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Abstract 

In construction automation applications, coarse registration between 3D Building Information Modelling (BIM) and the as-built point 

cloud is vital for the monitoring of construction progress. This can be achieved by extracting highly distinct geometric features in both 

datasets to speed up the correspondence search. However, the existing geometric feature-based coarse registration methods have 

limitations in the Architecture, Engineering, Construction & Facility Management (AEC/FM) context because building designs 

often contain a considerable self-similarity, symmetry, and lack of texture. 

In this work, we propose an automatic coarse registration method that is motivated by the Random Sample Consensus (RANSAC) 

algorithm to estimate the transformation parameters that best align the as-built point cloud in the coordinate frame of the BIM model 

by matching the corresponding columns. The method is based on the extraction of columns from the as-built point cloud and the as-

planned BIM model. For the point cloud data, fully automated column extraction techniques are used by applying deep learning, 

whereas the BIM model columns are extracted from the available semantic information. Experiments are carried out on real-life 

datasets from the building construction site to validate the proposed method. The results show that our proposed column-based 

registration method achieved an RMSE of 2 centimeters , and the cloud-to-cloud mean distance of 1.6cm ± 1.8cm after fine registration. 

The accuracy of the co-registration result shows that our proposed approach contributes to automating the registration between the as-

built point cloud and the as-planned BIM model for construction progress monitoring. 

1. Introduction

Monitoring work progress in building construction is crucial to 

enhance the performance of construction management: progress 

measurement (Bosché et al., 2015), material tracking (Scott & 

Assadi, 1999), and quality control (Arditi et al., 2015). Currently, 

with the development of Building Information Modelling (BIM) 

and reality capture technologies, such as laser scanning and 

Photogrammetry in the Architecture, Engineering, Construction 

&Facility Management (AEC/FM) industry, automating the 

construction progress monitoring through Scan-vs-BIM is 

becoming popular (Kim et al., 2020; Lin et al., 2015; Turkan et 

al., 2012). This requires acquiring the as-built 3D construction 

site status and comparing it with the design 3D BIM model to 

retrieve useful as-built information (F. Bosche et al., 2008; 

Frederic Bosche et al., 2009; Jacob-Loyola et al., 2021; 

Changwan Kim et al., 2013). This can be substantially simplified 

by 3D registration of the as-built point cloud with the as-planed 

BIM model so that they have a common coordinate frame (Bueno 

et al., 2018; J Chen & Cho, 2018). The 3D registration in the 

AEC/FM industry is currently implemented manually and the 

automated methods are still immature. The scope of this work is 

to automatically align the as-built point cloud from the building 

construction site to the as-planned BIM model for construction 

progress monitoring applications. 

3D registration of the as-built point cloud with the as-designed 

BIM model can be carried out by two main consecutive steps: 

coarse registration to roughly align the datasets, followed by an 

automated fine registration process to optimally register them. 

The fine registration of the 3D dataset is an extensively studied 

problem with well-known computational solutions; those are 

primarily variants of the fundamental approach of minimizing the 

Euclidean distance between neighbouring points. The most 

popular approach is the Iterative Closest Point (ICP) algorithm 

(Besl & McKay, 1992) and its variants (Y. Chen & Medioni, 

1992; Segal et al., 2009). On the other hand, Coarse registration 

of two 3D datasets can be performed when corresponding 

geometric features, such as points, lines, and planes, are 

identified and matched in the model and data points (Aiger et al., 

2008; Bueno et al., 2018).  Our work proposes a geometric 

feature-based coarse registration method since buildings are 

made up of evenly distributed prominent structural features, 

making it easier to solve the registration problem. Furthermore, 

our suggested feature extraction technique is robust to frequent 

problems in the AEC/FM context, such as a lack of texture, large 

self-similarities, and the presence of significant noise e.g., clutter 

from the construction site.  

This work aims at extracting columns from an as-built point 

cloud from a construction site and matching them to 

corresponding columns in the as-designed BIM model for the co-

registration of both datasets. To tackle the profound self-

similarity problem in the extracted columns, we consider certain 

sets of columns with a distinct pattern.  Columns were chosen as 

the main distinctive features for coarse registration because they 

are the most dominant building structural components usually 

constructed at early stages in the building construction process 

(Truong-Hong & Lindenbergh, 2022),  and their centre of mass 

can be easily calculated from geometric data. 
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The method employs deep learning to automatically extract 

columns from the as-built point cloud via semantic segmentation, 

and we then leverage the existing semantic information in the as-

designed BIM to retrieve the corresponding columns. The 

approach is specifically developed to deal with the presence of 

clutters from the construction site, as well as self-similarity and 

design symmetries in building components. Our proposed 

approach enables us to automate the registration of the as-built 

point cloud and the as-planned BIM model, allowing us to track 

construction progress over time. 

