

This preliminary study investigates the rapid urbanization of Dodoma, the Capital City of the Republic of Tanzania, over 21 years 

(1997–2018). The rapid urbanization of cities worldwide is leading to significant changes in land use and land cover patterns, 

particularly in emerging urban centers. Monitoring the spatial and temporal dynamics of these changes is essential for effective 

urban planning and sustainable development. Using time-series Landsat satellite data, the study examines the spatial expansion of 

urban areas and the resulting changes to the landscape in Dodoma. The Urban Expansion Intensity Index (UEII) and Shannon’s 

Entropy Index (SEI) were applied to assess the extent and patterns of urban growth. The results indicate that Dodoma has undergone 

rapid urbanization, with the northern region showing an SEI of 0.439 and the southern region an SEI of 0.371 between 1997 and 

2018. Additionally, Sorenson’s UEII coefficient reveals an urban growth rate of approximately 9,131 hectares over the same period, 

with a coefficient value of 0.224. These findings are significant for the achievement of Sustainable Development Goal 11 (SDG-

11), which advocates for the development of sustainable cities and communities. The study emphasizes the need for comprehensive 

federal policies to monitor urban dynamics and safeguard ecological resources as Dodoma and other emerging cities across 

Tanzania continue to expand. 

1. Introduction

Globally, the process of increasing urban dwellers is leading to 

rapid landscape changes in emerging urban cities. In 2018, for 

instance, about 26.5% of the world's inhabitants lived in cities 

with less than 0.5 million dwellers (Cobbinah & Darkwah, 

2017; Xu, Dong, et al., 2019). Similarly, from 2018 to 2030, 

the number of cities with 0.5 million people or more was 

expected to increase by 23% in Asia and by 57% in Africa(Wu 

et al., 2021; Xiao et al., 2024). This scenario has a likelihood to 

cause fast urban expansion and amplify the stress on 

neighboring ecosystems. Thus, rapid population growth and the 

related need for housing and other amenities have resulted in 

an increasing urbanized land cover types in most African 

countries. Most physical developments in Africa are typically 

characterized by scattered spatially distributed infrastructures. 

Meanwhile,  a congested spatial distribution of infrastructures 

is asserted that needs to be better for enhancing transportation 

system as well as minimizing the consumption of traffic 

energy-efficiency and resource utilization such as water pipe 

networks and drainage systems (Mwampamba, 2007; Pandey 

& Seto, 2015). Spatiotemporal analysis of urban expansion has 

been an enthusiastic question that has dominated over a long 

time of years, yet remains a concept major without a key 

definition or measurement (Lai et al., 2018).  

Although several studies have focused on urban growth and 

expansion in various cities and regions in Tanzania, including 

Dar es Salaam, there is a notable lack of information on the 

spatiotemporal impact analysis of urban expansion on the 

vegetation landscape using remote sensing approaches in the 

Dodoma region. This gap is particularly significant in the 

context of contributing to sustainable cities in line with the 

United Nations Sustainable Development Goals. The term 

"spatiotemporal" is used in spatial data analysis when data is 

collected across both space and time. Studies by Lai et al. 

(2018) and Sumari et al., (2020), who conducted 

spatiotemporal analyses of urban growth using GIS and remote 

sensing approaches, concluded that urban growth in evolving 

regions is influenced by population growth driven by both 

natural increase and in-migration. 

Urbanization is typically a spatial population process that 

indicates the significant role that towns and cities play in the 

population distribution of a given socioeconomic setup (Jiao et 

al., 2021; Korah & Cobbinah, 2017; Shao et al., 2021). This 

process typically occurs as a result of changes in population 

distribution from villages and the countryside, which were the 

origins of human society, to cities and urban residences. 

Urbanization, on the other hand, is viewed as a spatial and 

social process that results in a shift in the relationship between 

human societies and social behaviors across multiple 

dimensions. This process addresses the complex 
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transformations in human societies' lifestyles that have a direct 

impact on urban communities. The importance of spatial 

integration and the dynamism of urban growth cannot be 

overstated issues in urban studies today.  

