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ABSTRACT 

Underground water leaks in urban networks result in significant 

resource loss, infrastructure degradation, and environmental 

damage—challenges that are particularly acute in high-density 

cities like Hong Kong, where aging and complex infrastructure 

complicates detection. Traditional methods such as acoustic 

sensing and manual inspections often fall short in efficiency and 

scalability. This study proposes the use of L-band SAR imagery 

from ALOS-2 combined with machine learning techniques to 

address these challenges. A robust leak detection framework was 

developed using six dual-polarized SAR images (HH and VV 

modes) alongside historical leak data from the Hong Kong Water 

Supplies Department (WSD). Features extracted via Gray-Level 

Co-occurrence Matrix (GLCM) metrics and backscattering 

coefficients were used to train various machine learning, deep 

learning, and ensemble learning models, with hyperparameter 

optimization performed using a grid search algorithm. Among 

these, the stacking algorithm delivered the best performance, 

achieving an accuracy of 80%. Despite these promising results, 

several critical issues remain unresolved—particularly data 

imbalance, the incorporation of physical leak characteristics, and 

the integration of additional environmental factors. Future 

research will focus on these challenges by exploring new data 

sources, such as four-polarization ALOS-2 images and Sentinel- 

1 C-band data, as well as advanced polarimetric and 

interferometric techniques, to further enhance the robustness and 

accuracy of leak detection models. 

1. INTRODUCTION 

1.1 Background 

Water distribution networks (WDNs) are the lifelines of modern 

society, delivering safe and reliable water to homes, businesses, 

and critical services. Yet these systems face mounting pressures: 

aging infrastructure, extreme climatic events, and increasing 

urban demands all threaten their resilience. A single water main 

break can trigger service disruptions, flood streets, and result in 

costly repairs—a reality starkly illustrated by the 240,000 annual 

pipe failures in the United States or the 15% yearly water loss in 

Hong Kong’s underground pipelines (Alshami et al., 2024). 

Globally, utilities grapple with deteriorating infrastructure and 

escalating risks—from contamination to corrosion—that 

undermine public trust and strain budgets (Xing et al., 2024). 

 

Water leakage alone is estimated to drain between 20% and 50% 

of treated water supplies worldwide, resulting in the loss of 

billions of dollars in revenue and significantly exacerbating water 

scarcity—especially in drought-prone regions (Arabi & Grau, 

2024).  Beyond  these  financial  setbacks,  persistent  leaks 

accelerate infrastructure degradation by eroding roadways, 

destabilizing building foundations, and increasing the energy 

required for water treatment and pumping. As climate change 

intensifies droughts and population growth further strains water 

resources, the need for precise and scalable leak detection 

systems has never been more urgent (Alshami et al., 2023). 

Traditional leak detection methods, such as manual inspections, 

acoustic sensors, and ground surveys, are often too slow and 

labor-intensive to manage the scale of modern WDNs effectively. 

Consequently, there is a pressing need for a paradigm shift 

toward proactive, technology-driven solutions that can rapidly 

and accurately pinpoint leaks before they escalate into costly 

crises, thereby ensuring water conservation and maintaining 

infrastructure integrity. The following sections detail this vision. 

We begin by contextualizing the challenges facing WDNs and 

the limitations of current methods. Next, we outline our 

methodology, which integrates SAR data acquisition, machine 

learning, and geospatial analysis to identify leakage hotspots. We 

then present our findings, evaluating model accuracy and 

scalability in diverse urban settings. Finally, we discuss the 

implications for infrastructure resilience, address technical and 

operational challenges, and chart a path toward real-world 

implementation. 

 

 

1.2 Literature Review 

Ground Penetrating Radar (GPR) and manual inspections have 

long been the cornerstone for identifying anomalies in water 

distribution networks (WDNs) (Eyuboglu et al., 2003; El-Abbasy 

et al., 2016; El-Zahab et al., 2017; El-Zahab et al., 2018). For 

instance, GPR detects variations in soil dielectric properties 

caused by moisture infiltration (Hunaidi & Giamou, 1998); 

however, its application is often constrained by high operational 

costs and localized coverage, rendering it less effective for large- 

scale monitoring (Hunaidi, 2000). Moreover, these traditional 

methods are labor-intensive and require frequent manual 

inspections and extensive field surveys. 

