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Abstract 

 

Fire accidents (especially large-scale fires) pose significant threats to human society, such as forest fires and chemical plant 

explosions, which can cause substantial loss of life, health, and economic damage. However, current fire detection using remote 

sensing satellites is mostly for post-disaster confirmation rather than pre-disaster warning, lacking a high-timeliness, high-accuracy 

onboard fire detection and warning scheme. On the other hand, the significant improvement in satellite payload technology and the 

increasing richness of satellite remote sensing data products have made the processing of remote sensing data products increasingly 

difficult. In fire detection, the satellite detection scheme determines the satellite's application capability and further determines 

whether the satellite can maximize its effectiveness. Based on the intelligent detection application requirements for onboard fire 

targets, this paper focuses on solving the problems of the existing fire detection models, such as the difficulty in eliminating high-

reflective objects and other false fire targets, the large data volume when using multi-band combinations that cannot ensure onboard 

processing timeliness, and the poor environmental adaptability of existing fire detection schemes. A high-timeliness, high-confidence, 

and highly adaptable high-orbit satellite multi-spectral onboard fire intelligent detection scheme is proposed. By integrating expert 

system feature maps for fire confirmation, the scheme meets the high-frequency inspection and rapid warning needs for fires, 

supporting the integrated application of satellite and ground systems, and will significantly enhance the early warning detection 

efficiency of satellite fire detection. 

 

 

1. Instruction 

In recent years, global climate change has intensified the 

frequency of forest fires, posing severe threats to ecosystems 

and human society. For instance, the 2019 Australian bushfires 

burned 11.7 million square kilometers of land, causing direct 

economic losses exceeding $5 billion and the death or 

displacement of billions of animals (Van Oldenborgh, G., J., et 

al., 2020). These events underscore the limitations of 

conventional fire monitoring methods, such as restricted 

coverage of manual inspections, delayed response times, and 

observation tower is greatly restricted by terrain (Zhang, F., et 

al., 2020). 

 

 

Figure 1. Satellite image of Melbourne during the Australian 

bushfires. 

 

Satellite remote sensing technology, with its advantages of 

wide-area coverage and real-time dynamics, provides a new 

technical approach for early fire warning. Remote sensing 

satellites can achieve large-scale continuous monitoring, and 

their multispectral imaging capabilities can effectively capture 

fire characteristics (Wang, J., H., et al., 2022). However, 

satellite-based fire detection still faces several technological 

challenges: 

 

High false alarm rate: Industrial heat sources (such as steel 

plants and coal-fired power plants) exhibit thermal radiation 

characteristics similar to real fires, resulting in a high false 

alarm rate. 

 

Massive multispectral data: The large amount of multispectral 

data from remote sensing satellites makes it difficult for existing 

processing architectures to meet real-time detection 

requirements. 

 

Dynamic background changes: Factors such as diurnal 

variation and seasonal variations lead to dynamic changes in 

background features, resulting in poor robustness of fixed 

threshold detection methods (Ding, Y., et al., 2023). 

 

Therefore, there is an urgent need to develop an airborne 

multispectral fire detection solution with high timeliness, 

reliability, and adaptability. 

 

2. Research Status 

In recent years, deep learning algorithm has been widely 

concerned and applied in the field of remote sensing image fire 
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detection. Traditional methods such as fire point detection based 

on threshold judgment have problems such as poor 

environmental adaptability and difficult threshold selection, 

which are difficult to meet the complex and changeable fire 

monitoring needs. By automatically extracting features, the 

deep learning algorithm can deeply mine the information of 

remote sensing data, has a better ability to analyze remote 

sensing images, and can play an important role in fire detection. 

 

Convolutional neural networks (CNNs) are outstanding in 

automatic feature extraction and improve the detection accuracy. 

Gargiulo (Gargiulo, M., et al., 2019) used super-resolution CNN 

on sentinel-2 images to improve small target detection. 

Dell'aglio (Dell'aglio, D., A., G., et al., 2019) proposed a multi-

scale CNN architecture combining active fire index (AFI) and 

near infrared band data, which further improved the accuracy.. 

 

In terms of instance segmentation, Mask R-CNN proposed by 

Begum (Begum, S., R., et al., 2021) achieves pixel level 

segmentation through two-stage detection, but it suffers from 

high computational complexity. Chen (Chen, L., C., et al., 2018) 

introduced deeplabv3+ with a characteristic pyramid network to 

enhance semantic information and reduce computational costs, 

however, real-time performance remains a challenge. 

 

In summary, designing high-precision and lightweight neural 

networks, and applying them to real-time monitoring of fire 

targets in remote sensing images, enables rapid and accurate 

detection of fire flames. This provides strong support for fire 

early warning and emergency response. 

 

3. Methodology 

3.1 Spectral Band Optimization for Efficient Fire Detection 

Using a signal-to-clutter ratio (SCR) calculation model, the 

SCR of fire targets under different types and scenarios is 

computed, and normalized SCR projection maps across spectral 

bands are plotted. The intersection of spectral bands with peak 

SCR values is identified by analyzing SCR projections of 

different target-scenario combinations. As shown in Figure 2, 

spectral band optimization is performed to select the range of 

spectral bands with higher SCR values for all targets and 

scenarios as the preferred spectral bands. 