The overall objective of this study, therefore, is to assess the 

spatiotemporal impacts of urban expansion and landscape with 

a remote sensing approach in Dodoma Urban District (DUD) 

towards contributing to sustainable cities in line with the United 

Nations Sustainable Development Goals. 

1.1 Spatiotemporal Analysis: A Literature Review 

However, various studies have identified several consequences 

of congested urban areas, including the loss of urban green 

spaces, increased air pollution in African cities, and clustered 

services (Addaney & Cobbinah, 2019; Kontgis et al., 2014). 

Although there is some debate regarding spatial indices of 

urban growth types, there is general agreement that urban 

spatial morphology can promote the development of urban 

green spaces, which are considered important natural assets for 

reducing urban heat island effects and providing comfort to 

urban dwellers (Kabanda, 2019; Xiong et al., 2012). Based on 

these findings, understanding the implications and dynamics of 

rapid changes in urbanized landscapes, especially in emerging 

African cities, can help achieve sustainable cities, improve 

ecosystem services, and mitigate the impacts of climate change 

amid growing human populations. Consequently, the 

exploration of urban spatial dynamics and the analysis of urban 

landscape structures continue to be areas of interest for the 

sustainable cities research community. 

Several scientific studies have investigated the impacts of 

urban expansion on landscape composition and configuration 

(Sumari et al., 2020; Xu, Dong, et al., 2019; Xu, Jiao, et al., 

2019), including the examination of existing and projected 

urban land cover dynamics (Gombe et al., 2017; Yang, Pan, et 

al., 2017), as well as exploring the patterns and possible drivers 

of urban sprawl (Guastella et al., 2019). However, previous 

studies have primarily focused on large metropolitan regions 

due to their significant influence on socio-economic and 

environmental conditions (Cobbinah, 2015; Mundia & 

Murayama, 2009). In contrast, smaller cities and towns, where 

scattered urban growth is more prominent, have received 

relatively little attention  (Jia et al., 2017; Terfa et al., 2019). 

Given that small cities are expected to dominate global 

urbanization in the future, it is crucial to study the spatial and 

temporal changes of these emerging smaller cities by 

combining urban landscape analysis with remote sensing 

techniques to evaluate the patterns of urban landscape 

structures.  

By evaluating the urban landscape structures, on one hand, the 

landscape heterogeneity, and the impact of different ecological 

services associated with cities can be ascertained (Brusseau, 

2019). Landscape metrics can be useful in revealing the general 

circumstances of the urban landscape pattern (Qin et al., 2017), 

triggers of urban land use, and change analysis (Lu et al., 2016; 

Xu, Zhou, et al., 2019), as well as assessing the projected future 

urban spatial form (Wang & Upreti, 2019; Worrall et al., 2017). 

Landscape metrics studies are also primarily applied to detect 

the relationship between landscape patterns and land surface 

temperature (Bonafoni & Keeratikasikorn, 2018; Fu et al., 

2017).  

On the other hand, remote sensing methods can complement 

the afore-explained landscape metrics approach in determining 

the temporal and spatial characteristics of urban land cover 

types towards addressing any unforeseeable and severe 

ecological concerns threatening urban populations  (Meng et 

al., 2018). Remote sensing is a valuable tool for estimating 

infrastructural growth in urban areas. Remote sensing 

techniques have been tested to provide data at multiple spatial 

scales in urban areas, based on the processing and interpretation 

of satellite images (Kuffer et al., 2018). As such, open-source 

satellite remote sensing (RS) data have proven to be a cost-

effective source of spatial information for all aspects of urban 

analyses. Optical satellite sensors of Landsat (30m spatial 

resolution) are probably the most popular sensors for land cover 

mapping in African urban areas because the data has relatively 

high temporal resolution and is freely available. Therefore, this 

present study focuses on assessments of urban expansion 

indices in the Federal Capital City of Dodoma in Tanzania 

using Landsat satellite data.  

