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Abstract

This paper presents a GeoPose-enabled pipeline designed to enhance camera imagery and Inertial Navigation System (INS) data
interoperability within Urban Digital Twin (UDT) systems. It addresses critical challenges in data synchronization, georeferen-
cing, and integration by leveraging low-cost tools and open standards. The proposed framework captures, processes, and aligns
visual and spatial data, converting them into GeoPose and TrainingDML-AI formats to support advanced Geo-AI applications.
This methodology enables seamless integration of heterogeneous datasets, facilitating machine learning tasks such as image-based
object detection and geospatial analysis. Key contributions include a scalable and cost-effective solution for integrating urban data,
ensuring consistency and accessibility across platforms. By advancing the capabilities of UDT systems, this work provides a stand-
ardized foundation for real-time decision-making and enhanced urban analytics, promoting smarter and more efficient management
of urban spaces, infrastructure, and resources in rapidly evolving smart cities.

1. Introduction

In the rapidly evolving field of smart city development, Urban
Digital Twins (UDT) are becoming a critical tool for data-
driven urban planning, management, and decision-making
(Sabri & Witte, 2023). These digital replicas of real-world
urban environments enable simulations and analyses of vari-
ous city infrastructures, such as traffic, environmental condi-
tions, and public services to support urban planners and policy-
makers (Sabri et al., 2022). However, a persistent challenge in
fully realizing the potential of UDTs lies in the interoperability
of disparate geospatial datasets, such as camera imagery, and
other sensor data. Ensuring seamless integration of these data
sources is crucial to creating accurate, comprehensive models
that reflect the real-world dynamics of urban environments.

This paper addresses the research questions centered on the cap-
turing, integration, and interoperability of camera imagery, and
geospatial metadata for performing machine learning (ML)-
driven analysis within UDT frameworks. Specifically, what are
the current challenges in capturing camera imagery, position,
and orientation data?. How can data from various sources be
synchronized and standardized to provide accurate spatial and
temporal representations of urban environments? How can the
integrated data be used effectively for real-time object detection
and other Geo-AI tasks in smart cities?

To address these questions, we have developed a data acquis-
ition, processing, and Geo-AI pipeline that ensures camera
imagery and INS metadata are captured, synchronized, and
converted into GeoPose. The pipeline extends beyond data
collection, enabling ML tasks through TrainingDML-AI con-
version and automatic labeling annotations. By adhering to
Open Geospatial Consortium (OGC) standards like GeoPose
and TrainingDML-AI, our methods lay the groundwork for bet-
ter interoperability in the UDT systems.

Figure 1. Roadmap: A strategic outline detailing the integration
of Camera Imagery Interoperability and Geo-AI Analysis

Interoperability within UDT systems.

1.1 Background and Motivation

UDT have emerged as a promising solution for managing and
optimizing complex urban systems by providing a spatially
accurate, real-time, and dynamic view of cities (Xu et al.,
2024). These digital models are enriched with data from mul-
tiple sources, such as traffic sensors, environmental sensors,
and camera imagery, providing a holistic understanding of
urban landscapes (Aghaabbasi & Sabri, 2025). However, as
cities grow more connected, the integration of heterogeneous
data sources becomes increasingly complex (Costagliola et al.,
2024).

The motivation for this work stems from the need to enhance
the interoperability of geospatial data in UDTs, especially data
derived from camera imagery and INS systems. While these
data sources can provide rich visual and spatial information,
they often lack the necessary alignment in terms of time, loca-
tion, and orientation to be useful for real-time decision-making.
Moreover, our investigation into existing tools revealed a lack
of open-source solutions capable of capturing and synchroniz-
ing camera imagery with fused GNSS/IMU data from mobile
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devices. This gap is particularly challenging for organizations
and researchers constrained by limited budgets. The alternative
investing in high-cost INS systems and professional-grade cam-
eras could demand tens of thousands of dollars, making these
solutions impractical for low-cost, scalable urban data collec-
tion.