 

 

Figure 2. Spectral band optimization process. 

 

First, the SCR of the target in different background regions is 

calculated, and the spectral bands corresponding to the relative 

peak SCR regions are selected as the initial candidates. Then, 

within the initially selected spectral bands, SCR projection 

maps for different central wavelengths and bandwidths are 

plotted to identify the spectral bands that exhibit higher SCR 

values for various targets across different scenarios as the 

candidate detection bands. Next, within the candidate bands, the 

impact of various factors on target detectability is analyzed. The 

sensitivity requirements for the detector are provided, and the 

SCR of the candidate band images is analyzed based on these 

requirements. Finally, the optimal spectral bands for target 

detection are determined. 

 

Taking typical forest fire, grassland fire and other targets as 

examples, the detectability of targets in the selected spectral 

segment is analyzed, and the difference of detectability between 

the selected spectral segment and other unselected spectral 

segments is compared to verify the rationality of the selected 

spectral segment. 

 

The detectability of the target reflects the energy difference 

between the target and the background physically. In the 

process of target detection, clutter is often difficult to deal with. 

Therefore, to establish the target detectability characterization 

model, it is necessary to quantitatively characterize the spatial 

clutter. Based on the background clutter quantitative 

characterization model, combined with the signal to clutter ratio 

model, the target detectability characterization model is 

established. This model is used to analyze the detectability of 

aerial targets, and combined with the sensitivity characteristics 

of the detection system, the alternative suggestions of target 

detection spectrum are given. 

 

When calculating the background clutter intensity, multiple 

regions are randomly selected within the background, and the 

mean square deviation within each region is calculated 

separately. The average value is then taken to obtain the overall 

clutter fluctuation of the background. The method for selecting 

clutter calculation regions is illustrated in Figure 3. 

 

 

Figure 3. Background clutter sampling regions. 

 

The premise that the target can be detected by the detector is 

that there is a certain degree of difference between the target 

and the background. Based on the background clutter 

quantization model, a representation model of the detectability 
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of target is established based on the maximization of the 

difference between the target and the background, which is 

defined as: 

  

   T B

tar
SCR

C

 −
= ,    (1) 

 

where  
tar

SCR = target SCR 

 
T  = target energy (point target energy) 

 
B  = background energy 

 C  = spatial clutter metric 

 

Based on the aforementioned characterization model and the 

data of target and background characteristics, the detectability 

analysis of targets and the optimal band selection can be 

conducted. By analyzing the detectability of different 

combinations of targets and clutter intensities, a suitable set of 

detection bands can be determined. The size of this set can be 

controlled by setting a target SCR threshold. Points that exceed 

this threshold are considered candidate bands. From these 

candidate bands, the point with the highest SCR is selected as 

the optimal working band, which includes the central 

wavelength and spectral bandwidth. 

 

3.2 Expert System-Based Feature Atlas Construction 

Due to the interference caused by the background in fire point 

detection, distinguishing fire points from the background in 

remote sensing images remains a critical challenge that urgently 

needs to be addressed. The traditional method uses the single 

feature "Brightness" of the image as the fire point detection 

criterion, which is vulnerable to the influence of environmental 

temperature and other factors, resulting in false alarm. 

Therefore, it is necessary to increase the dimension of the 

feature quantity involved in the fire point detection criterion to 

improve the accuracy of fire point detection. However, the 

existing fire point characteristics data mining for different 

regions, different wind zones, different features and so on is not 

complete, and the feature quantity is extremely lacking. 

 

Based on multi-source remote sensing data information mining, 

this paper collects the characteristics of the fire point, including 

the temporal and spatial characteristics of the flame, the 

seasonal characteristics of the flame, the spectral characteristics 

of the flame, and the difference between the fire point and the 

background temperature. The known part of the data is 

classified, and the fire points of different time-space spectral 

segments are obtained. This part of the data is used as a priori 

knowledge. By analyzing the characteristics of remote sensing 

data, the fire point characteristics based on image data are 

obtained. According to the characteristic information of flame 

direction, shape, spectrum, smoke color, texture, size, global 

and local spatial geometry, the information integration is 

completed, and the fire point type data sets with different 

spatio-temporal feature maps are obtained. 

 

Color Features: Statistical metrics such as color histograms, 

mean values, and color entropy are used to quantify color 

characteristics. 

 

Spatial Information: Target positions are derived from image 

coordinate systems. Small targets are represented as point 

coordinates, while larger targets are represented as multi-point 

or polygonal regions. 

 

Spectral Features: Reflect the physical properties of surface 

objects. Band mean and standard deviation are used to extract 

spectral features: 
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where  n = the number of pixels per grid 

 
iv = the grayscale value of the i-th pixel 

 

Texture Features: Reflect the periodic structural arrangement of 

surface objects. Local Binary Patterns (LBP) are employed to 

extract local texture features. LBP is a texture descriptor with 

grayscale and rotation invariance. A 3×3 window is defined, 

with the center pixel's grayscale value as the threshold. 