The urban growth in Dodoma, and likely in many other cities 

and towns across Tanzania, is generally characterized by a lack 

of implementation plans such as maps that often have a 

shortage of necessary infrastructure and services(Chove & 

Sumari, 2025; Kisamba & Li, 2023). The absence of urban 

planning plans could also contribute to fragmented urban 

landscape patterns along major roadways. Over the past couple 

of decades, regional cities in Tanzania have grown faster than 

the capital city, Dodoma Urban (Ringo, 2016). This feature can 

likely be explained by considering the national economic 

development and urban improvement policies (Yang, Wu, et 

al., 2017) that fostered rapid urban expansion in secondary and 

tertiary cities.  

2. Methodology

2.1 Study Area 

The study was focused in the central part of mainland Tanzania, 

Dodoma Urban District (DUD) (Figure 1). Dodoma region is 

the federal capital city of the county and it doubles as a regional 

state in Tanzania. The Government of Tanzania established The 

Capital Development Authority (CDA) in 1974 through 

Government Notice No. 230 of 12th October to move the capital 

from Dar Es Salaam to DUD (URT, 2018).  Consequently, the 

seat of the federal government was officially from Dar Es 

Salaam to Dodoma region in 2016.  

The region has several geographical features, including 

topographical areas with flatlands, gentle hills, and lowlands, 

some of which contain seasonal dams. The rainfall is primarily 

used for agricultural irrigation purposes. Dodoma also has 

wetlands and seasonal swamps(Kisamba & Li, 2023). The soil 
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in the region is generally shallow with moderate fertility, 

moderate organic matter content, and poor permeability, 

leading to higher surface runoff. Vegetation cover has been 

decreasing due to human activities, including agriculture, 

lumbering, bushfires, fuelwood and charcoal extraction, and 

grazing. 

Figure 1: Map of study area 

The geographical location of the Dodoma region lies between 

latitude 4°S and 7°S and longitude 35°E and 37°E. 

Administratively, the region is divided into seven districts: 

Bahi, Chemba, Chamwino, Dodoma Urban District (DUD), 

Kondoa, Kongwe, and Mpwapwa. It is bordered by four other 

regions: Morogoro to the east, Singida to the west, Arusha to 

the north, and Iringa to the south. According to the 2012 

Population and Housing Census, the population of Dodoma 

Urban was 410,956, with 199,487 males and 211,469 females 

(URT, 2018). The region’s population is growing rapidly due 

to increasing economic activities, such as trade and the 

establishment of higher learning institutions, which have 

triggered a massive influx of people into Dodoma Urban 

District (DUD). Current population projections estimate the 

population of Dodoma at approximately 414,906 (Ringo, 

2016). 

2.2 Description of Remote Sensing Data 

Cloud-free images from three Landsat optical sensors—the 

Landsat Thematic Mapper (TM), the Landsat Enhanced 

Thematic Mapper Plus (ETM+), and the Landsat Operational 

Land Imager (OLI), also known as Landsat 8—were used in 

this study. The Landsat images were acquired for the years 

1997 (TM), 2004 (ETM+), 2011 (ETM+), and 2018 (OLI). All 

images were obtained from the United States Geological 

Survey (USGS) website (http://earthexplorer.usgs.gov/) with 

path/row number 168/064. Image classification was performed 

using ENVI version 5.3, while accuracy assessments were 

carried out using ERDAS Imagine version 2014 and ArcGIS 

version 10.3 for image data processing, visualization, and map 

production.  

2.3 Landcover Analysis in DUD 

To assess urban expansion in this study, Landsat 5, Landsat 7, 

and Landsat 8 imagery from the years 1997, 2004, 2011, and 

2018 were used to extract built-up areas. The land cover types 

in Dodoma were classified into two main categories: (1) built-

up areas and (2) non-built-up areas. The non-built-up areas 

were further categorized into the northern and southern parts of 

the study area. The spatial characteristics of urban land features 

on the 30m Landsat images were classified into five types: (1) 

agricultural land, (2) vegetation cover, (3) water bodies, (4) 

grassland, and (5) built-up areas. The classification was based 

on local knowledge of the area, the spectral responses of 

features in the Landsat images, the use of higher spatial 

resolution imagery, and visual analysis of different sensor data. 