The motivation for this work lies in developing a cost-effective
pipeline that can reliably capture synchronized camera imagery
and INS data using widely accessible tools. By leveraging
smartphone-based data acquisition and open-source applica-
tions, we aim to create a pipeline that allows for robust data
collection while minimizing costs. This approach not only sup-
ports the democratization of UDT technology but also enables
broader adoption in cities with limited resources.

1.2 Scope and Objectives

This paper focuses on developing a comprehensive GeoPose-
enabled pipeline for camera imagery and INS data interoperab-
ility, a critical aspect of advancing UDT systems. The proposed
scope covers the end-to-end workflow, including data acquisi-
tion, GeoPose conversion, annotation, and ML dataset prepar-
ation in the TrainingDML-AI format. The framework is de-
signed to ensure seamless integration of camera imagery, spatial
metadata, and ML models, supporting enhanced urban analyt-
ics with the potential to facilitate real-time decision-making in
smart cities.

The objectives of this work are:

• To design an interoperability pipeline that seamlessly in-
tegrates camera imagery and INS data into UDT systems.

• To ensure data synchronization and processing while con-
verting it into GeoPose format, facilitating georeferencing
and spatial analysis.

• To establish an annotation framework for preparing
TrainingDML-AI datasets, enabling ML tasks like object
detection and scene understanding.

• To evaluate the pipeline’s effectiveness through case stud-
ies involving real-time data collection, GeoPose gener-
ation, and AI-driven object detection in urban environ-
ments.

By achieving these objectives, this work aims to provide a scal-
able, cost-effective solution for data interoperability and Geo-
AI applications in UDTs, setting the stage for future research
and innovation in UDT technologies.

2. State of the Art

2.1 Related Works

Recent advancements in UDTs have emphasized the critical
role of integrating geospatial metadata and camera images for
improved urban modeling and analysis (Jeddoub et al., 2024).
GeoPose, a standard developed by the Open Geospatial Con-
sortium (OGC), has emerged as a crucial framework that en-
ables a consistent representation of the position and orienta-
tion of physical objects or virtual entities in 3D space. By
facilitating interoperability between diverse systems, GeoPose

supports real-time applications such as infrastructure monitor-
ing, autonomous navigation, and immersive urban simulations.
However, its adoption in dynamic data streams remains lim-
ited, with synchronization challenges between high-frequency
imagery and sensor data yet fully addressed.

Research in multi-sensor data fusion, leveraging techniques
such as Kalman Filtering and GNSS/IMU integration, has sig-
nificantly improved the accuracy of geospatial data (Wang &
Li, 2018). Many datasets demonstrate the potential of syn-
chronized sensor data for tasks including object detection and
scene reconstruction. Meanwhile, advancements in GeoAI have
shown promise for automating annotation and enabling predict-
ive urban analytics, further expanding the capabilities of ML in
UDT contexts.

Applications of camera imagery interoperability in UDTs span
real-time traffic analysis, urban infrastructure maintenance, and
disaster management. However, existing implementations of-
ten rely on costly, proprietary hardware, limiting scalability
and adoption in resource-constrained environments. Address-
ing these challenges through cost-effective, standardized solu-
tions remains a key research focus in the domain.

2.2 GeoPose and Imagery

GeoPose encapsulates the position and orientation information
of a camera or sensor in a well-defined global or local coordin-
ate system, typically by encoding latitude, longitude, and alti-
tude for positioning, along with angle or quaternion encod-
ing scheme for orientation. This structured approach allows
for precise georeferencing of imagery data captured by mo-
bile or stationary devices, such as drones or street-level cam-
eras. Through this geospatial encoding, GeoPose supports
alignment with high-fidelity 3D models, enhancing the integ-
ration of sensor data across multiple platforms and facilitating
consistent visualization within digital twin systems (Clarke et
al., 2024).

The adoption of GeoPose enables accurate geospatial represent-
ation for imagery interoperability, addressing the challenge of
synchronizing heterogeneous datasets from disparate sources.
Within UDTs, this is particularly relevant for real-time applica-
tions such as traffic monitoring, infrastructure management, and
autonomous navigation, where precise alignment of spatial and
visual data is critical. The use of GeoPose has advanced applic-
ations in photogrammetry, 3D object recognition, and augmen-
ted reality, providing a standardized way to overlay imagery
onto real-world coordinates.