 

The rest of this work is organized as follows. The background 

and related work are provided in Section 2. In Section 3, the 

methodology is explained. Section 4 presents the test design and 

experiment outcomes. The conclusions are reported in Section 5. 

 

2.  RELATED WORK 

As discussed above, coarse registration of the as-built point cloud 

with the as-designed BIM model can be performed when 

corresponding distinct geometric features are identified and 

matched in the model and data points.  Kim et al. (2011) proposed 

an automated coarse registration method using principal 

component analysis ( PCA) for the alignment of a 3D CAD 

model with the as-built point cloud for construction progress 

monitoring. They first converted the 3D CAD model into a point 

cloud representation. Their method resampled both point cloud 

and CAD models to have a uniform point resolution without 

extracting corresponding geometric features. This method works 

in a simple construction site used by Kim et al. (2011). Bosché 

(2012) proposed a plane-based semi-automated coarse 

registration approach to extract and match planes from both as-

planned and as-built 3D models. He first converted the 3D BIM 

model into mesh for extracting the plane patches based on the 

normal vector information. His method requires a user to pick at 

least three non-parallel planes from both datasets and compute 

the 3D rigid transformation using a least-squares alignment 

approach. Bueno et al. (2018) proposed a 4-plane congruent set 

(4-PlCS) for the registration of as-built scanned data with the as-

planned BIM mesh/model. The 4-PlCS developed by Bueno et 

al. (2018) starts with extracting all the planar patches from both 

the 3D BIM model and point cloud. For each '4-plane base' of the 

BIM model point cloud, the matching congruent '4-plane bases' 

are searched as a candidate set within point cloud plane patches 

using geometric descriptors, such as parallelism, orthogonality, 

and distance. Then, the 3D rigid transformation matrix is 

computed for each pair of the 4-PlCS, and the optimal one is 

selected based on the maximum number of scores from the rest 

of the congruent sets. Zhao et al. (2022) propose an improved 

plane detection approach based on region growing, which 

enhances the accuracy and efficiency of aligning various forms 

of spatial data, including point clouds, meshes, and CAD models. 

This unified framework aims to streamline the registration 

process across different data representations by leveraging the 

geometric properties of planar surfaces. 

Processing of the construction site point clouds to extract the 

distinct geometric features for coarse registration remains mainly 

a manual affair with its challenges due to the variation in point 

density, clutters, self-similarity, and occlusions from the 

construction site (Anil et al., 2011). These distinct geometric 

features can be identified and extracted from point clouds using 

geometric feature descriptors, such as fast point feature 

histograms (Rusu et al., 2009) that specify the local geometry of 

point clouds, which are then utilized to construct the 

transformation matrix. For instance, Mahmood and Han (2019) 

used a fast point feature histogram as a feature descriptor and a 

random sample consensus (RANSAC) (Fischler & Bolles, 1981) 

to reject erroneous correspondences in aligning multiple scans in 

3D point clouds. Adan & Huber (2011) used the Hough transform 

algorithm to extract the geometric features in the point cloud 

which assumes primitive parametric models can represent the 

objects in a point cloud scene.  On the other hand, Machine 

learning techniques have also been used for semantic 

segmentation of point clouds to detect the components of the 

building, where computer models learn how to accomplish a task 

through supervised feature learning (Swetha Koppula et al., 

2011). To learn a parametric model and classify objects based on 

the feature vector, supervised machine learning classifiers such 

as random forest or support vector machines can be employed 

(Weinmann et al., 2015). However, the above-mentioned 

methods are semi-automated or require intensive human 

interaction to some extent.   

