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Abstract 
 

There is increasing interest in automotive sensor monitoring systems as a means to enhance safety by providing reliable assistance in 
hazardous situations. These systems are commonly based on video cameras; however, their effectiveness is significantly reduced in 
adverse weather conditions such as fog, rain, or in the presence of smoke. To address this limitation, radar sensors—particularly 
imaging radars—are gaining prominence within the context of Driver Assistance Systems. A key challenge in current radar signal 
processing techniques is their limited ability to distinguish multiple targets along the same line of sight. In this paper, we propose a 
novel radar signal processing approach based on Deep Learning, capable of detecting and differentiating two or more targets aligned 
on the same line of sight, while also estimating the position and speed of vehicles ahead. Specifically, we adapt techniques originally 
developed for civil and military tracking radar applications to the automotive context, taking into account the higher spatial resolution 
and lower signal-to-noise ratio (SNR) characteristic of automotive radars. The proposed system integrates target detection, tracking, 
recognition, classification, and analysis, with a particular focus on the accurate identification of close-range targets. 

 

 
 

1. Introduction 

The sale of passenger vehicles has been steadily increasing, 
playing an essential role in the global economy. With this growth 
and the continuous advancement in automation technology, there 
is rising demand from consumers, governments, and society for 
improved road safety and a reduction in traffic-related fatalities 
and injuries. In response, automobile manufacturers have 
integrated Driver Assistance Systems (DAS) into production 
models. These systems include stability control, anti-collision 
features, Antilock Braking Systems (ABS), traction control, 
Electronic Brakeforce Distribution (EBD), seat belts, airbags, 
impact-absorbing bumpers, anti-intrusion bars, and various 
visual driver assistance systems (VDAS) [1]. 
Many VDAS rely on video cameras, which are commonly used 
for parking assistance, front or rear vision enhancement, and lane 
monitoring [2],[3],[4]. However, these cameras depend on 
external light sources and can be ineffective in conditions with 
poor visibility, such as fog, heavy rain, or smoke. To address 
these limitations, radar-based technology has emerged as a viable 
alternative [5]. Unlike cameras, radar systems can detect objects 
at significant distances, often extending hundreds of meters, with 
minimal interference from adverse weather conditions [6]. These 
systems use a variety of sensing and processing techniques to 
determine the position and speed of surrounding vehicles 
[7],[8],[9]. 
A key challenge in the automotive industry is the reluctance of 
manufacturers to modify vehicle designs to accommodate 
sensors. As a result, engineers must develop compact systems 
that fit within existing structures, such as the car’s front grille. To 
achieve a balance between size and functionality, high-frequency 
signals are often employed. Specifically, radar systems operating 
in the 76–77 GHz range offer a practical compromise between 
performance and cost-effectiveness. Developing a high-
resolution radar imaging system for vehicles involves multiple 
factors, including selecting the most suitable radar architecture, 

designing an efficient antenna, and implementing a system 
simulator to evaluate performance. Additionally, once radar 
images are obtained, post-processing techniques such as target 
detection and tracking are essential for refining the data. 
Currently, various automotive radar imaging solutions exist, 
employing either analogic or digital beam synthesis to scan areas 
of interest and identify objects [5]. Different beam synthesis 
techniques include phased arrays, traveling wave antennas, and 
lens antennas, with phased arrays offering the best resolution and 
scanning range. However, due to their high cost, a balance must 
be struck between affordability and performance. One approach 
is to process signals from multiple antennas to create a larger 
synthetic array [6]. Another method involves a modular design, 
in which the array is divided into identical sub-arrays with 
independently controlled feeds. 
For post-processing, modern automotive radar systems typically 
use an Ultra-Wideband (UWB) structure [5],[9]. Algorithms 
designed for noise reduction and target classification rely on 
statistical analysis of radar backscatter, followed by classification 
techniques that determine the category of detected objects. 
Statistical models are applied to the data to assess the likelihood 
of an object belonging to a particular classification. While this 
analysis is often performed on a single frame, improvements can 
be made by extending the approach to multi-frame data for 
enhanced accuracy. 
Certain signal processing techniques utilize Compressive 
Sensing (CS) theory to detect and generate 3D images of objects, 
even when multiple scatterers align along the same Line of Sight 
(LoS) [10],[11],[12]. This is achieved by identifying targets 
within the observed space, estimating their positions, and 
determining their reflectivity properties.  
In this manuscript, a first step towards a deep learning based radar 
imaging solution is proposed. More precisely, the detection of 
targets sharing the same LoS has been exploited by definition of 
a deep learning (DL) based method. In particular, an 
unsupervised fully connected neural network is proposed for 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-G-2025 
ISPRS Geospatial Week 2025 “Photogrammetry & Remote Sensing for a Better Tomorrow…”, 6–11 April 2025, Dubai, UAE

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-1493-2025 | © Author(s) 2025. CC BY 4.0 License.