Image classification was carried out using the supervised 

Random Forest (RF) classifier algorithm, which is widely 

applied in urban area analysis (Schneider, 2012), or using the 

Maximum Likelihood Classifier(Mahmon et al., 2015). 

2.4 Urban Expansion Intensity Index (UEII) 

Previously, several researchers have identified different 

measurement indices to characterize urban morphological 

changes based on remote sensing data by exploring the spatial 

and temporal dynamics of these indices. One such index, the 

Urban Expansion Intensity Index (UEII), is commonly used to 

measure and characterize growth in emerging urban areas over 

time (at least two relevant sources should be inserted). After 

extracting urban expansion from the Landsat images, we 

segmented the area into multiple concentric rings using 

concentric partitioning with the UEII (Equation 1) to 

quantitatively assess and analyze the differences in spatial 

expansion. The centers of the rings were placed at the town 

center (CBD), with intervals of 1.5 km between the rings. 

Although different studies have applied a maximum ring radius 

of 25 km, this study covered the entire municipal region within 

the selected area. The Urban Expansion Intensity Index for 

each ring was calculated using Equation 1. For example, Figure 

2 shows the partitioned concentric rings used in the study area 

to characterize the spatial distribution of urban expansion, 

which is useful for urban planners and policymakers.  

𝑈𝐸𝐼𝐼 =
(𝑈𝐵𝐴𝑡+𝑖 − 𝑈𝐵𝐴𝑡)𝑥

100
𝑖

𝑆𝐸𝐷

(Eqn 1) 

Were,  

UEII: stand for the expansion intensity index of the urban built-

up area in the spatial range between time (t) and 𝑡 + 𝑖, UBA: 

stand for urban built-up area, and SED: represent the spatial 

expansion of the area. 

After performing the UEII of the expansion of urban built-up 

area, we deploy a lognormal curve model (Eqn 2) in to fit the 

data of the city size distributions.  
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𝑓(𝑥) =
a

𝑥𝜎√2𝜋
x𝑒

(ln 𝑥−µ)2

2𝜎2  , 𝑥 > 0. 
(Eqn 2) 

Where, µ and σ are parameters of the shape of the fitted curve 

and a parameter a is represents its height. These parameters are 

defined as the optimal model. 

Figure 2: Partitioned concentric rings over the study area 

Several characteristics metrics of urban growth model in 

Dodoma City Council were adopted in order to investigate the 

similarities and differences of its growth within the area. 

2.5 Shannon’s Entropy Index (SEI) 

Shannon’s Entropy method was further applied in this study to 

analyze urban growth based on the integration of remote 

sensing. The measurement of Entropy was derived based on 

factors (variables) distance from the city center, main roads and 

the fast point of development. The measurement is based on 

Entropy theory. In this study, Shannon’s entropy (E) was used 

to measure the degree of spatial concentration by geographical 

factors (Thomas, 1981). Entropy is calculated by Error! 

Reference source not found.. Shannon’s Entropy (SE) and 

Shannon’s Relative Entropy (SRE) were performed on the 

northern and southern parts of the city of Dodoma using 0.5km 

buffer zones beginning from the city center from the year 1997 

to 2018. In this research study, we considered different 

characteristics for instance patches size, shape and edge from 

the proposed landscape metrics and their description 

(Appendix 1) (Jat et al., 2008; Sumari et al., 2020). 

Furthermore, Google Earth images acquired in 2019 were 

applied to verify the accuracy of the classified satellite 

images(Fu et al., 2019). The used to verify the accuracy of the 

classified results. 

3. Results

3.1 Results of Urban Expansion Analysis in Dodoma 

Figure 3 shows the map of urban extents from 1997 to 2018, 

where red area represents the new urban built-up land increase 

during 1997 to 2018. Landsat The analysis results show that 

urban built-up has extensively increased in the main roads, sub-

towns and core area of the city center with the high impact of 

the transportation network on growth pattern (Figure 4)  

Figure 3: Urban area coverage and partitioned concentric rings 

for each year over the study area 

Figure 4: Urban area change and partitioned concentric rings 

over the study area 
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3.2 Characteristic Metrics of Urban Expansion 

Figure 5 contains the log-normal fit (also known as Gaussian 

distribution) for the analyzed data of northern and southern 

sections of the city of Dodoma. The choice of this statistical 

test is based on its suitability for testing natural phenomena 

including changes in land use and land cover over time. The 

data on (Error! Reference source not found.) is positively 

skewed indicating that the distribution of land use and land 
cover data from the satellite images is log-normally distributed. 