Currently, fully automated feature extraction methods using deep 

learning are becoming state of the art as it eliminates the 

requirement to extract and select feature descriptors and offers a 

more robust non-parametric classification model (Jingdao Chen 

et al., 2019).  These methods can learn the pointwise features 

directly from the unstructured point cloud to capture various local 

and contextual characteristics of the point (Qi et al., 

2017). Before putting the entire data into the deep learning 

model, the 3D point cloud is subsampled for efficiency 

(Girardeau-Montaut, 2015). Then, the point clouds from the 

construction site are semantically segmented to assign the label 

to one of several predefined classes, such as columns, walls, and 

floors that form the building’s main structure (Perez-Perez et al., 

2021a).  

3. METHODOLOGY 

In this research, a registration algorithm is proposed that aligns 

the as-built point cloud with the as-planned BIM model for 

construction progress monitoring. The procedure takes as input a 

set of clustered corresponding columns from both datasets and 

outputs the registered dataset. So, the registration process 

consists of the following steps: (i) As-built point cloud column 

detection using deep learning, (ii) As-planed BIM model column 

detection, and (ii) Co-registration of both datasets. A detailed 

discussion of the research methodology is given below. 

3.1 Point cloud column detection using deep learning 

We used the KPConv (Kernel Point Fully Convolutional 

Network) point-based semantic segmentation model for 

extracting columns (Thomas et al., 2019).  KPConv is a 

convolutional point-based semantic segmentation network that is 

motivated by an image-based convolution neural network 

(CNN), but instead of kernel pixels in the image convolution, the 

model utilizes a set of kernel points to describe the location where 

each kernel weight is applied. Once the class of the points is 

established, the observations belonging to the column object are 

filtered out and clustered. These clustered columns are the input 

of the presented registration algorithm to align the as-built point 

cloud (source datapoint) in the reference frame of the as-designed 

BIM model (target datapoint). 

The datasets for training the deep learning model are collected 

from various sources: the construction site point cloud acquired 

by Terrestrial laser scanner (TLS), the publicly available 

published Raamac Lab dataset (Perez-Perez et al., 2021b) the 

S3DIS datasets (Armeni et al., 2017)  and synthetic point cloud 

sampled from the BIM model exported from the Revit software 
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(BIM model structural projects) by adding 6 mm standard 

deviation Gaussian noise to the sampled synthetic point clouds to 

simulate the real behaviour of the laser scanner. The training data 

was labeled into five (5) interest classes: Column, Wall, Beam, 

Slab, and Clutter. Prior to inputting into the selected deep 

learning network for training and validating, the collected 

training data was preprocessed using various techniques, such as 

outlier removal, down sampling, additional attribute extraction, 

and labelling training data. The processed training dataset was 

split into a training, validation, and test using the 70:20:10 ratio 

from the original dataset. The model was trained using the 

training dataset and evaluated using the validation dataset. A 

description of the classes and data used for training, validation, 

and testing are shown in Table 1. 

 

The KPConv model was trained from scratch on our prepared 

training dataset. During the training phase, the model 

hyperparameters, such as the learning rate, the number of epochs, 

the optimizer, and the regularization parameters, were adjusted 

to achieve the best possible results. We used workstation 

computers with high processing and memory capacity for 

training, validation, and inference. 

Table 1: Description of the number of points per class used for 

training and testing the deep learning architecture 

Data type 

# Column 

points 

# Wall 

points 

# Beam 

points 

#Slab 

points 

# Clutter 

points 
Total 

Training  6.5M  

 

14.4M   7.7M   40.1M   0.4M  

 

69.1M  

Validation 
1.9M 4.1M 2.2M 11.5M 0.2M 

 

19.9M  

Testing 0.9M 2.1M 1.1M 5.7M 0.1M  9.9M  

 

The trained model was evaluated on the test dataset acquired 

using a terrestrial Laser Scanner (TLS) from the building 

construction site which is located at the University of Twente 

(UT) campus in Enschede and has achieved 73% accuracy in 

overall classes using the mean intersection over union(mIoU) and 

column segmentation accuracy of 69%. The test result of the 

trained model is summarized in Table 2 in terms of the confusion 

matrix of intersection over union (IoU). The slab category 

achieved the highest accuracy, followed by the beam and wall 

class.  

 

As seen in Table 2,  the confusion matrix shows that there is some 

confusion between classes in the classification result. It can be 

observed that about 18% of wall class points were misclassified 

as column classes. The confusion between column and wall 

classes could mainly be caused due to the class similarity as both 

classes are vertical elements and possess similar normal vector 

components. 