However, despite the capabilities of GeoPose, there are limit-
ations in its application, especially in scenarios requiring syn-
chronization between high-frequency imagery and positioning
data. This synchronization challenge is further exacerbated in
dynamic environments, where consistent timestamp alignment
across devices is crucial. Additionally, the absence of a direct
data standard for pairing GeoPose metadata with imagery cap-
tured at various frame rates remains a significant gap, impacting
the real-time utility of GeoPose within ML workflows.

2.3 TrainingDML-AI

TrainingDML-AI aims to create a unified modeling language
(UML) and encodings for geospatial ML training data. This is
crucial because training data plays a fundamental role in Earth
Observation (EO) AI/ML, especially in Deep Learning (DL),
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where it is used to train, validate, and test AI/ML models. The
standard defines a UML model and encodings that are consist-
ent with OGC Standards to facilitate the exchange and retrieval
of training data in web environments. TrainingDML aims to im-
prove the interoperability and reusability of training data, which
is essential for developing accurate and reliable AI models (Yue
& Shangguan, 2023).

2.4 Limitations in Current Approaches

Current approaches to camera imagery interoperability and geo-
spatial metadata integration in UDT systems face several limita-
tions that hinder their scalability and effectiveness. One critical
challenge lies in the lack of cost-effective, open-source solu-
tions for synchronizing high-frequency camera imagery with
geospatial metadata such as GNSS/INS data. Existing systems
often rely on proprietary hardware and software, which, while
accurate, are prohibitively expensive and inaccessible for wide-
spread adoption, especially in resource-constrained urban set-
tings.

Another limitation is the inconsistency in data synchronization
across diverse sensor systems. Many tools fail to align imagery
and metadata with the required temporal and spatial precision,
leading to inaccuracies in georeferencing and subsequent ana-
lyses. Furthermore, the absence of robust standards for integ-
rating camera imagery and metadata at scale complicates in-
teroperability, reducing the utility of data for machine-learning
applications such as object detection and urban scene recon-
struction (Weil et al., 2023).

Many existing standards for geospatial data encoding do not
compete directly with TrainingDML-AI but offer complement-
ary solutions. SpatioTemporal Asset Catalog (STAC) (Rustad
et al., 2023) and the OGC O&M (Randall & Antonisse, 2012)
standards are extensible and standards-based and may be use-
ful for creating and handling geospatial data. Motion Im-
agery Standards Board (MISB) standards provide data and
metadata related to motion imagery tracking (Randall & Anton-
isse, 2012). The Coalition Shared Data (CSD) is a framework
for sharing military information. It is a mature approach for
sharing Intelligence, Surveillance, and Reconnaissance (ISR)
data (Rustad et al., 2023). None of the mentioned standards are
designed to provide a markup language for training data for AI
models to the same level of robustness as TrainingDML-AI.

Furthermore, existing pipelines often overlook real-time pro-
cessing requirements, making them unsuitable for dynamic
urban environments where immediate insights are critical. They
also lack automated frameworks for annotation and stand-
ard conversion which are essential for preparing datasets for
GeoAI-driven applications. These limitations underscore the
need for our proposed cost-efficient, standardized pipeline
for reliable data integration and enhanced ML capabilities in
UDTs.

3. Methodology

3.1 Data Collection

3.1.1 Requirements for Data Capturing Tool The re-
quirements for a data-capturing tool are driven by a need for
accuracy, compatibility, and flexibility, ensuring seamless in-
tegration of visual and sensor data for effective ML and geo-
spatial analysis. To achieve these goals, the selected tool

must meet certain key criteria related to interoperability, cost-
effectiveness, sensor support, data types, compatibility, fre-
quency and accuracy, synchronization, export formats, usabil-
ity, and processing support.

Interoperability is a priority, enabling the tool to integrate with
multiple systems and standards, allowing data from various
sources to be seamlessly shared or exchanged with minimal re-
formatting.