Table 1: UEII for North and South zones 

North Section South Section 

Sigma 1.7144 0.6228 

FWHM 4.03711 1.46673 

Height 0.30733 0.62131 

R-square 0.7008 0.99045 

a 1.32072 0.97005 

Width 3.4288 0.09842 

Peak position 4.533 4.51654 

Skewness 1.020969 0.8793 

Chi-square 0.00495 0.00031 

F-value 18.23 329.56 

Figure 5: Lognormal curve of UEII and related metrics for 

(a) Northern and (b) Southern section of Dodoma

A quantitative expanse of urban growth of the city of Dodoma 

shows the different urban patterns, comparisons in zones, and 

changes identified within and between zones over the study 

epoch Figure 6. The amount of urban land was used mainly as 

a quantitative measure and as an indicator of urban expansion, 

and the pattern observed thereof. The urban built-up land was 

estimated for each classified zone for the 11 zones in the 

northern and southern sections of the study area as shown in 

Figure 5 above.  The concentration of values of urban land 

shows that as at 2018, the N4, N5 and N3 ranked first, second 

and third in terms of expanse of urban built-up land use in the 

northern section of Dodoma while in the southern section, S3, 

S2 and S4 rank amongst the top 3 in the order of listing. The 

least urban land use coverage is found in N8 and S11 in north 

and south sections, respectively. A major similarity is in the 

corresponding increased/rapid growth in urban land use at N2, 

N3, N4, N5 and N6 (in the north section) and S2, S3, S4, S5, 

S6 (in the south section) parts of the city.   

Figure 6: Urban Land Area for the various zones for (a) 

Northern and (b) Southern sections of the study area. 

2.3 Results of the Shannon’s Entropy Index (SEI) 

analysis 

The SEI results for the northern section of Dodoma show that 

the SE increased from 1997 (at 0.472179) to 2018 (at 

0.911202), while the SRE value of 0.491724 in 1997 increased 

to 0.948919 in 2018. Given that the SE values range from 0 to 

1, the 2018 SE and SRE values are quite high at 0.9 (Error! 

Reference source not found.). On the whole, the maximum 

values of SE and SRE are recorded in the northern zone. The 

pattern reveals consistent growth from 1997, 2004, 2011, and 

2018 except for the year 2011 under the southern section where 

the SE and SRE are both higher than the values for the year 

2018, revealing a disproportionate distribution between these 

two years in that section of the city.  
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Table 2: Shannon’s Entropy and Relative Entropy 

Year 

Northern Section Southern Section 

Shannon’s 

Entropy 

(SE) 

Shannon’s 

Relative 

Entropy 

(SRE) 

Shannon’s 

Entropy 

(SE) 

Shannon’s 

Relative 

Entropy 

(SRE) 
2018 0.911202 0.948919 0.868307 0.904248 
2011 0.896602 0.933715 0.910161 0.947835 
2004 0.504486 0.525368 0.541075 0.563472 
1997 0.472179 0.491724 0.497382 0.51797 

The value of changes recorded in the SE between the study 

epochs across the northern and southern sections of Dodoma 

city is contained in Error! Reference source not found.. A 

negative trend is recorded from 2011-2018 in the southern 

section of the city. On the whole, the highest change is recorded 

in the northern section (0.439023) as against the recorded 

0.370924 within the same study epoch but for the southern 

section. This suggests that the volume of data/information 

recorded over the former section is greater than the quantum 

recorded in the latter section of the city. This is a confirmation 

of (Error! Reference source not found.) where growth is 

revealed to be more expansive in the northern section of the city 

than the recorded growth for the southern part of the city 

between 1997 and 2018.  