Table 2: Confusion Matrix of IoU metrics for semantic 

segmentation results from the KPConv model 

 

The main reason behind the very low prediction accuracy of the 

clutter class might be due to the limited quantity of training data 

for the clutter class (as seen in Table 1). The construction site 

point cloud was segmented using the trained model, and the 

semantic segmentation results are visualized in Figure 1.  

 

 

Figure 1: Results obtained from semantic segmentation of the 

building construction site TLS point cloud ground floor: a) 

Outside view, b) Inside view 

Then, only the points belonging to the columns are filtered out 

among the other classes as illustrated in Figure 2 (left) for later 

use to estimate the transformation parameters. Then, the 

misclassified points that are a certain distance further from the 

column cluster points are removed using the outlier removal 

techniques. These misclassified points may contribute to the 

deviation in the computed geometric centroid of the columns and 

slabs in the subsequent stage, affecting the registration accuracy 

of the established approach as discussed in section 3.4. 

3.2 BIM model column detection 

The BIM model in IFC format was imported into the Revit 

software, and columns were retrieved from the available 

semantic information in the BIM. The columns were filtered 

from the structural section of the BIM model and exported as a 

mesh in STL format. Then, we sampled uniform resolution point 

clouds from the BIM column mesh. Figure 2 (right) illustrates the 

exported ground floor columns of the BIM model from the Revit 

Software in a point cloud format. 

 

Figure 2: The detected ground floor columns (point cloud 

format): from the as-built point cloud using KPConv semantic 

segmentation model (left), from the as-planned BIM model 

3.3 Column centroid computation result 

The extracted columns from both datasets were subjected to the 

clustering algorithm to get the column instances of each dataset. 

We obtained 252 and 256 column clusters for the BIM, and TLS 
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datasets, respectively.  Once the column clusters were obtained, 

we computed the 3D geometric centroid of each cluster of the 

detected columns to use as input for our developed registration 

algorithm. We used the ground floor columns for both datasets. 

The computed centroid points for each dataset are shown in 

Figure 3. 

 

Figure 3: The centroids of the detected columns: a) BIM model, 

b) TLS Point cloud 

3.4 Proposed registration method  

We propose an automated coarse registration approach which is 

Motivated by the RANSAC algorithm (see Figure 4). The 

motivation behind this approach is to apply a trial-and-error co-

registration approach that is robust to the outliers in the detected 

columns of the as-built point cloud from the semantic 

segmentation. The outliers should be detected and removed from 

the process of estimating transformation parameters. The key 

idea is to find the best partition of points in the inlier set and 

outlier and estimate the transformation model from the inlier set. 

The method assumes that both the model and point cloud 

columns have previously been detected. The rigid 3D 

transformation can be made along three orthogonal axes and is 

characterized by six unknown 3D similarity transformation 

parameters, i.e., three rotations, and three translation parameters, 

which are to be estimated. The 3D rotation matrix is composed 

using Euler angles (KUIPERS, 1999). 

 

The building construction context has some unique benefits that 

can be taken advantage of during the initial estimation of 

transformation parameters, but it also has some unique limits that 

must be addressed (Bosché, 2012). The advantage is that the as-

built point clouds are reconstructed with the vertical axis (Z) 

orthogonal to the ground this axis often correlates to the design 

3D (BIM) model's vertical (Z) axis. So, based on this argument, 

our developed method assumes that the rotation mainly occurs 

along the vertical direction, and the rotation along the horizontal 

(X, Y) axis is assumed to be negligible given that the dual-axis 

compensator is enabled on the scanner. On the other hand, 

construction site as-built data are usually taken in noisy areas 

with a significant amount of clutters that are not part of the 

structure under target. These components cause occlusion that 

creates gaps in the as-built data acquired from the scene of 

interest. Furthermore, the TLS point cloud columns segmented 

from the deep learning semantic segmentation model, as 

illustrated in Figure 2, contain some outliers (misclassified 

points). Those points possibly contribute to the deviation in the 

computed geometric centroid of the column clusters and slabs, 

which on the other hand, affects the registration accuracy of the 

developed method in the later stage. Consequently, our proposed 

registration approach in Figure 4 estimates the transformation 

parameters in two steps:  first estimate 2D transformation 

parameters,  then followed by the 3D registration.  

