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Abstract 
 
Understanding pedestrian movement patterns is essential for designing accessible and pedestrian-friendly urban environments. By 
analysing them, city planners can optimize resource allocation, enhance walkability, and improve infrastructure planning. This study 
examines pedestrian patterns in District Lozenets of Sofia city, Bulgaria, and develops a predictive model to estimate foot traffic 
based on environmental factors such as weather conditions and pedestrian density at different times of day. 
The study utilizes data for pedestrian movement collected in the GATE Institute’s City Living Lab in District Lozenets, employing 
radar-based sensors and incorporating weather data to analyse pedestrian movement trends. Furthermore, it explores various 
statistical models, such as ARIMA and ETS models, to forecast pedestrian traffic. Results indicate strong seasonal trends, with 
weekday peaks during commuting hours and a decline in foot traffic due to adverse weather conditions such as rain and snow. The 
SARIMA model demonstrates high accuracy in predicting short-term pedestrian movement patterns, outperforming alternative 
models in capturing both seasonal variations and long-term trends. 
The findings provide valuable insights for urban planners, event organizers, and policymakers, enabling data-driven decisions for 
infrastructure improvements, public safety strategies, and pedestrian-friendly city planning. The study also highlights the potential of 
digital twin technology in urban mobility research, demonstrating the benefits of integrating real-time pedestrian data for predictive 
analytics. 
 
 
 

1. Introduction 

The importance of walking as a means of transportation has 
been steadily increasing due to its environmental friendliness 
and health benefits. In recent years, the necessity for walkable 
cities has been further underlined through issues of air pollution, 
traffic congestion, and urban sprawl. Therefore, prioritising 
more secure and pedestrian-friendly infrastructure, as well as 
understanding pedestrian movement and its patterns, would 
introduce a much-needed change in the quality of everyday life.  
 
Urban morphology has been proven to play a crucial role in 
shaping pedestrian behaviour and movement patterns. It 
provides insight into how different urban forms influence 
walking habits and accessibility: street layout, building density, 
and public spaces are all important factors that determine the 
walkability of an area (Mostafa et al., 2022). As a result, 
increased walkability would promote more socially cohesive 
and vibrant communities. Moreover, integrating pedestrian data 
and predictive models offers invaluable tools for urban planners 
and policymakers. 
 
The significance of pedestrian movement prediction and pattern 
recognition can be seen in the areas of Urban Planning and 
Infrastructure Management, Improvement in Walkability and 
Accessibility, Strategic Planning for Future Needs and 
Assessment of Meteorological Phenomena Effect and Event 
Impact. By analysing the patterns in pedestrian movement, city 
planners can make informed decisions in their choice of space 
allocation and infrastructure design (e.g. position and width of 
sidewalks, prioritisation of public transportation etc.). 
Moreover, insights from the study can help enhance the 
pedestrian experience, making the city more accessible and 
user-friendly by promoting a more walkable environment or by 
serving as a starting point in identifying key areas needing 

improvement. The ability to detect and predict pedestrian trends 
could assist cities in the optimisation of infrastructure 
developments and other urban improvements. Assessing how 
events (e.g. music festivals, sports games etc.) influence 
pedestrian numbers and movement will be informative 
regarding event planning and crowd management strategies. 
Predicting pedestrian traffic in accordance with weather 
conditions could also be of help when planning activities such 
as snow removal and short-term construction schedules. Due to 
the dynamic nature of urban spaces, continuous monitoring and 
adaptation are necessary to ensure that pedestrian needs are 
effectively met (Wang et al., 2017). 
 
This study aims to analyze the pedestrian movement in the 
District of Lozenets of Sofia city, Bulgaria. It proposes a 
predictive model that estimates foot traffic based on various 
environmental factors, including weather conditions and 
pedestrian density at different times of the day. Specifically, it 
seeks to analyze pedestrian density, evaluate the environmental 
impact, and compare prediction models to identify the most 
effective approach for identifying patterns and forecasting 
pedestrian movement. The study is one of the showcases of the 
urban digital twin of Sofia city, aiming to simulate, analyze and 
visualize the urban environment and processes by applying the 
digital twin basic idea – “design, test and build first digitally” 
and thus showing the added value of data for decision making 
(Kumalasari at al., 2023). 
 