Within each zone, however, there is a disproportionate 

variation in changes recorded between study epochs. For 

example, the study epoch 2004 – 2011 in the northern zone 

records the highest changes of 0.408346 while the least change 

within the same zone is recorded in the study epoch 2011 – 

2018. This is similar to the changes observed in the southern 
section of the city.   

Table 3: Change in Shannon’s Entropy 

Year Change in SE over 

Northern Zones 

Change in SE over 

Southern Zones 

2011 - 2018 0.015204 -0.04359

2004 - 2011 0.408346 0.384364

1997 - 2004 0.033644 0.045501

1997 - 2018 0.439023 0.370924

Sorensen’s coefficient is defined as a similarity index indicator 

originally applied in Botanical studies to compare the 

similarities between two plant species and/or communities. 

Error! Reference source not found. reveals that the 

Sorensen’s coefficient for this study records high values for two 

study epochs (1997 – 2004 at 0.680224 and 2011 – 2018 at 

0.615461) implying that the similarity between the study years 

of these two study epochs is higher than not, given that the 

value of 1 indicates perfect similarity while 0 indicates perfect 

dissimilarity. 

Table 4:Sorenson’s coeff. 

Year Urban Land 

area (Ha) 

Sorenson's 

coeff. 

1997-2004  7894 0.680224041 

2004-2011  11212 0.334073268 

2011-2018  38590 0.615460678 

2018 - 1997  9131 0.224103867 

Table 5:Landscape Metrics 

Parameter 1997 2004 2011 2018 

AWMSI 4.1616 5.5168 7.1876 6.85341 

MSI 1.3777 1.3267 1.3364 1.3221 

MPAR 5679.1 12631.8 12795.5 7665.86 

MPFD 1 1 1 1 

AWMPFD 1 1 1 1 

TE 0.713 1.3452 7.22131 4.66328 

ED 1034.5 1601.42 2194.92 977.626 

MPE 0.0155 0.005628 0.00432 0.00928 

MPS 0.0000 3.51E-06 1.97E-0 9.5E-06 

NumP 46 239 1671 502 

MedPS 0 0 0 0 

PSCoV 572.77 1323.637 2679.57 1738.93 

PSSD 8.59E-05 4.65E-05 5.28E-05 0.00016 

TLA 0.0006 0.00084 0.00329 0.00477 

CA 0.0006 0.00084 0.00329 0.00477 

Abbreviations: AWMSI: - Area-weighted mean shape index; 

MSI: - Mean shape index; MPAR: - Mean perimeter area ratio; 

MPFD: - Mean patch fractal dimension; AWMPFD: - Area 

weighted mean patch fractal dimension; TE: - Total edge; ED: - 

Edge density; MPE: - Mean patch edge; MPS: -Mean patch size; 

NumP: - Number of patches; MedPS: - Median patch size, 

PSCoV: - Patch size coefficient of variation; PSSD: - Patch size 

standard deviation; TLA: - Total area of the study area; CA: - 

Class Area  

Figure 7: Land absorption 

4. Discussion

The rapid expansion and population growth recorded in the 

Dodoma urban area have affected the ecosystems in the area 

both in terms of land degradation, water supply, loss of 

agricultural land, etc. This is because as growth increases, it 

exerts pressure on food, infrastructure and facilities (water, 

energy, roads, drainages, healthcare facilities, housing, etc.) 

and other natural resources, invariably translating into 

consumption of more natural resources as shown from the data 

analyses done for this study. In this regard, high population can 

lead to increased incidences of environmental degradation 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-G-2025 
ISPRS Geospatial Week 2025 “Photogrammetry & Remote Sensing for a Better Tomorrow…”, 6–11 April 2025, Dubai, UAE

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-1397-2025 | © Author(s) 2025. CC BY 4.0 License.

 
1402



especially where poverty is prevalent and where there is a lack 

of sufficient social services like waste management 

infrastructure and sanitation services, education, health, water, 

transport system and housing, implying a low quality of the 

population. The inability of Government authorities to 

adequately provide these critical infrastructures and facilities 

creates a vicious cycle of extreme poverty and low quality of 

life. It is therefore, extremely significant to control urban 

expansion as a prerequisite to a potentially sustainable socio-

economic, environmental and urban management system.  