 
1493



 

predicting the vector of target positions by Euclidian distance 
minimization between estimated and actual measured signal from 
a radar antenna. The vector of target positions is representative 
of different scatterers of one or more vehicles in the same LoS by 
processing the echo back-scatterers towards a radar antenna 
specifically designed [13]. The paper is organized as in the 
following:  in Section 2, the following the radar antenna design, 
the simulation approach and deep learning methods are 
described. The experimental results are carried out in Section 3. 
Section 4 is reserved for the conclusion. 

 

2. Methodology 

In this section the methodology of the proposal is described. 
The radar antenna system is described with its configuration. 
The signal acquisition model and simulated scenario together 
with the deep learning solution is presented. 
 
2.1 Radar Antenna Design  

For the antenna design, we refer to the method proposed in [13] 
where the system characterized by a planar antenna is simplified 
by the use of two linear arrays.   
The view of the considered planar antenna located at the front of 
the car, standing on the (x, y) plane, is reported in Figure 1. The 
planar antenna array is composed of KN × KM elements, where 
each one transmits and receives the signal. 
 

 
Figure 1. Planar antenna and 3D Cartesian reference system x, y 
with origin in the center of the antenna. Black dots highlight the 
positions of antenna elements (𝑥௜ , 𝑦௝). 
 
The assumption is to transmit a monochromatic signal 𝑆் at 
frequency 𝑓଴. The model of the received antenna at the position 
(𝑥௜ , 𝑦௝)., considering the noise free-case and neglecting constants, 
can be modeled as [13]: 
 

𝑆ோ൫𝑥௜ , 𝑦௝൯ = ∭ 𝛾(𝑥, 𝑦, 𝑧)
ீ

ൣோ൫௫೔ି௫,௬ೕି௬,௭൯൧
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                       𝑒𝑥𝑝 ൬𝑖4𝜋
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௖
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where xi, i=[1,…, KN] and yj, j=[1,…, KN], z=0, are the 
coordinates of antenna elements, G is the antenna gain and 
𝑅൫𝑥௜ − 𝑥, 𝑦௝ − 𝑦, 𝑧൯ is the distance between each antenna 
element, with coordinates (xi, yj, 0), and a target placed in (x, y, 
z) with reflectivity γ(x, y, z). In this model for the received signal 
𝑆ோ there have been conducted the following assumptions: all 
scatterers are point scatterers, there is no multipath effect and that 
the superposition principle stands. Moreover, the signal  𝑆ோ is the 
result of the coherent interference from all the echoes deriving 
from the illuminated volume V, with proper attenuation and 
phase. These assumptions represent a good trade-off between 
complexity and handling and therefore is widely accepted. 

In this manuscript we consider the simplification of the system 
proposed in [13] where the planar antenna is synthetized with the 
combination of two linear arrays, one horizontal and one vertical 
with a spacing of is λ/2 between each element, as show in Figure 
2. Beside the number of the antennas, also the transmitting and 
receiving configuration is simplified: the horizontal array is 
composed by only  𝐾ெ receiving antennas (red dots in the Figure 
2); the vertical array contains only  𝐾ேthe transmitting elements 
(blue dots in Figure 2). Therefore, the total array is composed by  
𝐾ே+ 𝐾ெ elements in place of the 𝐾ே𝑥𝐾ெ of the planar one. 
 

 
Figure 2. Two linear arrays in cross configuration that synthetize 
a planar antenna. In this case 𝐾ே+ 𝐾ெ  elements are considered 
instead of 𝐾ே𝑥𝐾ெ. 
 
In [12] the 3D distribution of scatterers is decomposed in 
detection of targets along the LoS. In this manuscript the same 
approach is followed. Therefore, some pre-processing steps (i.e. 
2D focusing and deramping) for the focusing of the received 
signal in on a vertical plane at a fixed distance 𝑧଴ lead to  
 

𝑆ௗ௥൫𝑥௜ , 𝑦௝൯ = ඵ 𝛾(𝑥, 𝑦, 𝑧଴) exp(𝑖𝜙) 
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please, refer to [13] for more details.  
 