 

 

 

Figure 4: Workflow of the proposed coarse registration algorithm 

 

A. Problem Setting 

Given the detected columns of the BIM model (target data points) 

and as-built data (source data points), our approach starts with 

computing the 3D centroids of the detected columns for both data 

points and then projects it to the XY plane. Then, the method 

leverages the canter points as a basis for the correspondence 

search for estimating the transformation parameters. The method 

first determines the 2D rigid body transformation parameters in 

the XY Euclidian space, then is followed by estimating 3D rigid 

body transformation parameters. If (x,y)  and (u,v)  represent the 

cartesian coordinates of the projected source data point and target 

data point column centroids in XY plane respectively, the 2D 

rigid body transform is represented by: 

 

 [
𝑢
𝑣
] = [𝑡𝑥 𝑡𝑦]𝑇 + R [

𝑥
𝑦] (1) 

 

Where R is the rotation part of the transform 

𝑅 = [
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

] 

 

and  𝑡𝑥 and 𝑡𝑦 are the translations along the X and Y axes 

respectively. 

At least a pair of matching column centroids from each data point 

is required to solve the 2D rigid body transformation equation 

above.  
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B. Implementation of the proposed algorithm 

 

The proposed modified RANSAC algorithm randomly picks a 

pair of column centroids (2-column base) from the source data 

point and searches for all possible corresponding congruent pairs 

of column centroids from the target data points to compute the 

2D rigid body similarity transformation. The congruent bases 

from the target data points are determined based on the distance 

between the randomly selected source column centroid pair, i.e., 

the distance between the target and source column bases should 

be equal within a certain distance tolerance δ. This trial-and-error 

approach to get the optimal transformation continues until the 

best transformation is found. 

 

 Given the symmetry and repetitiveness found in the built 

environment, it is likely that many congruent sets do not actually 

lead to the correct transformations. So, to tackle this problem, 

first, we consider only the top 3% of source column bases with 

the maximum 2D distance between column centroids. This 

significantly reduces the number of corresponding congruent 

target data point candidates required for estimating the optimal 

transformation parameters. Note that the method considers the 

entire target data point column centroids for the selection of all 

possible matching candidate sets based on the congruent 

distance. Then, the likelihood of the transformation derived from 

each pair of column bases to be optimal must be assessed by 

evaluating whether the rest of the dataset supports it. All the 

transformed source data point columns within a certain threshold 

distance (e.g., 30cm) from the corresponding closest target 

column centroids are selected as supports (inliers). The optimal 

transformation is selected based on the maximum number of 

inliers. 

 

Once the 2D transformation parameters are obtained using 

our proposed modified RNSAC algorithm, then the remaining 

unknown translation vector along the Z-direction 𝑡𝑧 is estimated 

using the centre of mass of the slabs detected from both datasets. 

We extracted the points belonging to the ground and the first-

floor slabs of the source data points from the semantic 

segmentation result followed by postprocessing to remove the 

outliers. On the other hand, the corresponding slabs of the as-

planned BIM model are extracted from the existing semantic 

information in the BIM model.  The height between the ground 

and first floor for both datasets is determined using the centre of 

mass of slabs. Then, the translation 𝑡𝑧  along Z-direction is 

calculated by subtracting the floor height of the source data point 

from the target data point.   

 

Finally, the as-built point cloud is transformed based on the 

estimated 3D transformation parameters. The acquired result can 

be considered as an initial alignment (coarse registration). Then, 

we apply fine registration using ICP as a refinement registration 

on top of our developed coarse registration to get a more accurate 

result.  

4. EXPERIMENTS 

We tested our proposed method using the as-built point cloud and 

the as-planned BIM model of the building construction site which 

is located at the University of Twente (UT) campus in Enschede. 

It is a one-story building with a length of about 220m and a width 

of about 50m. The as-built point cloud is acquired using the 

terrestrial laser scanner (TLS). The column detection procedure 

is already discussed in section 3.1 and section 3.2. We tested the 

proposed registration method on our presented dataset for the 

following different scenarios: 

• Incompleteness in the source data points: usually, the 

as-built point cloud from the construction site might 

contain only a part of the building, and only a limited 

number of columns could be obtained. 

• Presence of symmetry and self-similarities in the 

source data points due to significant symmetry and 

self-similarity (e.g. the uniform column pattern) in our 

test dataset, it was expected that several 

transformations would have very high inliers, although 

only one of them is the correct one. This often poses a 

challenge in the process of estimating the correct 3D 

transformation parameters. 