The preliminary results of this study from satellite data analysis 

and in-situ field exercises suggest a rapid and expansion of 

Dodoma urban area, resulting in the loss of valuable 

agricultural land within and at the fringes of the city, thus 

affecting the source of livelihood of a significant population of 

the city that depend on agriculture as a major source of 

livelihood. In reality, critical infrastructure has not been able to 

keep-up with rapid urbanization and the lack of basic 

infrastructure and services can be easily observed in DUD such 

as water, sanitation, electricity, and waste management 

services. Regulatory agencies are yet to reticulate piped potable 

water to over half of the area and as a result most people rely 

on boreholes and hand-dug wells. Exacerbating the issue, the 

majority of these facilities are located outside the households 

forcing the population to travel sometimes 200m or even more 

to access water. Most residents of DUD dispose of their solid 

waste using a centralized collection container, but they 

sometimes have to travel as far as 300m to reach a solid waste 

collection point. This has led to some residents to dump their 

waste in unauthorized collection points. This coupled with the 

lack of drainage facilities has led to annual urban floods, while 

liquid waste is dumped in the open creating sanitation 

challenges. It would appear as if planning for the expanding 

fringes in DUD is not done prior to development. This trend 

needs to be reversed to institute a sustainable urban planning 

system for DUD. 

5. Conclusions

The result of the case study has demonstrated that the Federal 

Capital City of Dodoma Urban is experiencing rapid growth by 

considering several approaches including Geospatial 

information Science (GIS) and Remote Sensing (RS). This 

article underwrites to the prevailing works on Spatiotemporal 

analysis of urban expansion with remote sensing studies with 

various perceptions. This expansion and population growth 

recorded in the Dodoma Urban District area have led into the 

effect-side for the ecosystems for various aspects of either land 

degradation, water supply, loss of agricultural land, which have 

been due to the increase in the population growth of an area. In 

this regard, the high population can lead to increased incidences 

of environmental degradation especially where poverty is 

prevalent and where there is a lack of sufficient social services 

like waste management infrastructure and sanitation services, 

education, health, water, transport system, and housing, 

implying a low quality of the population. However, the results 

of the study from the satellite datum analysis and various field 

exercises have suggested a rapid seemingly uncontrolled 

expansion of Dodoma's urban area, resulting in the loss of 

valuable agricultural land within and at the fringes of the city, 

thus affecting the source of livelihood of a significant 

population of the city that depend on agriculture as a major 

source of livelihood. In built-up areas with a SEI of  0.439023 

(northern region) and 0.370924 (Southern region) between 

1997 and 2018. The image classification can be used to provide 

accurate land use and land cover change maps and predict 

future changes. The urban expansion analysis results 

investigated the extensive increase in the built-up which is in 

the main roads and the other core places of the center that have 

more impacts on the transportation network for the growth 

pattern. Moreover, the increased urbanization concentration in 

Tanzania specifically in the Dodoma region has created several 

socioeconomic, policy, and environmental factors as the 

drivers that stem from extensive urban poverty, recurrent 

flooding, slum growth, extensive alteration of wetland 

ecosystems, and mismanagement of limited resources.  
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Appendix 1: Proposed Landscape metrics used in this study 

Equations Range: unit Interpretation 

Patch 

density 

and size 

CA = ∑ 𝑎𝑖𝑗
𝑛
𝑗=1 (

1

10,000
) >0; ha 

𝑵𝑷 = 𝑛𝑖 ≥ 

𝑷𝑫 =
𝑛𝑖

𝐴
(10,000)(100) 

>0; no/ 100

ha 

𝑀𝑒𝑑𝑃𝑆 = 𝑋50% 50th %; ha 

𝑷𝑺𝑺𝑫

=  
√∑𝑗=1[𝑎𝑖𝑗 − (

∑ 𝑎𝑖𝑗
𝑛
𝑗=1

𝑛𝑖
𝑛 )]

𝑛𝑖
 (

1

10,000
) 

≥0; ha 

𝑃𝑆𝑐𝑜𝑉 =
𝑃𝑆𝑆𝐷

𝑀𝑃𝑆
(100) 