The rest of the paper is structured as follows. Section 2 outlines 
the related work. Section 3 describes the data collection, while 
Section 4 presents the methodology followed to conduct the 
study. Section 5 shows the obtained results, which are further 
discussed in Section 6. Finally, Section 7 concludes the paper. 
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2. Related Work 

The key factors that have been found to influence pedestrian 
movement within urban spaces are population growth, weather 
conditions, time of the day, location and special events (Wang 
et al., 2017; Elzeni et al., 2022; Anciaes et al. 2017; Lindelöw et 
al., 2014; Aultman-Hall et al., 2009; Vanky et al. 2017, Shaaban 
and Muley, 2016; Kim, 2015). Furthermore, pedestrian activity 
and numbers are also influenced by the availability of bus stop 
locations and mid-block crossings (Xu et al., 2019). Weather 
conditions have also been found to impact crossing behaviour 
(Fourkiotis et al., 2022). In addition, a comprehensive review of 
the impact of urban morphology on pedestrian decision-making 
has been compiled (Elzeni et al., 2022). 
 
Regression models have been employed to evaluate the impacts 
of weather conditions on pedestrian traffic and pedestrian 
activity, as well as to develop a specific model for pedestrian 
volumes during peak hours (Aultman-Hall et al., 2009; Vanky 
et al., 2017). Moreover, the Student's t-test was used to evaluate 
the difference in mean pedestrian volumes between hours in 
consideration of different environmental conditions (Aultman-
Hall et al., 2009). Using correlation analysis, a statistically 
significant correlation was found between predictor variables 
like temperature, wind speed, relative humidity, and 
precipitation, with humidity and wind speed having the highest 
Pearson’s Correlation Coefficient (Aultman-Hall et al., 2009). 
Studies focusing on pedestrian route choices employed a 
Multinomial Probit (MNP) model to account for route 
correlation and to relax the independence of irrelevant 
alternatives (IIA) assumption (allowing for correlation among 
alternative routes between the same origin-destination pair) and 
a logistic regression model to predict pedestrian route choices 
and to address the issue of separation in binary response models 
(Kim, 2015; Gim and Ko, 2017; Gou and Loo, 2013). The use 
of Maximum Likelihood Estimation (MLE) and Firth logistic 
regression has been explored as an alternative to conventional 
logistic regression methods for dealing with the separation issue 
of empirical data (Gim and Ko, 2017).  The ARIMA model 
offers a better performance to predict the pedestrian traffic in 
comparison to support vector regression (SVR) and multiple 
linear regression (MLR) methods (Wang et al., 2017). 
Additionally, the possibility of modelling pedestrian flow rates 
from image data has also been explored. A CNN-LSTM 
approach was employed to predict pedestrian traffic flow rate 
and density. The number of new pedestrians and the total 
number of pedestrians were estimated via an STL CNN. 
Furthermore, a Dual Image Input CNN - MTL approach was 
used to extract common features from two consecutive images 
and task-specific layers to anticipate new and total pedestrian 
counts. Finally, pedestrian traffic flow rate and density for the 
next hour were forecasted using time-series data and MTL 
LSTM Modelling (Joshi and Silver, 2022). 
 

3. Data Collection 

The study utilizes data collected in GATE Institutes’ City 
Living Lab from July 2022 to August 2024. The lab is equipped 
with 50 autonomous radar sensors for pedestrian counting 
(Figure 1). An innovative digital signal processing is applied, 
allowing bidirectional counting of people passing from left to 
right and in the opposite direction of the sensor. The counted 
pedestrians are stored in the internal memory of the device and 
transmitted at regular intervals via a wireless network using the 
LoRaWAN protocol at 868MHz. 
 

 
Figure 1. City Living Lab pedestrian sensor network. 

 
Due to infrastructure renovation of the City Living Lab, data is 
not available between May 21 and May 28, 2024 (Figure 2). 
Therefore, the data was split into two datasets: before and after 
June 29, 2023. A decision was made to perform the analysis on 
the two datasets separately, to explore the effects of the missing 
data on the study results.  The original sensor readings follow 
the structure: 

• DATE-TIME: date and time at which the current 
record was made. 

• PEOPLE-Radar-Left: number of pedestrians passed 
the radar and turned left when the record was made. 

• PEOPLE-Radar-Right: number of pedestrians passed 
the radar and turned right when the record was made. 

• Station: the unique ID of each sensor labelled from C1 
to C50. 

 
Figure 2. Missing data due to City Living Lab renovations. 

