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Abstract

Transverse aeolian ridges (TARs) are the most widely distributed and enigmatic aeolian landforms on the surface of Mars, holding
significant research value and implications for interpreting ancient wind fields and environments, searching for water and life, and
selecting landing sites. However, accurately interpreting the morphological parameters of TARs, including their edge contours
and ridge lines, remains a challenge. To tackle this issue, this paper proposes a Multi-branch Auxiliary Training Encoder-Decoder
Network (MATED-Net) for detecting the edge contours and ridge lines of TARs on Mars. Built upon the Unet architecture, MATED-
Net incorporates four auxiliary training losses to perceive features at different scales. Then, We introduce a lightweight attention
mechanism to guide the fusion of multi-scale features. Finally, an edge tracing loss is introduced to enhance the distinction between
edge pixels and surrounding confusing pixels, thereby accurately tracking the true positions of edges. To verify the effectiveness of
the MATED-Net in detecting TARs’ contours and ridge lines, this paper constructs a dataset of TAR ridge lines based on HiRISE
and HiRIC imagery. To facilitate subsequent training and testing, all images were clipped to a size of 512 x 512and converted to
the VOC dataset format, resulting in a total of 1000 images and corresponding label data. The experimental results demonstrate a
precision of 0.72, a recall of 0.67, and a mean Intersection over Union (MIoU) of 0.57 for edge extraction.

1. Introduction indicating that regional sediment transport is primarily driven
by north-to-south winds, with a slightly greater contribution
from northward-transported sediments. However, manually ex-
tracting TARs over large areas is both labor-intensive and time-
consuming. With the rapid progress of artificial intelligence in
computer vision, an increasing number of studies have begun
to leverage deep learning techniques to enhance the automated
extraction and interpretation of TARs. Palafox et al. (Palafox
et al., 2017) were the first to propose Mars-Net for identifying
the distribution areas of TARs on HiRISE images, defining the
detection of TARs as a classification problem, and delineating
the span of TARs areas by determining whether image blocks
contain transverse aeolian ridge targets. Furthermore, Cao et
al. (Cao et al., 2024) defined the extraction of TARs as a ro-
tated object detection task, using directional bounding boxes to
enclose the targets, thus not only locating the positions of TARs
but also obtaining their directions. Zhang et al. (Zhang et al.,

TARs are among the most widespread landforms on the Mar-
tian surface (Liu et al., 2023, Hugenholtz et al., 2017). Their
morphology resembles both sand dunes (Lu et al., 2021) and
ripples (Zimbelman et al., 2012), typically appearing as linear
or crescent-shaped features perpendicular to the prevailing wind
direction. However, the scale of TARs lies between sand dunes
and ripples, and their near-global distribution makes TARs a
unique landform. Consequently, TARs serve as a critical proxy
for understanding ancient Martian climate and environmental
changes.
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Figure 1. TARs and their ridges

With the advancement of Mars exploration missions, research
on the morphology and spatial distribution of TARs has sig-
nificantly accelerated, aiming to unravel their formation and
evolutionary mechanisms. Wilson et al. (Wilson and Zimbel-
man, 2004) conducted the first systematic survey of the lat-
itudinal distribution of TARs within the range of 180°E to
240°E, spanning from the South Pole to the North Pole, using
High-Resolution Stereo Camera (HRSC) imagery. Their study
provided crucial data for an initial understanding of TAR spatial
distribution. Gou et al. (Gou et al., 2022) extracted TARs within
a 1.9 km?region surrounding the Zhurong rover landing site,
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2024) employed the Mask R-CNN (He et al., 2017) model to
extract TARs.This method initially extracts contours and sub-
sequently estimates edges and ridges, identifying the centerline
as the ridge line of the TARs based on the binary mask im-
age. While this approach is effective for symmetric TARs, it
only estimates the centerline for asymmetric TARs, which can
compromise extraction accuracy. Overall, current deep learning
methods can accurately locate the positions of , but interpreting
their morphological characteristics remains a significant chal-
lenge.