≥0; % 

𝑀𝑃𝑆 =
∑𝑗=1 𝑎𝑖𝑗

𝑛

𝑛𝑖
(

1

10,000
) 

>0; ha 

𝐿𝑃𝐼 =
𝑗 = 1

𝐴
(100) 

0<LPI≤100; 

% 

Shape 

𝐴𝑊𝑀𝑆𝐼 = ∑[(
𝑝𝑖𝑗

2
√𝜋 ∗ 𝑎𝑖𝑗

)(
𝑎𝑖𝑗

∑𝑗=1 𝑎𝑖𝑗
𝑛

𝑛

𝑗=𝑖

)] 
≥1; no unit 

𝑀𝑆𝐼 =

∑𝑗=𝑖(
𝑝𝑖𝑗

2
√𝜋 ∗ 𝑎𝑖𝑗

)𝑛

𝑛𝑖

≥1; no unit 

𝑀𝑃𝐴𝑅 =

∑
𝑝𝑖𝑗

𝑎𝑖𝑗

𝑛
𝑗=1

𝑛𝑖

>0; no unit 

𝑀𝑃𝐹𝐷 =

∑
2𝑙𝑛𝑝𝑖𝑗

𝑙𝑛𝑎𝑖𝑗

𝑛
𝑗=1

𝑛𝑖

[1-2] no 

unit 

Edge 

𝐴𝑊𝑀𝑃𝐹𝐷 = ∑[(
2𝑙𝑛𝑝𝑖𝑗

𝑙𝑛𝑎𝑖𝑗

)(
𝑎𝑖𝑗

∑𝑗=1 𝑎𝑖𝑗
𝑛

𝑛

𝑗=𝑖

)] 
[-2] no unit 

𝑇𝐸 = ∑ 𝑒𝑖𝑘

𝑚′

𝑘=1

≥0; M 

𝑀𝑃𝐸 = 𝑇𝐸⁄𝑛𝑖

As patch type becoming rare, Class area (CA) methods 0. CA = TA when 

single patch forms the landscape. 

Number of patches= 1 when single patch forms the landscape 

Higher value of patch density (PD) indicates more fragmentation of urban 

landscape 

Median patch size is the middle patch size in the distribution 

Patch size standard deviation (PSSD)=0 when there is no variability in patch 

size or when where is on patch. The value increases with area variability 

among patches 

It is coefficient of variability in patch size relative to the mean patch size. 

PScoV increases as the variability increases 

It is the average patch size 

Largest patch index (LPI) quantifies patch dominance. The value near zero 

indicates smaller largest patch. LPI = 100 when sing patch creates the 

landscape. 

It is average shape index of patches weighted by patch area so that larger 

patches weigh more than smaller patches. AWMSI=1, indicates all patches 

are circular (vector), whereas the value increases with shape irregularity 

MSI=1 when all patches of the corresponding patches types are circular 

(vector) and it increases with irregularity of shape 

MPAR measures average shape complexity. The higher the value, the more 

irregularity of the patches’ shape 

MPFD approaches to 2, implies the departure from Euclidean geometry 

(shape with highly convoluted) and vice versa. 

AWMPFD approach to 2 implies departure from Euclidean geometry 

(increasing shape complexity) and it approaches 1 for very simple 

perimeters (circle) 

Total edge (TE)=0 means no class edge (consists single patch) or none of 

the landscape boundary and background edge be treated as edge. It measures 

how dissected spatial pattern is 

MPE is mean patch edge 

For j = 1,…, n patches and; k = 1,…, m or m patch. Symbols MPFD, mean patch fractal dimension; AWMPFD, area-weighted mean patch fractal 

dimension; ni, number of patches in the landscape of patch i; aij, the area of patch ij in the class; A, total landscape area (m2); pij , perimeter (m) of 

patch ij; Mmax, the maximum; ln, natural logarithm; eik, total length (m) of edge in landscape between patch i and k which includes landscape 

boundary segments representing true edge only involving patch type i; m , number of patch present in the landscape including the landscape border 

if present 
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