In terms of sensor support, the tool should capture data from
several key sensors, including the camera (for video or time-
stamped images), accelerometer, gyroscope, magnetometer,
and GPS/GNSS for position tracking. Importantly, it should
capture both raw and calibrated position and orientation data,
where calibrated data are especially essential for accurate geo-
referencing.

Given the critical role of positioning and orientation accuracy,
the tool should provide the fused data outputs in INS format.
This method is built on top of other data acquisition techniques
like Inertial Measurement Unit (IMU) as well as Attitude and
Heading Reference Systems (AHRS), each offering increas-
ingly refined levels of calibration and position tracking. This
gradation can be conceptualized as IMU ⊂ AHRS ⊂ INS

Here, an IMU provides raw measurements (acceleration and ro-
tation), an AHRS incorporates tilt and heading estimates, and
an INS combines these with position data through algorithms
like the Kalman filter (Sasani et al., 2016). The INS’s double
integration of acceleration data, for instance, is key to mitig-
ating drift and achieving precise displacement estimation. The
formula for double integration, showing how the position is de-
rived from acceleration is given by:

p =

∫ (∫
a dt

)
dt (1)

where p = position of the object
a = acceleration measured by the accelerometer
t = time

However, errors in accelerometer readings can accumulate due
to drift, leading to quadratic error growth over time. By em-
ploying a Kalman filter to fuse external data sources (e.g., GPS)
with IMU data, the INS corrects for drift and stabilizes position
estimates, thus making it suitable for long-term tracking and
accurate geospatial alignment.

The compatibility of the tool with both Android and iOS plat-
forms is necessary for widespread usability. Furthermore,
sampling frequency and positional accuracy are essential: data
must be captured at a high frequency to allow downscaling dur-
ing post-processing, as upscaling would introduce error. Syn-
chronization capabilities are also crucial to ensure all sensor
data and imagery align temporally, thus supporting integrated
analysis.

The tool should facilitate data export in standard formats (e.g.,
JSON, CSV for sensor data, and JPG/PNG/MP4 for imagery)
to ensure compatibility with downstream processing. Annota-
tion capabilities and customization options would allow users
to label data for ML and adapt settings to specific needs. Addi-
tional features, such as real-time data streaming and visualiza-
tion, would enable live monitoring, while post-processing sup-
port ensures that data can be refined and calibrated, enhancing
accuracy and reliability.
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3.1.2 Tools for Camera Imaginary and Metadata Acquis-
ition To capture high-quality visual data and precise geospa-
tial metadata, we employed a combination of accessible yet
powerful tools designed for mobile platforms. Our primary
tool, Sensor Logger, supports the capture of camera imagery (in
video or time-stamped image format) alongside metadata from
accelerometers, gyroscopes, magnetometers, and GPS. This
setup enables partially synchronized acquisition of imagery and
position/orientation data necessary for georeferencing. To en-
hance flexibility, additional data sources, including open data-
sets like Hillyfields and KITTI-360 (Liao et al., 2021), provided
robust supplementary imagery and geospatial metadata. Each
tool and dataset was selected based on its compatibility with
our requirements for data interoperability, cost-efficiency, and
accuracy, ensuring comprehensive data acquisition to support
ML applications in UDTs. Sample images reflecting various
conditions and road environments can be referenced in Figure
2, which illustrates the diverse textures and settings encountered
during collection.

Figure 2. Sample Images of Various Road Covers and
Conditions Captured from UCF Data. a: Potholes on a busy
road, b: Road with water puddles, c: Gravel road with loose

stones, d: Two road textures at turning region, e: Gutter with wet
area, and f: Smooth, newly paved road

Dataset Description Rate

UCF Data Images: 1798 samples 1 Hz
INS: 1805 samples 1 Hz

Hillyfields: Run 3 Video: 05:35 mm:ss 4.91 fps
INS: 33601 samples 100 fps

Kitti-360 Images: 320k 10 fps
INS: 4x83,000 10 fps

Table 1. Technical Specification and Comparison of Datasets

3.1.3 Equipment and Setup To ensure accurate data ac-
quisition for our study, we used a smartphone equipped with the
Sensor Logger application for capturing camera imagery along
with calibrated position and orientation metadata.