To overcome these limitations, remote sensing has emerged as a 

promising alternative that reduces labor intensity while 

expanding spatial coverage. In particular, optical remote sensing 

techniques—which utilize satellite or airborne imagery 

(Hadjimitsis et al., 2009)—have gained significant traction for 

leak detection in WDNs. These methods monitor vegetation 

indices such as the Normalized Difference Vegetation Index 

(NDVI) and Green NDVI (GNDVI), which can indirectly 

indicate moisture anomalies associated with leaks. For example, 

Chen et al. (2020) demonstrated that deep-learning models based 

on Landsat-8 imagery—which incorporate parameters such as 

land surface temperature (LST), fraction of vegetation cover 

(FVC), and the temperature vegetation dryness index (TVDI)— 
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can detect leak zones with an accuracy of approximately 85%. 

Similarly, Agapiou et al. (2013b) employed high-resolution 

QuickBird and SPOT imagery, using thresholds derived from 

ground spectroradiometry and NDVI to accurately pinpoint leak 

locations. In another study, Agapiou et al. (2013a) utilized 

medium-resolution data from Landsat 5 TM and Landsat 7 

ETM+ (with a 30-meter pixel size) to examine areas with known 

leakage problems; however, despite the use of various post- 

processing techniques including vegetation indices, this approach 

detected only a single problematic leakage. In contrast, 

Hadjimitsis et al. (2013) showed that ground spectroradiometers 

and low-altitude hyperspectral systems—which capture spectral 

signatures in the visible (400–700 nm) and very near-infrared 

(750–900 nm) ranges—were significantly more effective. Their 

findings indicated that wet soils reflect 20–25% less light than 

dry soils, with the maximum difference observed in the very 

near-infrared. Additionally, vegetation’s spectral response varies 

with moisture content—wet grass reflects around 12% in the 

green band and 35% in the near-infrared, compared to 5% and 

25%, respectively, for dry grass—underscoring the importance 

of high spatial resolution in capturing subtle spectral differences 

critical for identifying water leakages.However, optical methods 

are not without limitations. They are sensitive to cloud cover, 

variations in illumination, and typically provide only shallow 

penetration, which restricts their ability to detect subsurface leaks 

(Ali et al., 2021). Airborne platforms, such as unmanned aerial 

vehicles (UAVs), offer higher spatial resolution due to their 

lower ground sampling distances. For example, Krapez et al. 

(2022) utilized near-infrared, short-wave near-infrared, and 

thermal spectral bands from aerial vehicles and achieved a model 

accuracy of 50%. Nevertheless, the scalability of these platforms 

is hindered by limitations in payload capacity and flight 

endurance, which necessitate trained remote pilots and incur 

additional labor, time, and financial costs. In contrast, satellite- 

based imagery that leverages optical sensors has been explored 

as a more autonomous, accessible, consistent, scalable, and cost- 

effective alternative for water leak monitoring. Despite these 

advances in optical remote sensing, UAV operations remain 

constrained by spatial coverage and flight endurance issues 

(Traoré et al., 2022). This has led to growing interest in Synthetic 

Aperture Radar (SAR) as a compelling alternative for leak 

detection. Unlike optical sensors, SAR can capture imagery 

under all weather conditions and at any time of day, while also 

providing the added benefit of subsurface penetration. SAR 

sensors emit microwave signals that partially penetrate the soil, 

making them sensitive to variations in soil moisture. Wet soils, 

with their higher dielectric constants, generate stronger 

backscatter signals than dry soils. Furthermore, SAR sensors 

operate in multiple polarizations—such as VV (vertical 

transmit/receive) and VH (vertical transmit, horizontal 

receive)—with VV being particularly sensitive to moisture in the 

top few centimeters of soil and VH providing valuable insights 

into surface roughness and deeper moisture layers (Ranjbar et al., 

2021).Recently, Arabi & Grau (2024) demonstrated that texture 

analysis methods—most notably the Gray Level Co-occurrence 

Matrix (GLCM)—can be effectively employed to extract spatial 

patterns from SAR imagery, thereby enhancing the potential for 

leak detection. However, they also noted that the performance of 

these techniques in complex urban environments remains an area 

requiring further investigation. In summary, while optical, UAV, 

and SAR-based methods each offer unique advantages, 

significant challenges persist—especially in urban settings. 

Optical methods are vulnerable to environmental conditions such 

as cloud cover and variable illumination; UAVs are limited by 

operational complexity and flight endurance; and SAR, though 

promising, faces issues related to data interpretation in 

heterogeneous urban areas. Ongoing research into the integration 

of these remote sensing techniques with advanced deep learning 

approaches holds substantial potential for improving leak 

detection accuracy in these challenging contexts. 