 
2.2 Signal Acquisition Model  

Considering the previous antenna configuration and the multi-
frequency operative approach, it is expected that a single 
complex value is obtained for each of the N working frequency. 
Our aim is, once focused on a line of sight, to detect one or 
multiple targets and estimate their range distance based on N 
acquisitions. The acquisition model can be written as: 

 
𝑞 = 𝐴ℎ + 𝑤                                  (3) 

 
where q is the N×1 data vector collecting the focused signals at 
the different frequencies for the direction (θ, φ), A is the 
transformation matrix and h is a vector of the reflectivity at 
different distances. The vector h contains the complex reflectivity 
values for different range distances , uniformly sampled in the 
interval [min , max].   
h is supposed to be a sparse vector with majority of elements 
equal to zero with few targets are expected to be for each line of 
sight. Discretising the acquisition model of Equation (1) the 
generic element of matrix A can be defined as 
 

𝑎௜,௝ =
ଵ
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where  𝑓௜  is one of the frequencies within the bandwidth and j is 
a discretized range distance. 
Given the previously reported model, our aim is to estimate the 
number of non-zero elements of h, i.e. how many targets are 
present in the selected line of sight, their position within vector 
h, i.e. the range distances of the detected targets, and their values, 
i.e. the reflectivity of the targets. We could refer to the estimation 
of vector h as an “in depth” focusing. The radar imaging situation 
for two scatterers in a line of sight is reported in Figure 3: in a 
single line of sight more than one scatterer may be present and 
the vector h contains the reflectivity of each scatterer. The final 
aim is to recover the target for each line of sight and therefore 
reconstructing the whole scenario. In this manuscript the focus is 
on the target detection on the single line of sight. 
 
 

 

 
 

 
 

Figure 3. Figure placement and numbering. 

 
2.3 Deep Learning based solution  

The problem of scatterer detection and elevation estimation can 
be framed as an optimization problem. Considering the 
discretized acquisition model of Equation (3), the proposed 
method is designed as an unsupervised fully connected network 
that predict the vector of target position h.  In particular, the 
proposed method does not rely on any reference data, and starting 
from a random reflection vector ℎ଴ produce an estimate ℎ෠ of the 
real reflection vector by minimizing the distance between the 
estimated  𝑞ො = 𝐴ℎ෠ and the measured one q. The workflow of the 
proposed method is illustrated in Figure 4, consisting of two key 
components: the training process and the simulation process.  
The training dataset construction relies on a simulation process 
where the h reflection vector is simulated with one or more 
targets present in discretized position in a fixed range. 
Considering a multi-frequency system in a fixed bandwidth,  the 
reference measured signal q is computed following the 
acquisition model of Equation (3).  
In summary, the proposed DL solution is trained to reconstruct 
the reflection vector, without the need of a reference one, such 
that 𝑞ො aligns with the measured q. The architecture of the solution 
consists of a single complex fully connected layer. 

Since the reflection vector h is typically sparse vector, inspired 
by compressive sensing techniques, the optimization problem is 
defined as combination of two minimization terms (see Equation 
5): the mean squared error between between 𝑞ො and q for correct 
prediction, and the 𝐿ଵ norm regularization term on the estimated 
reflection vector  ℎ෠ for promoting the sparsity of the estimated 
result. 
 

arg min
ℎ෠

 ‖ℎ෠‖ଵ + 𝜓 ‖𝐴ℎ − 𝑞ො‖ଶ               (5) 

 
3. Experimental Part 

In this section the experimental settings and results are presented.  
 
3.1 Experiment settings 

Given the previously reported model, our aim is to estimate the 
number of non-zero elements of h, i.e. how many targets are 
present in the selected line of sight, their position within vector 
h, i.e. the range distances of the detected targets, and their values, 
i.e. the reflectivity of the targets. We could refer to the estimation 
of vector h as an “in depth” focusing. 
In the realistic case, measurements are corrupted by noise, 
leading to: 

  
𝑞 = 𝐴ℎ + 𝑤                                  (8) 

 
where w is the noise vector, whose element are circular complex 
Gaussian distributed.  
In order to evaluate the performances of the proposed method, 
different simulated case studies have been implemented. We 
simulated, in Matlab® environment, the received signal in case 
of difference scenarios, corrupting data with circular complex 
Gaussian distributed random noise. 
A cross antenna composed of two linear arrays of 111 
(horizontal, Rx) and 141 (vertical, Tx) elements has been 
considered. The system band, between 77 GHz and 77.5 GHz, 
has been sampled following a stepped approach. Complete 
system details are reported in Table 1. 

Table 1. Imaging antenna features. 