Spatial Shift Rate

We introduced a metric called Spatial Shift Rate (SSR) which
quantifies the rate of spatial displacement per unit of time
between consecutive data points based on spatial and temporal
alignment. For two consecutive frames with coordinates P1 and
P2, and image intervals defined by time t1 and t2, we used the
following metric:

SSR =
∥P1 − P2∥

∆t
(2)

where SSR = Spatial Shift Rate
P1, P2 = positional coordinates
∥P1 − P2∥ = euclidean distance
∆t = t1 − t2 = time interval

The Spatial Shift Rate (SSR) (in meters per second) provides
insight into the relative positional change rate between consec-
utive captures. A lower SSR value implies higher spatial over-
lap between frames, which is ideal for applications that require
continuity (e.g., real-time monitoring in UDT). Conversely, a
higher SSR value suggests larger gaps, potentially leading to
information loss or decreased continuity in the data stream,
which may hinder precise analysis or model training.

Overlap Metric Calculation

To quantify the data overlap between GeoPose metadata (po-
sition and orientation) and imagery frames, we calculate the
temporal alignment based on timestamps and compute a syn-
chronization offset. This overlap metric ensures accurate geor-
eferencing of imagery frames with GeoPose metadata in UDT
applications.

Assuming that GeoPose metadata (G) and imagery frames
(I) have different recording frequencies (fG and fI , respect-
ively), we can calculate the overlap factor, which represents
the percentage of frames in I that have corresponding GeoPose
metadata in G within a defined tolerance threshold as follows:

Ω =
1

NI

NI∑
m=1

[
min
n

(|tIm − tGn |) < ∆t
]

(3)

where Ω = overlap factor
NI = total number of imagery frames
tIm = timestamp of the m-th imagery frame
tGn = timestamp of the n-th GeoPose sample
∆t = tolerance threshold

The indicator function returns 1 if there exists a GeoPose
timestamp tGn such that the absolute time difference |tIm −
tGn | is within the tolerance threshold ∆t, indicating a match.
This formula gives the proportion of imagery frames that have
a matching GeoPose metadata sample within the desired tem-
poral accuracy.

Synchronization Error Calculation

For successful synchronization, we want the average Ω to be
less than or equal to a defined tolerance threshold ∆t that is
Ω ≤ ∆t which ensures that each camera frame is matched to
an INS metadata sample within a permissible time interval.

Achieving a low Ω value within the ∆t threshold confirms that
camera frames are well-aligned with INS metadata. This ac-
curate synchronization is essential for aligning visual data with
spatial orientation and position data, enabling reliable geospa-
tial analysis in UDT models.
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3.1.4 Camera Imagery Specifications The camera im-
agery specifications are crucial for ensuring data quality and
compatibility with subsequent processing steps, including im-
age labeling and ML tasks. The captured imagery in the our
dataset is in RGB (Red, Green, Blue) format, providing color-
rich data that is valuable for diverse analysis tasks in UDT sys-
tems. Each image has a resolution of 1080x1080 pixels with a
1.2-megapixel quality, producing files in the JPEG format.

The image resolution is set to 72 dpi for both X and Y axes, with
a Resolution Unit of inches, providing a balance between image
clarity and manageable file sizes. Encoding Process is achieved
through Baseline Discrete Cosine Transform (DCT) with Huff-
man coding, and 8 bits per sample for efficient compression and
preservation of image quality. This setup provides high fidelity
in imagery, suitable for detecting fine details in urban environ-
ments, especially under varying lighting conditions and back-
grounds. The specified Capture Frequency of 1 Hz (one frame
per second) ensures optimal data continuity without excessive
redundancy.

To achieve effective spatial coverage, the capture frequency (f )
is determined based on the following formula:

f(Hz) =
imageCaptureDistance (meters) × 3600

averageSpeed (mph) × 1609.344
(4)

This formula allows for the adjustment of the image capture fre-
quency according to vehicle speed and desired frame overlap,
optimizing image capture for data continuity while balancing
storage and processing needs.