 

1.3 Research Rationale 

Despite promising advancements in remote sensing for water 

leak detection, significant challenges persist. Optical sensors, 

while effective for detecting surface moisture and vegetation 

changes, are hampered by atmospheric conditions and lack the 

penetration necessary for subsurface anomalies. Although UAV- 

based systems provide high spatial resolution, they are limited by 

coverage and operational constraints. Conversely, SAR 

sensors—especially those operating in the L-band—offer the 

ability to penetrate surfaces and capture subsurface moisture 

variations. However, in urban environments, heterogeneous 

scattering from buildings and other structures can obscure the 

subtle signals generated by leaks. 

Furthermore, while SAR platforms such as Sentinel-1 offer 

frequent revisit intervals (approximately every 6 days), other L- 

band sensors like ALOS-2—which provide superior subsurface 

sensitivity—often have lower temporal resolution. To address 

this limitation, our study assumes that leak-induced moisture 

anomalies persist for at least 30 days, thereby increasing the 

likelihood of detection within the available SAR data. We 

propose an integrated approach that combines L-band SAR data 

with advanced machine learning techniques. By fusing 

traditional backscatter metrics with texture features extracted via 

GLCM analysis, we aim to develop a robust classifier capable of 

distinguishing leak-induced moisture anomalies from 

background urban variability. This integrated methodology not 

only addresses the limitations of optical and UAV-based systems 

but also extends the spatial and temporal coverage essential for 

effective leak detection. Additionally, while GPR-based methods 

offer high-resolution local insights, their scalability is limited; 

thus, our approach leverages satellite-based SAR imagery to 

provide broad coverage and complement GPR data when 

available. 

 
2. STUDY AREA AND DATASETS 

The study area is Hong Kong, a densely populated metropolitan 

region with a highly complex underground water distribution 

network. The region’s extensive pipeline system is prone to water 

leaks, exacerbated by aging infrastructure, increasing urban 

development, and frequent excavation activities. To enhance the 

ability to detect and monitor underground water leaks, this study 

integrates multi-temporal Synthetic Aperture Radar (SAR) 

imagery with historical leak reports and pipeline geospatial data. 

The dataset consists of six ALOS-2 SAR images acquired in 

dual-polarization (HH and VV modes) with a spatial resolution 

of approximately 6 meters. These SAR images were sourced 

from the Japan Aerospace Exploration Agency (JAXA) and 

procured specifically for this research. The available images 

cover two frames (Frame 3 and Frame 4) within the study area, 

ensuring comprehensive spatial coverage over key pipeline 

sections. Table 1 summarizes the SAR images and their 

corresponding availability in each frame. In addition to SAR 

imagery, the Water Supplies Department (WSD) of Hong Kong 

provided a dataset of historical leak points recorded between 

2010 and 2021, which contains precise spatial and temporal 

information on past leak incidents. This dataset was critical for 

training and validating machine learning models. A visual 

representation of the study area, including the pipeline network, 

detected leak points, and SAR frame coverage, is provided in 

Figure 1. This figure illustrates the spatial distribution of key 

infrastructure elements and highlights the coverage of SAR 

imagery across the study area. 
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Figure 1: a) study area. The green rectangles in panel c denotes the spatial coverage of ALOS-2 (6 m) frames. 

Table 1: Summary of Available ALOS-2 SAR Images and Frames 

Image ID Frame 3 Frame 4 

14/12/2016 ✓ 

27/07/2016 ✓ 

26/07/2017 ✓ ✓ 

14/11/2018 ✓ ✓ 

3. METHODOLOGY

After the SAR images were preprocessed in the SNAP Toolbox 

(Braun & Veci, 2021)—including steps for radiometric 

calibration, thermal noise removal, speckle filtering, and terrain 

correction—the study proceeded with a detailed coregistration 

process using SNAP’s “Coregistration” tool. In this stage, the 

images acquired at the middle temporal frames (Frames 3 and 4) 

were designated as the master images, while the remaining 

images were registered as slave images. The tool automatically 

aligned the slave images to the master by employing an image 

matching technique that analyzes overlapping regions based on 

pixel intensity values (Abdallah et al., 2024; Liu et al., 2023 **). 

Rigid body transformations—including translation, rotation, and 

scaling—were applied using advanced algorithms such as cross- 

correlation or normalized cross-correlation. Following the 

transformation, the slave images were resampled using nearest- 

neighbor or bilinear interpolation to ensure their pixel grids 

matched those of the master image, thereby preserving spatial 

resolution. 