Antenna Features Values 

Antenna type Cross antenna 

Central Frequency 77,25 GHz 

Bandwidth 500 MHz 

Gain 21.7609 

Number of elements of antenna 111 x 141 

Distance among the elements 1.9 mm (λ/2) 

Antenna dimensions 21x27 cm 

 
For the reported simulations, different number of targets have 
been simulated in front of the antenna, i.e. (θ, φ) = (0,0), with the 
same reflectivity. Different SNR for a target at a distance of 20 
m from the antenna have been taking into account. Considering a 
multi-frequency scenarios, different frequency samples have 
been considered for the reconstruction.  In particular, the 
reconstruction of targets positions has been performed 
considering four different frequency sampling: 500, 200, 100, 50;  
two different SNR: 30dB, 10dB, and five different distances 
among targets: 10cm, 30cm, 50cm, 2m, 10m.
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Figure 4. Workflow of proposed method 

 
 
 
3.2 Results 

In order to evaluate the robustness of the proposed method, a 
traditional inversion based on 𝐿ଶminimization is carried out.  
For all the experiments, reconstruction results from different 
number of frequency samples within the considered bandwidth 
are reported. In particular, the bandwidth has been samples with 
fixed number of frequency: 500, 200, 100 and 50.  
 
3.3 Two Target Configuration 

Results for two targets configurations with SNR equal to 30dB 
are reported in Figure 5. 
The first target has been placed at 20m of distance from the radar 
antenna and, considering the range resolution of the system being 
30cm,  the second target has been places at 10cm, 30cm, 50cm, 
2m, 10m of distance from the previous one. The results are shown 
from top to bottom of the figure. The results are reported in terms 
of distance (x-axis) and target intensity (y-axis).  
As expected, in the case of 10cm (below the resolution of the 
system) both solution are not able to discriminate the two targets, 
no matter the number of frequency samples. The DL one solution 
show a narrower main lob, characteristic that can be seen also for 
the other results shown in figure. Beside this case (first row), in 
case of 500 frequencies (Figure 5a), both techniques are able to 
detect the presence of two different targets (side lobes are 
strongly lowered), their reflectivities and distances. Both 
solutions detect the two targets in the exact location with the L2-
norm approach characterized by a coarser resolution with respect 
to proposed DL based methodology, as the impulses are larger. 
Indeed, the DL solutions shows a more direct and clear-cut 
detection both in terms of target position both in terms of side 
lobes. This behaviour is confirmed lowering the number of 
frequency samples to 200 and to 100 (Figures 5b and 5c). Instead 
with 50 samples, when the two target are at 10m (bottom of 
Figure 5d,), the DL solution find difficulties in recovering both 
targets. This suggest that further analysis should be carried out in 
the architecture design for making the solution more robust to the 

noise. When lowering the SNR to 10dB, similar comments can 
be drawn out with the DL solution showing a good robustness 
with respect the level of noise. 
From this analysis, it looks that the considered unsupervised 
method finds challenging the case of a predominant 
backscatterer: when targets are close each other, and therefore 
with similar backscattering intensity to the radar antenna the 
detection ability is evident. When there is a target much closer to 
the antenna with respect to the other one, according to the model 
of Equation 4, the first backscattering is much strong than the 
second one that risk to not be recovered by the DL solution. 
 
 

4. Conclusion 

In this manuscript an unsupervised deep learning solution for 
target detection in automotive environment is proposed. 
Simulated scenarios of line of sight targets illuminated by cross 
radar antenna is performed and a the potential of an unsupervised 
fully connected network is exploited in the estimation of the 
targets position vector. The solution is trained without the need 
of a reference by minimizing the estimated signal with the 
measured one. Results in different configuration highlights the 
ability of clear detection provided by the Dl solution and its 
robustness to the noise level. At the same time, the proposal find 
difficulties in the detection of multiple target when the scenarios 
is characterized by a dominant one. Further investigation on this 
aspect will be carried out in the future works. 
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Figure 5. Detection results for two targets for SNR 30dB. From left to right (a-e): results for different samples of frequencies (500, 

200, 100, 50. From top to bottom, results at different distance among targets at 10cm, 30cm, 50cm, 2m and 10 m of distance  
Traditional inversion method in blue line, proposed solution in red, reference target position in green. 
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Figure 6. Detection results for two targets for SNR 10dB. From left to right (a-e): results for different samples of frequencies (500, 
200, 100, 50). From top to bottom, results at different distance among targets at 10cm, 30cm, 50cm, 2m and 10 m of distance  

Traditional inversion method in blue line, proposed solution in red, reference target position in green. 
.
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