Three experimental setups were done on the given case 

study dataset to test the robustness of our proposed method 

for the above scenarios. These are: i) using the entire source 

data points, ii) using the left outlined section of source data 

points (Figure 5a), and iii) using the top outlined part of the 

source data points (Figure 5b). We explained each case in 

detail below. Our detected reference/target data points 

illustrated in Figure 3a are used entirely in all the test cases.   

 

Figure 5: Experimental dataset configuration for symmetry test 

using a different section of the source data points as outlined by 

the rectangular red line: a) left section, b) top section 

For the transformation parameters computation, we used 

“Intel(R) Core (TM) i5-4200M CPU @ 2.50GHz” with RAM 

storage of 16GB laptop. Note that the run times presented in 

Table 3 for various scenarios exclude the segmentation time 

which is done separately using workstations as discussed in 

section 3.1. In all scenarios, our proposed method considers only 

3% of the pair of source data points with the maximum distance 

between them for the registration with the entire target data 

points, as discussed in section 3.4. For all test scenarios, we set 

the following parameter for our proposed algorithm: 
• Maximum main iteration= 100 

• Inlier ratio= 90% 

• threshold distance= 30cm 

The proposed coarse-registration approach was evaluated based 

on two criteria: -` 

1. Registration speed: Computational time required to 

perform the registration. And the number of iterations 

needed until the optimal transformation parameters 

selecting process reaches the termination criterion 

2. Registration quality: The quality of our proposed 

registration method is assessed based on the number 
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of inliers and the root mean square error (RMSE) both 

after coarse and fine registration. 

• The number of inliers:  the number of correctly 

placed point cloud columns that support the optimal 

transformation (within a threshold distance). 

• RMSE: the root mean square error of the distances 

between the column Centroid inliers of the point cloud 

and the BIM model is computed as seen in equation 2, 

where N is the number of inliers and 𝑑𝑖 is the distance 

between inliers after transformation.  

 𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑑𝑖)

2

𝑁

𝑖=1

 

 

(2) 

• Cloud-to-cloud distance:  After registering the point 

cloud columns to the reference BIM model columns, 

we compute the distance between the corresponding 

points using the Cloud-to-Cloud distance computation 

tool in CloudCompare. Note that we use the 

corresponding inliers (detected column point cloud ) 

for the cloud-to-cloud distance computation (but not 

the column centroids). 

 

Case I: Registration using the entire source data points  

 

We inputted entire source and target data points into our 

developed registration algorithm and the results are summarized 

in Table 3. The total number of the detected as-built point cloud 

column centroids is 256, out of which about 13 (5%) centroids 

are outliers (non-columns) as discussed in section 3.3. Note that 

we estimated the outlier ratio by visual inspection since the inlier 

column centroids are often aligned linearly in X and Y directions. 

 

Case II: Registration using a left section of source data points 

(see Figure 5a) 

 

The selected section of source data points contains 139 column 

centroids. The outlier ratio in the selected dataset is about 3%. 

The selected source data points and the entire target data points 

were loaded into the registration algorithm, and the results are 

summarized in Table 3. In this case, when compared to the case 

for the entire point cloud column registration result, the average 

iteration and computational time needed to get the best 

transformation is higher. This might have happened because of 

many congruent pairs of column centroids in the target data 

points due to the repetitive column pattern for the selected 3%  

candidate bases of column centroids in the source data points. 

 

Case III: Coarse registration using the top part of source data 

points (see Figure 5b ). 

 

The selected source data point contains 134 column centroids 

with an outlier ratio of less than 3%.  During the algorithm's 

execution with all the given parameters, the selected source data 

points were not correctly aligned due to the symmetry and self-

similarity (a repetitive pattern of columns) in the dataset. For this 

limitation, we suggest that the user should use a more strict 

parameter setting for the inlier ratio at the cost of computational 

time.  Since, in our case, the source data point contains about a 

3% outlier ratio, we achieved the correct transformation by 

increasing the inlier ratio from 90% to 95%, keeping the other 

parameters fixed. The results are summarized in Table 3. 