Once the coregistered dataset was established, the study extracted 

Gray-Level Co-occurrence Matrix (GLCM) texture features to 

capture the spatial relationships and textural characteristics 

inherent in the SAR data (Caballero et al., 2020). Specifically, 

the GLCM method computes the probability distribution of pixel 

pairs with specified gray-level values at a given offset, from 

which nine features—Mean, Variance, Correlation, Contrast, 

Dissimilarity, Homogeneity, Angular Second Moment (ASM), 

and Entropy—are derived for both VV and VH backscattering 

coefficients. This extraction was performed using a 3×3 window 

size, considering all angles, with a probabilistic quantizer set to 

32 quantization levels, and a displacement of 4 (Ali et al., 2022). 

Building upon these preprocessing and feature extraction steps, 

leak point selection was conducted using SAR images spanning 

a 30-day period, based on the assumption that leak effects persist 

throughout this timeframe. Leak points provided by the Hong 

Kong Water Supplies Department (WSD) were delineated using 

a 50-meter buffer, while non-leak points were selected from areas 

distant from the pipelines—also buffered at 50 meters—to ensure 

a clear distinction between the two classes. This process yielded 

a database of approximately 5,466 points, comprising 3,006 non- 

leak points and the remainder as leak points. For each point, a 

32×32-pixel window was extracted from each of the 22 stacking 

bands for both polarization modes, and the mean values of the 

computed GLCM features within these windows were estimated 

and consolidated into a numerical table with a binary response 

variable (0 for non-leak and 1 for leak). 

Subsequently, the study trained and evaluated 18 machine 

learning, deep learning, and ensemble models (detailed in the 

Results section, Figure 3b) using this database. Hyperparameter 

optimization was conducted via grid search—tuning parameters 

such as the number of estimators, learning rate, and maximum 

tree depth—to enhance model performance (Abdelkader et al., 

2023; Ma et al., 2024), while 10-fold cross-validation was 

employed to ensure robustness and mitigate overfitting by 

reliably estimating performance across multiple data splits 

(Poulakis et al., 2003). Model evaluation was based on metrics 

derived from counts of True Positives (TP), True Negatives (TN), 
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False Positives (FP), and False Negatives (FN), with precision 

quantifying the accuracy of predicted leak points and recall 

measuring the proportion of actual leak points correctly 

identified. The F1-score, representing the harmonic mean of 

precision and recall, alongside overall pixel accuracy, provided 

key insights into classification performance (Adham et al., 2024; 

Goutte & Gaussier, 2005; Zheng et al., 2024). 

Figure 2: schematic flow chart of the proposed methodology 

4. RESULTS AND DISCUSSION

The evaluation of multiple machine learning (ML) models for 

detecting underground water leaks reveals a nuanced spectrum of 

performance that highlights the distinct strengths and limitations 

of traditional ML methods, deep learning (DL) architectures, and 

ensemble-based approaches. Standalone classifiers such as 

Logistic Regression, Decision Tree, and Support Vector Machine 

(SVM) achieved moderate overall accuracies ranging from 73% 

to 77%. For example, Logistic Regression achieved an overall 

accuracy of 77% with a leak precision of 0.76, leak recall of 0.85, 

and an F1-score of 0.80. However, these models struggled with 

non-leak classification; the lower precision for non-leak 

predictions suggests that they have difficulty distinguishing 

overlapping features, which results in a higher rate of false 

positives. Similar trends were observed with the Decision Tree 

(73% accuracy) and SVM (75% accuracy), where the relatively 

weaker performance in non-leak detection underscores the 

inherent limitations of single-model approaches in complex 

urban environments. 

In contrast, DL models demonstrated competitive, and in some 

cases superior, performance compared to traditional ML 

approaches. The Long Short-Term Memory (LSTM) network, 

for instance, achieved an overall accuracy of 78% with a robust 

leak recall of 85% and an F1-score of 0.81. This result indicates 

that the LSTM is particularly adept at capturing both temporal 

and spatial dependencies from the SAR-derived features, which 

is crucial for accurately detecting persistent leak effects over 

time. Similarly, the Deep Neural Network (DNN) model, with an 

overall accuracy of 77%, exhibited balanced precision and recall 

across both leak and non-leak classes, further supporting the 

viability of DL approaches for this application. 