The main challenges encountered in the extraction of TARs
morphological parameters based on high-resolution images are:

e The morphological features of TARs are delicate, narrow,

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVI1I-G-2025-1415-2025 | © Author(s) 2025. CC BY 4.0 License. 1415



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-G-2025
ISPRS Geospatial Week 2025 “Photogrammetry & Remote Sensing for a Better Tomorrow...”, 6—11 April 2025, Dubai, UAE

and information-poor, which makes it challenging to per-
ceive and extract these features accurately.

o Ten-meter-scale TARs often exhibit mixed and blurry
areas between their contours and the background, as well
as between the contours and ridge lines in high-resolution
images. This blending of features makes it difficult to ac-
curately extract mixed features.

e There is currently a lack of datasets for model training and
testing, resulting in research in this field being still in its
infancy.

To address these challenges, this paper proposes a multi-branch
auxiliary training encoder-decoder network, termed MATED-
Net, for detecting the edge contours and ridge lines of TARs in
an end-to-end manner. The specific contributions of this paper
are as follows:

e we introduce four auxiliary training losses from shallow
to deep features on the basis of Unet, with shallow fea-
tures used to perceive low-level features such as lighting
and texture, and deep features used to perceive high-level
semantic features.

e A feature fusion mechanism guided by attention is pro-
posed, which first fuses the encoding and decoding stage
features to produce features with edge discriminative
power. Second, the multi-scale features produced during
the encoding and decoding stages are fused to produce fea-
tures with rich edge information;

e Finally, an edge tracking loss function is introduced to
expand the difference between edge pixels and surround-
ing ambiguous pixels, tracking the actual positions of true
edges.

2. Method

Figure 2 illustrates the overall architecture of the MATED-Net,
which consists of three main modules: a feature extraction net-
work based on the “encoder-decoder” structure, a feature op-
timization module, and a multi-scale feature fusion module.

The encoder-decoder module is based on the Unet architec-
ture and is used to extract multi-scale features of the target.
We first employs a 3 X 3 convolution layer to expand the in-
put image into a 32-dimensional feature space, followed by
five stages of feature extraction in a top-down manner. The
number of channels in each feature extraction layer is doubled,
while the spatial dimensions are halved, aiming to aggregate
contextual features and improve the overall feature represent-
ation. The feature scales outputted by the first four feature
layers are (512,512, 64), (256, 256, 128), (128, 128, 256), and
(64,64, 512), with the (64, 64, 1024) network shallow features
used to express low-level features such as edge texture fea-
tures, and deep features expressing semantic features. Thus,
the aggregation of low-level and high-level features can pro-
duce a more comprehensive and accurate feature representa-
tion to improve subsequent detection accuracy. To mix shal-
low and deep features to obtain a powerful feature represent-
ation, the decoding phase first upsamples the image, and then
the upsampled features are added to the corresponding encoded
features. To avoid merging irrelevant background information

during feature addition, this paper introduces a lightweight at-
tention mechanism called Attention Gate (LAG) as the feature
optimization module. The LAG attention mechanism can as-
sign weight information to each pixel, focusing on key features
and avoiding irrelevant features such as the background. Fi-
nally, the multi-scale features obtained from the decoding are
fused to form a complete application, using contour and ridge
features for expression, and a 3x3 convolution is used as the tar-
get regression branch to output the classification result for each
pixel.
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Figure 2. The pipline of MATED
2.1 Feature Optimization Network

The feature optimization network mainly employs an LAG at-
tention to add weight information to pixels, prompting the
model to focus on key edge and weak texture features, thereby
guiding feature fusion to focus on the features that should be
attended to. The calculation formula for the LAG attention is as
follows:

i =v" (1 (W ai+ W) gi+ b)) 46y (D)

Qag = o2(ai(wi, g:)) )