It’s always best to capture imagery data at high frequency, as it
can be scaled down through post-processing. Additionally, the
position and orientation data should be captured at a frequency
that matches or exceeds that of the imagery, especially in non-
video formats, to ensure proper synchronization and alignment
with the collected imagery data.

3.2 Data Processing Pipeline

3.2.1 Frame Extraction Using FFMPEG and Image
Sampling In the case of video imagery, we utilized FFMPEG,
a popular open-source command-line toolbox, to manipulate,
convert, and stream multimedia content. Specifically, FFMPEG
was employed for video frame sampling, which involves ex-
tracting frames from a video at regular intervals or a predefined
frame rate.

The goal of this operation is to extract video frames at a specific
rate, which can be crucial for tasks like creating training data-
sets, analyzing video content, or synchronizing with other data
sources such as INS metadata.

3.2.2 INS Data Preprocessing In the INS Data Prepro-
cessing stage, the location and orientation metadata files are
systematically prepared for further analysis and integration. Ini-
tially, we define the file paths, determining whether the location
and orientation data are stored in separate files. If they are sep-
arate, each file is fetched from its respective URL and loaded
into pandas DataFrames for processing. In cases where the
metadata is consolidated into a single file, this combined file
is directly read into a DataFrame.

A critical step in our preprocessing workflow is convert-
ing epoch timestamps into a human-readable UTC date-time

format. This is achieved by a function that extracts the first ten
digits of the epoch time and transforms them into a structured
representation of date and time.

After conversion, we deduplicate the entries to eliminate any
redundant timestamps in both the location and orientation data-
sets. This step is essential to ensure that our analysis is not
skewed by repeated measurements.

Following the deduplication process, we extract relevant fea-
tures from the DataFrames. For location data, we retain the
necessary columns, such as latitude, longitude, and altitude.
For orientation data, the extraction method varies based on the
chosen encoding. If quaternion representation is used, the cor-
responding quaternion components are retained. Conversely, if
the orientation is expressed in angles (yaw, pitch, roll), a con-
version from radians to degrees is applied, as shown below:

Degrees = Radians × 180

π
(5)

Subsequently, the location and orientation DataFrames are
merged on the common timestamp, resulting in a comprehens-
ive dataset that encapsulates both sets of information. During
this merging process, we drop any columns that might have
been duplicated, such as old timestamp columns, to maintain
clarity in our data structure. Any rows containing NULL values
are also removed to ensure the integrity of the dataset.

A further critical transformation occurs when converting the
UTC timestamps into GPS time, which is vital for applications
requiring precise temporal alignment. This transformation util-
izes a function that calculates the difference between UTC and
GPS epochs while accounting for the current leap second dif-
ference:

GPS Time = (UTC Time − GPS Epoch) + LEAP SECONDS
(6)

The GPS epoch is defined as January 6, 1980, while the leap
seconds, currently 18, must be subtracted to yield the accurate
GPS time representation. Each combined row of date and time
is processed to compute the corresponding GPS time.

Finally, to refine the dataset further, we implement a mini-
fication technique where unnecessary columns are systematic-
ally dropped, streamlining the DataFrame for subsequent ana-
lysis. This comprehensive preprocessing pipeline ensures that
the INS metadata is accurately calibrated, filtered, and struc-
tured, paving the way for effective utilization in further pro-
cessing and analysis stages.

3.2.3 Synchronization of Camera Imagery and Geospatial
Metadata In this step, video frames or image instances are
synchronized with their corresponding position and orientation
metadata, ensuring temporal alignment between visual and geo-
spatial data (Erdnuess, 2020). For video data, firstly the frames
are extracted at a predefined rate, such as every second, to cre-
ate an evenly spaced frame sequence. The number of frames
is used to determine the number of corresponding INS samples,
which are selected at intervals matching the frame count, ensur-
ing a synchronized set of location and orientation data for each
frame. This process is formalized by calculating an extraction
interval as:
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Figure 3. Synchronization of Camera Imagery and INS Metadata

Interval = max

(
1,

Total Samples
Desired Samples

)
(7)

If the imagery is in a timestamped image format, a Data-
Frame of timestamps is created from the filenames and joins
this data with the Geospatial metadata by matching the date
and time fields. This synchronization technique relies on accur-
ately converting epoch time to UTC and, if necessary, adjusting
timestamps to GPS time to ensure precision.