Ensemble-based methods, however, consistently outperformed 

both standalone ML and DL models. Gradient Boosting, 

CatBoost, and XGBoost each achieved an accuracy of 79%, with 

all three models reporting leak recall values of approximately 

87% and balanced F1-scores near 0.82. These high recall rates 

are particularly critical, as they demonstrate the models’ strong 

ability to correctly identify the majority of leak events—an 

essential requirement for mitigating potential water loss and 

preventing infrastructural damage. Building upon these 

individual ensemble methods, the stacking algorithm—which 

integrates Logistic Regression, Random Forest, XGBoost, 

CatBoost, AdaBoost, and Gradient Boosting—emerged as the 

most effective approach, achieving an overall accuracy of 80%. 

The stacking algorithm leverages the complementary strengths of 

its constituent models to enhance predictive robustness. Its 

confusion matrix (as depicted in Figure 3a) indicates that it 

correctly identified 791 leak points and 534 non-leak points, 

while incurring 194 false positives and 121 false negatives. This 

balanced performance demonstrates the stacking algorithm’s 

enhanced capacity to minimize false negatives—an essential 

factor in ensuring that leak events are not overlooked—while 

maintaining high overall accuracy. The comparative 

performance, summarized in Figure 3b, clearly positions the 

stacking algorithm as a new benchmark for accuracy and class 

balance in leak detection applications. 

Beyond overall accuracy, the evaluation framework incorporated 

detailed performance metrics derived from the standard 

confusion matrix components—True Positives (TP), True 

Negatives (TN), False Positives (FP), and False Negatives (FN). 

Precision, defined as the ratio of correctly predicted leak points 
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to all points predicted as leaks, and recall, defined as the 

proportion of actual leak points correctly identified, were critical 

in assessing model reliability. The F1-score, which represents the 

harmonic mean of precision and recall, offered a balanced 

measure of model performance, particularly in the presence of 

class imbalances (Goutte & Gaussier, 2005; Hanley & McNeil, 

1982). 

In summary, while standalone ML and DL models provide 

valuable insights, the ensemble-based approaches—especially 

the stacking algorithm—demonstrate the highest efficacy for 

underground leak detection. The stacking approach not only 

achieves the highest overall accuracy (80%) but also exhibits 

balanced classification performance by effectively integrating 

the strengths of multiple models. This integrated strategy 

significantly enhances the reliability of leak detection in complex 

urban environments and establishes a robust framework for 

future monitoring and intervention efforts. 

Figure 3: comparison of ML results. A) confusion matrix of three ML algorithms (i.e., Randon forest, Ada Boost, and Stacking). 

B) the accuracy comparison between all the models. 

directions along with in‐depth discussions on how they can 

contribute to advancing leak detection technologies. 5. CONCLUSIONS

This study investigates the potential of utilizing high-resolution 

L-band SAR imagery from ALOS-2 (6 m spatial resolution) in

combination with advanced machine learning, deep learning, and

ensemble methods—optimized via grid search—for detecting

underground water leaks in urban environments. By associating

leak points with SAR acquisitions through a 30-day temporal

window (assuming leak effects persist for roughly 30 days

without repair), our methodology achieved an overall accuracy

of 80% using a stacking algorithm. These promising results align

with previous studies employing Sentinel-1 imagery and Random

Forest models with GLCM feature extraction; however,

significant differences exist between the platforms. While

Sentinel-1 offers a high revisit frequency (approximately every 6

days), its spatial resolution is coarser (around 20 m) compared to

ALOS-2. Additionally, the deeper penetration capability of

ALOS-2 provides critical insights into subsurface anomalies in

complex urban environments. Future comparative studies will be

essential to understand the contributions of different SAR

platforms and to refine the detection process.

Despite the promising performance of our SAR-based leak

detection framework, several challenges persist that must be

addressed to further improve detection accuracy and operational

reliability. In light of these challenges, future research should

focus on both refining current methodologies and exploring new,

integrative approaches. Below, we outline several key research

• Integration of Physical Leak Characteristics

Future studies should investigate the impact of incorporating

detailed physical properties—such as pipe pressure, diameter,

material composition, and leak flow rate—into machine learning

models. The integration of these parameters may provide

additional context that enhances the predictive power of remote

sensing data. For example, high-pressure leaks may create more

pronounced moisture anomalies or distinct surface deformations

compared to low-pressure events. Developing hybrid models that

combine conventional backscatter metrics and texture features

with physical leak parameters could yield a more comprehensive

understanding of leak dynamics, thereby improving detection

precision (El-Zahab et al., 2017; Xing et al., 2024a).