Table 3: Summary of the transformation results for the three 

different cases of source data points 

Test 

cases 

# 

Inli

ers 

# 

Itera

tion 

Registrati

on run 

time  

(sec) 

Modified 

RANSAC 

RMSE 

   (m) 

ICP 

RMSE 

(m) 

Case 

I  
238 57 52 0.06 0.02 

Case 

II 
126 128 85 0.04 0.02 

Case 

III 
130 57 63 0.04 0.02 

 

As observed from Table 3, our developed registration approach 

has correctly aligned source data points to the reference target 

data points in all scenarios with an average RMSE of 5cm in 2D 

(XY plane). The performance was also evaluated in terms of 

computational speed, and the algorithm requires, on average, 50 

iterations within 55 sec to achieve the optimal result for both case 

I and case III. This high speed in computation is achieved by 

considering congruent distance descriptors and only the top 3% 

of pairs of source data points for correspondence search in target 

data points. This would take many hundred iterations if the basic 

RANSAC algorithm were applied by considering entire source 

data points for correspondence search.  

 

As discussed in section B, we computed the vertical translation 

using the center of mass of the slabs for 3D rigid body 

transformation.  Figure 6(a) illustrates the overlaying of the point 

cloud columns to the corresponding BIM model columns after 

3D coarse registration using our proposed coarse registration.  

For the fine registration equivalent, we applied ICP on top of the 

coarse registration for a more accurate result and achieved an 

average RMSE result of 2cm in 2D (XY plane) as summarized in 

Table 3. Figure 6(b) illustrates the overlaying of the point cloud 

columns to the corresponding BIM model columns after 

transformation using ICP. 

 

Figure 6: Overlay of the columns of source and target datasets; a) 

after coarse registration using our proposed method (a), after fine 

registration using ICP (b). 
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We have also computed the cloud-to-cloud distance between the 

reference BIM model and the transformed point cloud first-floor 

slab, as illustrated in Figure 7. We have achieved the average 

mean distance of 1.6cm ± 1.8cm after registration using ICP. The 

red points are the outliers in the detected slabs that cause the 

discrepancy in the cloud-to-cloud distance. This might be caused 

by the outliers in the detected slabs due to clutters and also the 

semantic segmentation model detection accuracy. 

 
 

Figure 7: Cloud-to-cloud distance between the reference BIM 

model mesh to the corresponding as-built point cloud slabs (in 

m) after registration using ICP. Colours are relative to the 

minimum and maximum distance values. 

We have applied the 3D transformation obtained using our 

proposed registration on the entire TLS point cloud and 

illustrated the result in Figure 8. 

 

Figure 8: Overview of the result of the presented automated 

Scan-vs-BIM co-registration procedure: as-planned BIM model 

mesh (a), as-built point cloud (b), and the co-registration result 

of both datasets (c). 

 

5. Conclusion and future work 

This research proposed a column-based automatic coarse 

registration method for the alignment of the as-built point cloud 

in the reference frame of the 3D as-planned BIM model for 

construction progress monitoring. The developed method 

estimates the 3D rigid transformation parameters by 

automatically matching the corresponding columns in the as-built 

point cloud and as-planned BIM model. The point cloud columns 

are extracted by using the point-based KPConv deep learning 

model, whereas the corresponding columns from the BIM model 

are retrieved from the BIM’s structural family using Revit 

software. Both the detected point cloud and BIM model columns 

were clustered, and the centroids were computed and loaded into 

the proposed coarse registration approach. The corresponding 

column centroids are then automatically matched to estimate the 

2D rigid transformation parameter. Then, we computed the 

vertical translation using the center of mass of slabs for the 3D 

coarse registration.  

We applied ICP as the fine registration equivalent on top of the 

coarse registration to achieve accurate registration for 

construction progress monitoring. Our experimentation result 

shows that the proposed alignment approach has reliably detected 

the best portion of the inlier columns that supports the estimated 

optimal transformation parameters. The results show that our 

proposed column-based registration method achieved an RMSE 

of 2 centimeters within the computational time of 55 seconds, and 

the cloud-to-cloud mean distance of 1.6cm ± 1.8cm in 3D after 

fine registration using ICP. As a result, we conclude that our 

proposed method contributes to automating the registration 

between the as-built point cloud and the as-planned BIM model 

to monitor the construction progress ( by comparing the TLS and 

UAV as-built point cloud with the as-planned BIM model). 

However, our proposed method is tested on the as-built point 

clouds where the columns have not been covered by walls. 

However, the column detection using semantic segmentation 

fails if the columns are embedded in the walls. Therefore, in such 

a case, other surface feature extraction and matching approaches 

can provide a better automated coarse registration result for 

progress monitoring. 
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