This combined dataset of synchronized frames and geospatial
metadata enables accurate geo-referencing of imagery, associ-
ating each visual instance with precise spatial orientation and
location, providing a reliable foundation for applications requir-
ing accurate positional alignment.

3.3 GeoPose Conversion

3.3.1 GeoPose Standard Overview The GeoPose standard
enables precise geospatial positioning by encoding the orient-
ation and position of objects within a global reference frame
(Smyth, 2022). Developed to support interoperability in geo-
spatial applications, GeoPose facilitates seamless geological
referencing of various data types, including camera imagery,
and sensor readings into UDT systems.

The GeoPose.Composite.Sequence.Series.Regular, one of
the eight standardization targets defined by GeoPose, is utilized
to provide a structured encoding framework for positional (lat-
itude, longitude, altitude) and orientation (angle or quaternion)
data. This specification allows for the sequential, time-regular
encoding of geospatial metadata, ensuring synchronized and
temporally consistent alignment with imagery data. Data accur-
acy and interoperability across various devices and applications
are enhanced by this standard, making it a reliable framework
for tasks such as real-time object tracking and spatial analysis.

3.3.2 INS to GeoPose Conversion The INS-to-GeoPose
conversion process translates raw Inertial Navigation System
(INS) data into a standardized GeoPose format, accurately rep-
resenting the spatiotemporal positioning of objects. The pro-
cess begins by defining a reference point based on the first entry
in the dataset, establishing the latitude, longitude, and altitude.

The algorithm calculates the inter-pose duration Td by determ-
ining the median time difference between consecutive GPS
timestamps. This is expressed as:

Td = median (tn+1 − tn) for n = 0, 1, . . . , N − 1 (8)

where tn = GPS timestamps
N = total number of samples

This ensures the system can consistently interpret pose intervals
for accurate temporal alignment.

To ensure data integrity, a SHA256 checksum is generated
based on the concatenated pose data, which includes either an-
gular or quaternion orientation encodings, depending on the
specified parameter. This checksum serves as a verification
measure for the accuracy and consistency of the pose data
throughout the conversion process. The GeoPose structure en-
capsulates crucial temporal information, such as the start and
stop instants tstart and tstop derived from the GPS timestamps,
along with the total pose count P , facilitating the tracking of
data over time.

The conversion defines an outer frame using the reference lat-
itude, longitude, and altitude, while inner frame series entries
are created for each pose, detailing the translation and rotation
parameters. The translation is defined as [E,N,U ], where E,
N , and U represent East, North, and Up coordinates, respect-
ively. For rotation, either Euler angles [ψ, θ, ϕ] (yaw, pitch, roll)
or quaternion values [qx, qy, qz, qw] are utilized based on the
orientation encoding.

The final GeoPose JSON structure encompasses a comprehens-
ive header with metadata, including pose count P and integrity
checks, along with an inter-pose duration Td, outer frame data,
and a series trailer, collectively ensuring a robust and interop-
erable representation of the positional data within the GeoPose
framework. The GeoPose file creation process was discussed in
the previous section.

3.4 Image Annotation and TrainingDML-AI

This research utilized a two-step process to prepare geospa-
tial image data for ML. First, 42 images representing di-
verse road surface types were manually annotated using Com-
puter Vision Annotation Tool (CVAT). Polygons were drawn
around target features, and annotations were exported in COCO
1.0 format. Second, these annotations, along with GeoPose-
encoded data and provenance metadata, were aggregated into a
single TrainingDML-AI file. Each image with its correspond-
ing geospatial metadata via python automation, ensuring all ne-
cessary information for model training was included. The res-
ulting TrainingDML-AI file, validated for compliance, provides
a structured and interoperable dataset for UDT applications.

4. Results and Validation

4.1 Results from GeoPose

The resulting GeoPose JSON file accurately encodes positional
and orientation data, ensuring seamless interoperability for geo-
spatial analysis. Figure 4 showcases a sample of the generated
GeoPose JSON structure from the UCF dataset, which is then
visualized and retrieved on ArcGIS online. The output contains
the precise geospatial representation and timestamp alignment.