 
The study focuses on the district of Lozenets, therefore the 
weather data for the study period was obtained from the Open-
Meteo API (Zippenfenig, 2024), with parameters: latitude 
42.70, longitude 23.40, elevation 560 m, and time zone MSK. 
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The dataset includes information for the date and time, 
temperature (°C), rain levels (mm), snowfall levels (cm), and 
wind speed (km/h). 
 

4. Methodology 

This section presents the methodology followed to perform the 
study, describing the evaluation metrics, correlation analysis 
and predictive models. 
 
4.1 Evaluation Metrics 

The study employs three evaluation metrics: Mean Absolute 
Error (MAE), Root Mean Squared Error (RMSE), and R-
squared (R²) to assess model accuracy. The MAE is the average 
of the absolute differences between predicted and actual values. 
It measures the magnitude of the prediction errors in a model 
without considering their direction (positive or negative). A 
lower MAE indicates better model performance (Willmott and 
Matsuura, 2005). 
 

 
(1) 

 
where xi = actual value 
 yi = predicted value 
 n = number of observations. 
 
The RMSE is the square root of the average of the squared 
differences between predicted and actual values. It gives more 
weight to large errors compared to MAE, making it sensitive to 
outliers. A lower RMSE indicates a better-fitting model (Chai 
and Draxler, 2014). 
 

 

 
(2) 

 
where xi = actual value 
 yi = predicted value 
 n = number of observations. 
 
R², also known as the coefficient of determination, measures the 
proportion of the variance in the dependent variable that is 
predictable from the independent variable(s). It indicates how 
well the model explains the variance in the actual data. An R² 
value of 1 indicates a perfect fit, while a value of 0 indicates no 
predictive power. 
 

 

(3) 

 
where xi = actual value 
 yi = predicted value 
  = mean of the actual values 
 n = number of observations. 
 
4.2 Correlation Analysis 

To explore the correlation between pedestrian count and 
temperature/wind speed, Pearson's R, also known as the Pearson 
correlation coefficient (PCC) (Pearson, 1895), was employed. It 

is a measure of the linear correlation between two variables.  Its 
values range between -1 and 1, where 1 indicates a perfect 
positive correlation: as one variable increases, the other 
increases in a perfectly linear fashion, 0 indicates no correlation: 
there is no linear relationship between the variables, and -1 
indicates a perfect negative correlation: as one variable 
increases, the other decreases in a perfectly linear fashion. 
 
The correlation between pedestrian count and rain/snow was 
explored using a T-test for Categorical/Binary Variables 
(Mishra et al., 2019). The T-test is a statistical method used to 
determine if there is a significant difference between the means 
of two groups. Although it is typically used for continuous data, 
it is also applicable in cases where the independent variable is 
categorical/binary, and the dependent variable is continuous. In 
the context of the study’s rain/snow scenario, the T-test can be 
used to compare the mean pedestrian counts on days with rain 
or no rain (or snow vs. no snow) to determine if there is a 
statistically significant difference in the number of pedestrians 
based on weather conditions. The T-statistics show the size of 
the difference relative to the variation in the sample data, where 
the p-value indicates whether the difference is statistically 
significant, with p < 0.05 indicating a significant difference in 
pedestrian counts between rainy and non-rainy days. 
 
Finally, to explore the correlation between pedestrian count and 
temperature ANOVA for Multi-Category Variables was used 
(Fisher, 1992). ANOVA (Analysis of Variance) is a statistical 
method used to compare the means of three or more groups to 
determine if there are statistically significant differences among 
them. While a T-test compares the means of two groups, 
ANOVA is used when the independent variable has more than 
two categories (i.e., a multi-category variable). In the current 
study, the independent variable is categorized as a categorical 
variable with three or more categories (e.g., "low", "medium", 
and "high" temperature) and the dependent variable is a 
continuous variable (e.g., pedestrian count). ANOVA tests 
whether there is a statistically significant difference between the 
means of the dependent variable across the different categories 
of the independent variable. 
 
4.3 ETS Model Prediction 

The Error, Trend, Seasonality (ETS) model is a type of 
exponential smoothing method used for time series forecasting 
(Hyndman and Athanasopoulos, 2018; Jofipasi et al., 2018). It 
decomposes a time series into three components: 
 

• Error (E): The random variations or noise in the data. 
• Trend (T): The long-term movement in the data, 

indicating whether the series is increasing, decreasing, 
or stable over time. 