Where o1, o2 represent the activation functions. W ,1 represent
the convolution weights. by, by are the convolution bias terms.
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Figure 3. The pipline of LAG attention

The encoding feature is denoted as x, and the decoding feature
is denoted as g. Both = and g are mapped to a single-channel
image through a 1 x 1 x 1 convolution, then they are fused
by addition. Subsequently, the fused features are activated us-
ing the ReLU function, and the features after fusion continue
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to be enhanced through interaction with a 1 x 1 x 1 convo-
Iution. Finally, the features pass through a Sigmoid function
to filter them, and then they are resampled to obtain attention
weights. The final decoded features are multiplied by the at-
tention weights to obtain the enhanced features. The purpose
of the 1 x 1 x 1 convolution is to compress the dimensions
in a low dimension, aggregate information, and make the fu-
sion more complete, while reducing the number of parameters
to improve computational efficiency. Compared to the CBAM,
LAG attention has a smaller number of parameters and is more
computationally efficient.

2.2 Multi-levle feature fusion

The MATED-Net adopts the Unet framework as the basic
framework for auxiliary training. The model outputs four lay-
ers of features from shallow to deep, thus enhancing the expres-
sion of contour edge features through the method of fused fea-
tures. The shallow features can provide low-level features, such
as texture and edge information, while the deep features can
provide high-level semantic features. The fusion of low-level
and high-level features will produce features with more edge
expression. Traditional edge contour extraction methods based
on deep learning often use weighted methods to fuse multi-
layer features, but they cannot guarantee that weights are as-
signed to key layers, which leads to ineffective feature fusion in
the model. To this end, this article designs an attention-guided
context-aware fusion module. Through the attention mechan-
ism, it discriminates pixel information from the background and
edges, then aggregates multi-layer features to enhance the ex-
pression of edge information, thereby avoiding manual weight-
ing.

Let Z = {Z1, Z2, Z3, Z4} be the set of decoded output features.
When fusing features, we first use the LAG attention module to
learn attention weights Qz, € R”***L from the edge feature
map Z. Then, the attention weights are multiplied with the edge
map to obtain attention features, which can highlight the target
and suppress the background, thereby enhancing the fused fea-
ture representation. In the actual input process, the LAG atten-
tion module requires two feature maps as input. In this section,
the two input feature maps are the same, both being Z. This
process can be expressed as:

Qz, = Qae(Z1, Z)) (€))
L

CoFusion(Z) = Zin ®Z )
i=1

Panal = sigmoid(CoFusion(Z)) 5)

Where the Pr;naq: is denoted as the edge prediction result, where
the predicted edge values are 1, and non-edge values are 0.

2.3 Edge-tracking loss

The loss function assesses the discrepancy between the model’s
predicts and ground truth. Therefore, the quality of the loss
function directly affects the accuracy of the model detection.
The limitations of directly applying classification or semantic
segmentation loss to contour feature extraction are that contour
features are narrow and elongated, with a pixel distribution that

significantly differs from that of the background, making them
easily overshadowed by background information. To address
these challenges, this paper introduces a multi-level edge tra-
cing loss function, which is designed to capture the edge con-
tours and ridge lines of TARs effectively. Edge-tracking loss
include, Focal Loss, edge-tracking loss function, and texture
suppression loss.

2.4 Focal Loss

Focal Loss is used to address the issue of imbalanced back-
ground and edge pixel numbers. The main idea is to reduce
the weight of easily classified samples, prompting the train-
ing model to focus on difficult samples, thereby improving the
model’s performance under class imbalance conditions. It in-
troduces a balancing parameter v to adjust the weight differ-
ence between easily and difficultly classified samples. In edge
detection tasks, due to the extremely imbalanced number of lin-
ear feature pixels compared to background pixels, Focal loss
can reduce the impact of severely imbalanced samples on linear
feature detection to some extent. Thus, it pays more attention
to the target categories that are difficult to classify. The formula
for multi-class Focal loss is as follows:

Ly(¥)) = —ou(1 = V1) log (7)) ©)

Where P, represents the model’s prediction for each category,
while o is the category weight that can be tuned based on the
importance of the categories. If there are fewer target categor-
ies, a higher weight can be assigned to them. -y is used to adjust
the focus of the loss, and ~ is usually set to a value greater than
0 to increase attention to samples that are difficult to classify.