4.2 Synchronization Validation

To validate synchronization, timestamp alignment between
camera imagery and INS geospatial metadata is evaluated.

As detailed in Equation 3 (Overlap Metric Calculation), the
overlap factor Ω = 1.0 in our dataset indicates perfect syn-
chronization with a zero tolerance threshold ∆t = 0, ensuring
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Figure 4. Output of GeoPose synchronization. a: Sample
GeoPose JSON Structure from UCF Dataset, b: Viusalized data

on ArcGIS Online, and c: Retrieved the GeoPosed Image

that every imagery frame has an exact GeoPose timestamp since
they both were captured using the same device. The tGn rep-
resents Pestimated,i which is the estimated INS position after
GeoPose conversion, rather than the ground truth.

Ω =
1790

1790
= 1.0 or 100%

Here, 1790 are the number of datapoints in the our dataset.
The results validate that the dataset maintains a precise tem-
poral match between imagery frames and INS metadata, en-
suring high-fidelity georeferencing crucial for accurate spatial
analysis, real-time mapping, and ML applications.

4.3 Image Annotation Efficiency

The annotation process efficiency was benchmarked by com-
paring manual and semi-automated methods within CVAT. Key
metrics included Annotation Time per Frame and Annotation
Accuracy, with efficiency calculated as:

Annotation Efficiency =
Total Frames Annotated
Total Annotation Time

(9)

Frame Manual (seconds) Semi-Auto (seconds)
1 17.12 10.00
2 15.10 11.01
3 14.54 9.94
4 15.39 9.45
5 13.08 10.01
Average 15.05 10.08

Table 2. Comparison of Time (seconds) for Manual and
Semi-Auto Annotation

Table 2 shows that automated annotations significantly reduced
time per frame while maintaining high accuracy, streamlining
data preparation and enabling scalable ML tasks.

5. Discussion

5.1 Strengths and Contributions

The key strength of this work is establishing a cost-effective,
GeoPose-enabled data acquisition and processing pipeline for
UDTs. This project leverages accessible tools and open-source
solutions to successfully implement a robust workflow integrat-
ing camera imagery with positional and orientation metadata,
enhancing interoperability in smart city models. The conver-
sion reliably encoded positional and orientation data, aligning
with the GeoPose.Composite.Sequence.Series.Regular stand-
ardization target, proving effective interoperability across data-
sets. It also enables high-quality georeferenced data collec-
tion, synchronization, and conversion into TrainingDML-AI,
supporting scalable ML tasks. Coupled with with real-time ana-
lytics, the GeoPose framework’s adaptability across various use
cases significantly advances UDT systems’ capabilities in data
sharing, cross-platform compatibility, and accurate spatial ref-
erencing for further analysis and ML workflows.

6. Conclusion and Future Work

By developing a robust pipeline for capturing, synchronizing,
and converting spatial and visual data into the GeoPose stand-
ard, this work establishes a foundational framework for en-
abling seamless data integration within UDT systems. The in-
teroperability achieved here facilitates accurate georeferencing
and alignment of heterogeneous datasets, ensuring reliable in-
puts for downstream Geo-AI applications. These advancements
underscore the importance of standardized, cost-effective solu-
tions in advancing UDT capabilities, particularly in resource-
constrained urban contexts.

Dataset Enhancements and Validation Approach

Conversion precision can be quantified by calculating posi-
tional error. However, our dataset lacks ground truth positional
data, preventing direct calculation of GeoPose conversion error.
However, future validation efforts could incorporate reference
datasets with known ground truth positions to further evaluate
positional drift and refine transformation accuracy.

Real-Time Data Acquisition and Processing

Expanding this work toward real-time data acquisition and pro-
cessing remains a critical goal. Future directions include adopt-
ing stream processing frameworks and edge computing tech-
niques to enable real-time synchronization, georeferencing, and
analysis. These advancements will enhance the utility of UDT
systems in dynamic urban environments, offering actionable in-
sights for real time city management and decision-making.
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