• Seasonality (S): The repeating patterns at fixed 
intervals, such as daily, weekly, or monthly cycles. 

 
The ETS model can adapt to different types of time series data 
by adjusting the way it handles each of these components 
(additively or multiplicatively). Depending on how these 
components interact, different variations of the ETS model are 
available. When predicting pedestrian counts based on time 
series data, the ETS model is highly useful because it handles 
both trend and seasonality, which are common in pedestrian 
flow patterns. As seen already, the data has seasonality in both 
daily patterns and weekly patterns (more pedestrians during 
rush hours, fewer at night, weekdays vs. weekends), as well as 
monthly/seasonal effects. A general increasing or decreasing 
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trend in pedestrian traffic over time, depending on various 
external factors, is also present. 
 
4.4 SARIMA Model Prediction  

The Seasonal Autoregressive Integrated Moving Average 
(SARIMA) model is an extension of the ARIMA model, 
specifically designed to handle seasonal and non-seasonal 
components in time series data (Hyndman and Athanasopoulos 
2018; De Livera et al., 2011). It combines autoregressive (AR) 
terms, moving average (MA) terms, and differencing to make a 
time series stationary, along with seasonal counterparts to 
capture recurring patterns at fixed intervals (such as daily, 
weekly, or monthly patterns). The SARIMA model is often 
represented by the notation SARIMA (p, d, q) (P, D, Q), where: 
 

• p, d and q represent the non-seasonal AR, 
differencing, and MA terms, respectively. 

• P, D and Q represent the seasonal AR, differencing, 
and MA terms, respectively. 

• S represents the seasonal period, representing the 
length of the season (e.g., 12 for monthly data with a 
yearly cycle, 7 for daily data with weekly cycles). 
 

The combination of these components allows the model to 
capture both short-term dependencies (non-seasonal) and 
longer-term seasonal patterns that repeat at regular intervals. 
Exogenous variables are external factors that can influence the 
outcome of the time series. When added to the SARIMA model, 
the model becomes SARIMAX, where "X" stands for the 
exogenous variables. These exogenous variables can enhance 
the model by providing additional information that might 
explain variation in the data beyond seasonal and autoregressive 
components. 
 
To utilize the ARIMA model, an Augmented Dickey-Fuller 
(ADF) test is necessary (Mushtaq, 2011). The Augmented 
Dickey-Fuller (ADF) test is a statistical test used to determine 
whether a given time series is stationary or contains a unit root 
(i.e., it is non-stationary). A stationary time series has a constant 
mean, variance, and autocorrelation structure over time, which 
is essential for many time series forecasting models, such as 
ARIMA and SARIMA, to function properly. When determining 
appropriate parameters for the ARIMA models, the 
autocorrelation function (ACF) plot, and the closely related 
partial autocorrelation (PAC) plot are used (Yakubu and 
Saputra, 2022). The Partial Autocorrelation Function (PACF) is 
a statistical tool used in time-series analysis to measure the 
correlation between a time series and its lagged values. In other 
words, it shows the direct relationship between an observation 
and its lagged values by filtering out the effects of shorter lags. 
The PACF helps to isolate the "pure" relationship between a 
time series and a particular lag by removing the influence of all 
shorter lags. This makes the PACF particularly useful for 
identifying the appropriate order of an Autoregressive (AR) 
model. 
 
To model pedestrian counts, three variations of the ETS model 
(Additive, Multiplicative, No Seasonality) were tested alongside 
two ARIMA-based models: 

• SARIMA (Time-Only), which uses only the time-
series pedestrian count data. 

• SARIMAX (Time + Weather) which employs the 
weather features (temperature, rain, snowfall, wind 
speed) as additional exogenous variables. 
 

5. Results 

This section presents the results from the analysis, including 
trends analysis, correlation analysis and short-term modelling. 
 
5.1 Pedestrian Trend Analysis 

Analysis of daily pedestrian count, shown in Figure 3, reveals 
clear seasonality, with higher activity in warmer months and 
considerable day-to-day fluctuation related to events like 
holidays and the school year. The most noticeable drops in 
pedestrian traffic can be attributed to Christmas, New Year’s 
Eve and Easter. Additionally, the decrease in pedestrian count is 
particularly apparent during the late summer and fall months 
(August through September). Weekends consistently show a 
lower number of pedestrian movements, reflecting a drop in 
commuter traffic. 
 