2.5 Tracking Loss Function

The tracking loss function is used for classifying target and
background mixed pixels. The loss function was proposed by
Huan et al. (Huan et al., 2021), which highlights the values
of boundary points by calculating the difference between the
boundary points and the pixel matrix of their respective neigh-
borhoods, thereby reducing mixed pixels. The calculation for-
mula for the tracking loss function is as follows:

o ovY _ Ziel, i
Lyar (}/27er) = Z log (ZieR; TS SN @> @)

PeE

Where E represents the set of boundary points, R® represents
the neighborhood matrix, and L represents the set of boundary
points within the neighborhood matrix. When the loss func-
tion reaches its minimum value, EiER% yiwill tend to 0, while
> iz Ui will tend to the maximum. Therefore, the boundary
points are highlighted, and the background in the mixed pixel

values is suppressed.
2.6 Texture Suppression Loss Function

After the edge tracing function has processed and identified the
confusing pixels, the unnecessary texture areas remaining in the
predicted map can be handled by the texture suppression func-
tion, as shown in the formula below:

Liea (Vi) == > log [ 1= 37 ®)

PeE iERé
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Where R}, represents the neighborhood pixel matrix, with non-
boundary points at the center. Since images contain more un-
necessary texture information than edge-confusing pixels, the
essence of the texture suppression function is to suppress the
same texture regions of non-edge pixels, rather than operating
on individual pixels.

In summary, the edge tracking loss function formula in this pa-
per is as follows:

L=Ls(Ys) + M Lyar (Yi, Vi) + Ao Loew (Vi, i) (9)

Where Yiand Y;represent the model predicted and label values,
and A; and A, represent two hyperparameters to regulate the
importance of the edge tracking function and the texture sup-
pression function in the loss function.

3. Experiments
3.1 Experimental data

To verify the effectiveness of the MATED-Net network in de-
tecting the contours and ridge lines of TARs, this paper ran-
domly selected 600 TARs in the HiRISE images (0.25 m/pixel)
and annotated their contours and ridge lines, with the contour
and ridge line assigned a value of 1 and the background as-
signed a value of 0. To facilitate subsequent training and test-
ing, all images were clipped to a size of 512 x 512 and then
converted to VOC dataset format, resulting in a total of 1000
images and label data.

3.2 Experimental details and metrics

This experimental platform uses Ubuntu 20.04, with hardware
configuration consisting of a Core i7-6700 3.30 GHz CPU and 2
NVIDIA GeForce RTX 3090 GPUs (each with 24GB memory).
During the experiments, the Adam optimizer is used with an
initial learning rate (Learning rate, Lr) set to 0.01, a learning
momentum of 0.7, and a weight decay rate of 0.01. Distrib-
uted training is conducted across 2 GPUs simultaneously, with
a batch size (Bs) of 4 for each GPU.

The evaluation metrics in this article use precision (P), recall
(R), and mean intersection over union (M IoU). The calcula-
tion formulas for P, R, and M IoU are as follows:

TP TP
P_TP+FP’R_TP+FN (10)
N
MIoU=+5__Th (1)

Ni:l TP, + FP;, + FN;

3.3 Extraction results

The MATED-Net extraction results are shown in Table 1. The
extraction accuracy P is 0.72, the extraction rate R is 0.67, and
MloU is 0.57. Figure 4 (a) shows the extraction results of our
method. It shows that our method accurately extracts the con-
tours and ridge lines of TARs. Figure 4 (b) displays the multi-
layer feature extraction results of the MATED-Net. It shows
that features from the first to the fourth layer are present, with a
significant enhancement in feature perception capabilities. The
fifth layer, which is the fused feature layer, encompasses the
features of the previous four layers, resulting in more accurate
feature extraction outcomes after the fusion.