• Combining Physics-Informed Neural Networks (PINNs)

with GLCM Features

The fusion of Physics-Informed Neural Networks (PINNs) with 

GLCM-based texture analysis represents a promising avenue for 

future research. PINNs are designed to incorporate known 

physical laws—such as fluid dynamics and stress equilibrium— 

directly into the learning process. By coupling PINNs with 

GLCM features extracted from SAR imagery, future models can 

benefit from both a physical understanding of leak propagation 

and the detailed surface pattern information captured by remote 

sensing. This integrated approach may enhance the robustness 

and interpretability of leak detection models, making them more 
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adaptable to complex urban environments (Chen et al., 2020; 

Arabi & Grau, 2024). 

• Incorporating Environmental and Climatic Factors 

Environmental variables such as temperature, humidity, rainfall, 

traffic patterns, and pavement roughness can have a significant 

impact on SAR signal interpretation. Future research should 

explore the integration of these contextual data sources into the 

leak detection framework. By doing so, models could adjust for 

seasonal variations and urban infrastructure effects that currently 

contribute to classification uncertainty. A holistic model that 

fuses remote sensing data with real-time meteorological and 

urban context information could offer more reliable predictions, 

particularly in highly variable settings like Hong Kong (Ali et al., 

2020). 

• Addressing Spatial and Temporal Uncertainties 

The precise localization of leak points remains challenging due 

to spatial heterogeneity and the limited temporal coverage of 

certain SAR platforms such as ALOS-2. Future studies should 

prioritize multi-temporal analysis techniques to monitor the 

evolution of leak-induced moisture anomalies over time. 

Additionally, integrating high-resolution topographic data and 

detailed urban infrastructure maps may help refine spatial 

models, reducing uncertainty in leak localization. These efforts 

will be particularly valuable in dense urban environments where 

small-scale variations can have a large impact on SAR 

backscatter (Hunaidi, 2000; Hunaidi & Giamou, 1998). 

• Optimizing SAR Signal Penetration and Data Fusion 

Although L-band SAR offers improved penetration capabilities 

compared to other bands, its performance under paved or densely 

built-up surfaces remains a concern. Future research should focus 

on optimizing SAR acquisition parameters and exploring the 

fusion of data from multiple wavelengths (e.g., combining L- 

band with C-band or X-band imagery). This multisensor 

approach may enhance the detection of subsurface anomalies by 

compensating for the limitations of any single sensor and 

providing a more comprehensive view of the subsurface 

environment (Traoré et al., 2022). 

• Leveraging Advanced SAR Processing Techniques 

To fully exploit the potential of SAR data for leak detection, 

advanced processing techniques such as polarimetric 

decomposition and interferometric SAR (InSAR) should be 

integrated into future frameworks. These methods can extract 

additional information regarding surface and subsurface 

conditions, such as fine-scale deformation and subtle moisture 

changes, thereby improving the discrimination between leak and 

non-leak areas. Enhanced processing techniques will likely 

reduce misclassification rates and improve the overall robustness 

of detection models (Caballero et al., 2020). 

• Validation with Larger and Multisensor Datasets 

The current study is based on a limited dataset of six dual- 

polarization SAR images, which may limit the generalizability of 

the findings. Future work should seek to expand the dataset by 

incorporating four-polarization images and data from multiple 

satellite systems (e.g., Sentinel-1) to improve both temporal 

resolution and spatial coverage. Employing cross-validation 

across larger, more diverse datasets will be critical for verifying 

model performance and ensuring scalability in different urban 

environments (Ali et al., 2021; Ma et al., 2024). 

• Comparative Analysis of SAR Platforms 

A thorough comparison between SAR platforms is essential to 

understand the trade-offs between high temporal frequency and 

spatial resolution. While Sentinel-1 offers frequent revisits 

(approximately every 6 days), its spatial resolution is coarser 

(around 20 m) compared to the 6 m resolution provided by 

ALOS-2. The deeper penetration capabilities of ALOS-2 may 

offer significant advantages in detecting subsurface leaks. Future 

comparative studies conducted within the same geographic area 

will be vital in determining which platform—or combination of 

platforms—yields the most reliable leak detection under varying 

environmental conditions (Arabi & Grau, 2024; Xing et al., 

2024a). 

By addressing these research directions, future studies can build 

on the foundation established in this work to develop more 

accurate, scalable, and resilient leak detection systems. Such 

advancements will not only contribute to the broader field of 

remote sensing-based infrastructure monitoring but also offer 

practical solutions for urban water management, reducing water 

loss and minimizing the socio-economic impact of leaks. 
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