Figure 3. Daily pedestrian count. 
The heatmap of pedestrian count by day and time highlights a 
peak in the mid-week activity from Tuesday to Thursday, with 
the highest pedestrian traffic during typical working hours, 
decreasing toward the weekend (Figure 4).  
 

 
Figure 4. Average pedestrian count by weekday and day hour. 

 
Daily traffic shows distinct morning (8:00 - 10:00 AM), midday 
(11:00 AM - 2:00 PM), and evening peaks (5:00 - 7:00 PM), 
corresponding to commuting and lunch breaks (Figure 5). 
Weekends have reduced pedestrian traffic, where moderate 
midday peaks appear on Saturday, while the number of 
pedestrians remains the lowest on Sunday. The median 
pedestrian number further confirms these weekday consistencies 
and weekend declines, though mid-week outliers suggest 
occasional high-traffic events (Figure 6). Hourly data shows 
predictable daily cycles, characterized by minimal activity 
overnight and a steady decline following the evening commute 
(Figure 5). 
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Figure 5. Pedestrian count by hour of day. 

 

 

Figure 6. Pedestrian count by day of the week. 
  
5.2 Correlation Analysis 

The PCC indicated a moderate positive correlation between 
temperature and pedestrian count, suggesting that higher 
temperatures are associated with increased pedestrian traffic. 
Additionally, the results from the ANOVA method presented an 
f-statistic of 273.790, confirming that there is a significant 
variation in pedestrian counts across different temperature 
categories. The T-tests for snow and rain showed significant 
differences in counts during rain and snow, with both conditions 
reducing pedestrian activity. 
 
5.3 Short-Term Modelling 

The ACF plot of the residuals, presented in Figure 7, shows no 
significant autocorrelation, showing that the SARIMA model 
appropriately captures the time series structure. The 
autocorrelation at lag 0 is 1, but at all other lags, the 
autocorrelation is close to 0, and the points generally fall within 
the confidence intervals. The absence of substantial deviations 
beyond the confidence bounds suggests that the residuals of the 
SARIMA model exhibit no significant autocorrelation. This 

indicates that the model has effectively captured the underlying 
structure of the time series. This plot indicates that the model 
residuals exhibit characteristics of white noise, suggesting a 
well-fitted model. 

 
Figure 7. ACF plot of the residuals of the SARIMA model 

 
The ACF shows significant correlations at multiple lags 
(positive peaks at lags 1, 6, and 12, for example), suggesting 
seasonality or repeating cycles in the time series data (Figure 8). 
The gradual decay of the peaks suggests a strong and sustained 
correlation across multiple lags. 

 

 
Figure 8. ACF plot of the SARIMA model. 

 
The most notable characteristic is the significant spike at lag 1, 
indicating a pronounced autoregressive component, AR(1) 
(Figure 9). Subsequent spikes are comparatively smaller and 
exhibit a rapid decline after lag 1, implying that once the first 
lag is accounted for, additional lags contribute minimally to the 
predictive power of the autoregressive process. 
 
Out of the three ETS model variations, the Additive model 
performs best for short-term (24-hour) and long-term (168-
hour) forecasts. In comparison, the multiplicative model slightly 
outperforms for medium-term (48-hour) forecasts (Table 1). 
The No-Seasonality model consistently underperforms across 
all timeframes, with significantly higher errors, which can be 
expected, as it lacks the mechanism to account for these 
predictable, cyclical fluctuations in pedestrian traffic. The 
SARIMA model, on the other hand, outperformed its ETS 
counterparts in capturing both regular fluctuations and non-
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seasonal variations, achieving an accuracy of 0.98 for a 12-hour 
forecast and over 0.9 for a 24-hour forecast (Figure 10). Thus, it 
is a preferable model for predicting pedestrian counts (Table 2). 

 

 
Figure 9. PACF plot of the SARIMA model 

 

 
Figure 10. SARIMA Model short-term performance. 

 
Timeframe Best performing model MAE RMSE 
(24-Hour) ETS(Additive) 139.11 177.68 
(48-Hour) ETS(Multiplicative) 251.03 363.18 
(168-Hour) ETS(Additive) 228.97 336.76 
Table 1. Best performing ETS models comparison. 
 
Timeframe Model MAE RMSE R2 

(12-Hour) 2022/2023 Data 68.24 86.31 0.98 
(24-Hour) 2022/2023 Data 124.99 167.25 0.91 
(48-Hour) 2023/2024 Data 130.42 160.46 0.90 
(168-Hour) 2023/2024 Data 178.86 239.70 0.77 
Table 2. Best performing SARIMA models comparison. 
 