P R MIOU
MATED-Net 0.72 0.67 0.57

Table 1. Performance metrics of MATED-Net.
3.4 Comparison experiments

Table 2 shows the extraction results of our method compared
with classical methods, including the CAT, HED, and Canny
edge detectors. Our method achieved the best detection results,
with a precision P higher than that of the Canny operator by
0.37 and a recall R of 0.16. However, it can be observed that
the mIoU of our method is not the highest. This is because the
predicted contours by our method are finer, making it difficult
to match every pixel point with the manually annotated con-
tours. Nevertheless, from the visualization results, our method
successfully extracted the contours of each TARs.

Methods P R MIoU
CAT 0.72 | 0.51 | 0.50
HED 0.73 | 049 | 048
Canny 035 | 051 | 0.26
MATED-Net-SE 0.70 | 0.63 | 0.59
MATED-Net with CBAM 0.70 | 0.60 | 0.59
MATED-Net with ECA 0.71 | 0.61 | 0.59
MATED-Net 0.72 | 0.67 0.57

Table 2. Comparison of different methods.
3.5 Ablation study

Tables 3 presents the ablation study results. The first line of
the table shows the results of the LAG ablation experiment.
Compared with the Unet model, the LAG module increased the
accuracy, the extraction rate increased by 11%, and the MIoU
increased by 13%. The second behavior increases the results
after multiscale feature fusion, with P increasing by 2% and
R by 5%. The final model in this paper, showed a signific-
ant 7% increase in accuracy, 1% increase in extraction rate and
4% more in MIoU compared to Unet + LAG + Cofusion. This
experiment shows that this module is effective for improving
the contour and ridge detection accuracy. To further verify the
influence of the number of feature fusion layers on the detec-
tion progress of the model, the number of feature fusion layers
was gradually increased from 1 to 4 to verify the influence of
this module. As can be seen from Table 3, when the model is
extracted after 4 layers of fusion, the accuracy is higher, the ex-
traction rate is the highest, and the matching degree with the
model is also the highest.

Methods P R MIoU
Unet 0.60 | 0.50 | 0.44
Unet+LAG 0.63 | 0.61 | 0.53
Unet+LAG+Cofusion 0.65 | 0.66 | 0.53
Unet+LAG+Cofusion+Tracing Loss | 0.72 | 0.67 | 0.57

Table 3. Ablation study.

4. Conclusion

This study has developed a novel MATED-Net to address the
challenge of accurately interpreting the morphological para-
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Figure 4. The extracting results of TARs. (a) the contours and ridge lines of TARs extracted by the four feature layers of the mated
network, (b) the features of TARs perceived by the four feature layers of the mated network.

meters of TARs on Mars, specifically their edge contours and
ridge lines. By integrating four auxiliary training losses, a light-
weight attention mechanism, and an edge tracing loss, MATED-
Net effectively enhances the detection of TAR features across
different scales and complex backgrounds. The dataset con-
structed from HiRISE and HiRIC imagery, comprising 1000
images and corresponding labels in the VOC format, provided
a robust foundation for training and testing MATED-Net. The
experimental results are promising, with a precision of 0.72, a
recall of 0.67, and a MIoU of 0.57 for edge extraction. These
findings demonstrate the effectiveness of MATED-Net in accur-
ately identifying TARs’ contours and ridge lines. Future work
will focus on further improving the robustness and accuracy of
MATED-Net by incorporating additional data sources and ex-
ploring advanced training techniques. We also plan to extend
the application of MATED-Net to the analysis of other aeolian
landform features, aiming to contribute to a broader understand-
ing of aeolian processes and landforms in diverse environments.
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