6. Discussion 

One of the key limitations of the applied approach lies in its 
inability to account for external factors that have a significant 
impact on pedestrian traffic, such as popular events and 
proximity to points of interest (e.g., malls, parks, schools, and 
transit hubs). These variables can drive large spikes or drops in 
pedestrian counts that the SARIMA model, while adept at 
handling seasonality and trends, is not equipped to capture 
without further customization or additional external 

information. For example, pedestrian numbers often surge 
during public events such as concerts, sporting events, festivals, 
or parades. These events are irregular and often unpredictable 
based solely on the historical time series data. Without 
incorporating such events as exogenous variables, the SARIMA 
model cannot explain the sudden spikes or sharp drops seen on 
outlier days. Consequently, the model's forecasts during these 
periods are likely to be inaccurate, as it treats these outlier 
events as noise rather than relevant factors. Furthermore, the 
distance between the observation points and key points of 
interest like shopping malls, parks, schools, and transportation 
hubs can strongly influence pedestrian counts. Areas near these 
high-traffic locations tend to experience regular pedestrian 
flows influenced by shopping hours, school timetables, and 
public transportation schedules. However, the current approach 
does not consider the geographical and spatial characteristics of 
the data, which are crucial for understanding how pedestrian 
traffic fluctuates based on proximity to such locations. 
 
A more sophisticated approach to address these limitations 
would involve the clustering of data based on variables such as 
proximity to points of interest, and the customization of the time 
series model for different clusters. The benefits would include 
improved forecasting accuracy, targeted analysis and more 
dynamic and context-aware models. By tailoring the model for 
specific clusters, the model's ability to capture localized 
seasonal patterns and responses to external influences can be 
significantly enhanced, thereby improving the accuracy of 
forecasts. Clustering the sensors also allows for more targeted 
analysis and decision-making. For example, public planning 
authorities can use forecasts specific to high-traffic areas near 
malls or schools to optimize public safety, infrastructure, and 
service delivery. Moreover, by incorporating external factors 
such as events, holidays, and proximity to key points of interest, 
the model becomes more dynamic and context-aware, leading to 
more realistic and actionable forecasts for pedestrian 
management. 
 

7. Conclusion 

This study explores various statistical models, such as ARIMA 
and ETS models, to forecast pedestrian traffic. Pedestrian 
counts by day of the week appear to be consistent with lower 
counts during the weekend, exhibiting a Morning and Evening 
peak, which could contribute to people’s daily commute, with a 
gradual decline after 8 pm. Peak traffic days appear to be 
Tuesday, Wednesday and Thursday, with lower numbers on 
Monday and a gradually declining traffic towards the weekends. 
 
Considering weather conditions, rain and snow significantly 
decrease pedestrian counts, with snow having a more 
pronounced negative effect. Temperature has a moderate 
positive impact on pedestrian traffic, meaning more people are 
outside when it’s warmer. Wind speed has a weak but 
statistically significant relationship with pedestrian counts, but 
the effect is not as pronounced. The ANOVA model suggests 
that pedestrian counts vary significantly across different 
temperature ranges, likely indicating a sweet spot of 
temperature where pedestrian traffic peaks (e.g. mild, 
comfortable weather may encourage higher foot traffic). 
 
The SARIMA model was utilized to forecast pedestrian counts 
based on time series data that exhibited clear seasonal patterns, 
daily and weekly cycles, and occasional outliers. The model 
was selected due to its ability to account for both non-seasonal 
and seasonal components within the data, providing a 
comprehensive framework for handling the complex dynamics 
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of pedestrian traffic, helping effectively capture the seasonal 
fluctuations in pedestrian traffic, particularly the daily and 
weekly trends, which were evident from the heatmaps and time 
series plots of the data. Residual analysis indicated that the 
model performed reasonably well, with no significant 
autocorrelation in the residuals and no evident patterns, 
suggesting that the core dynamics of the data were well 
captured by the SARIMA model. The Additive ETS model was 
tested for comparison but did not perform as well in capturing 
the seasonality and trends inherent in the pedestrian data. The 
SARIMA model, on the other hand, provided better accuracy in 
predicting both regular fluctuations and non-seasonal variations. 
However, certain areas of the model, particularly during outlier 
days, require further refinement, as the residuals displayed 
larger deviations during these periods. 
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