Adjacent pixels are compared to the threshold, generating an 8-

bit binary code for each center pixel: 

  

 
8

1

, ) ( ( ) ( )) 2 p
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p

LBP x y s I p I c（
=

= −  ,   (3) 

 

where  ( )I p = gray value of the p-th pixel except for the 

window pixel 

 ( )I c = gray value of center pixel. 

 

If ( ( ) ( )) 0s I p I c−  , it is 1, otherwise it is 0. Traverse all 

pixels in the window to get an 8-bit binary number as the LBP 

eigenvalue of the central pixel. 

 

Geometric features, this study employs the Speeded Up Robust 

Features (SURF) operator and the Evaluation of GIST (GIST) 

operator to extract local and global geometric features from the 

images, respectively. SURF is a local feature descriptor capable 

of overcoming the limitations of traditional geometric feature 

descriptions, such as affine transformations, lighting variations, 

and 3D viewpoint changes, to extract local geometric features 

from images. To ensure scale invariance, the algorithm first 

applies box filtering to the grid using different template sizes, 

constructing a pyramid of images with multi-scale blob 

responses. The positions of feature points at different scales are 

then determined using the Hessian matrix determinant, as 

described by the following formula: 

  

 
2 2 2

2 2
det( )

f f
H

x y x y

   
= − 
    

,    (4) 

 

where  ,x y = the horizontal and vertical coordinates of the 

pixel 
 ( , )f x y = pixel value at that point 

 

When the Hessian matrix determinant reaches a local maximum, 

the corresponding point is identified as a feature point. 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-G-2025 
ISPRS Geospatial Week 2025 “Photogrammetry & Remote Sensing for a Better Tomorrow…”, 6–11 April 2025, Dubai, UAE

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-1517-2025 | © Author(s) 2025. CC BY 4.0 License.

 
1519



 

3.3 Lightweight On-Board Fire Detection Framework 

A labeled dataset is constructed using publicly available remote 

sensing imager, with annotations performed manually or 

through technical means. The dataset undergoes preprocessing, 

including denoising, atmospheric correction, geometric 

rectification, and data augmentation, to enhance its quality and 

usability for training. 

 

To reduce computational costs during feature extraction, a 

lightweight feature extraction network, MobileNetV2, is 

introduced to replace the Backbone of YOLOv5s. MobileNetV2 

employs an inverted residual structure with linear bottlenecks to 

minimize computational overhead caused by excessive 

convolutional layers (Figure 4). The network first expands low-

dimensional compressed representations into high-dimensional 

space, applies lightweight depthwise convolutions for filtering, 

and then projects the high-dimensional features back to low-

dimensional compressed representations using a linear 

bottleneck function. Depthwise separable convolutions are 

utilized to reduce model parameters and computational load 

while maintaining high classification accuracy. These 

convolutions decompose standard convolutions into depthwise 

convolutions (applied independently to each input channel) and 

pointwise convolutions (combining outputs from depthwise 

convolutions), effectively suppressing parameter growth. 

 

 

Figure 4. MobileNetV2 architecture. 

 

To enhance feature extraction and ensure thorough model 

training, the original MobileNetV2 structure is optimized. The 

Mish activation function replaces ReLU6 due to its non-

saturation and boundary-free properties, which improve 

gradient descent performance. The Mish function is defined as: 

  

  ( ) ( )Mish tanh 1 xx x e= + ,    (5) 

 

where  x = input features 

 

 

Figure 5. Optimized MobileNetV2 architecture. 

 

After initial fire detection using the neural network, fire 

locations, types, and confidence levels are obtained. For each 

image, the fire type probability is represented as: 

  

 ( ) ( ) ( ) ( ) 1 1 1 2 2, , , , , , , , ,i i i n nF x y c t p t p t p=    ,   (6) 

 

where  i = the fire index 

 ( ),i ix y = the latitude and longitude of the fire 

 
ic = the detection confidence level (influenced by 

factors such as cloud interference, location, solar elevation, and 

season) 

 
ip = the probability of fire type i 

 

Furthermore, the feature maps are integrated to confirm fire 

points. Due to the limited on-board storage capacity of feature 

maps and the inability to fully cover all conditions such as 

latitude, longitude, solar elevation angle, season, and radiance 

during their construction, data gaps may occur when querying 

the feature maps based on on-orbit observation conditions. 

Therefore, data interpolation is required to retrieve feature map 

data. 

 

Spatial interpolation methods are employed to predict values at 

unknown locations based on existing data, enabling the 

generation of continuous spatial surfaces. This approach is 

suitable for scenarios where variables such as latitude, longitude, 

and solar elevation angle are continuous during on-orbit 

observations. Using the query variables of the feature maps as 

spatial variables, Kriging interpolation is applied for spatial 

interpolation. Kriging interpolation considers the spatial 

autocorrelation between data points, handles data with various 

spatial distributions without requiring regularity in data 

distribution, and adaptively adjusts the interpolation results 

based on the density and distribution characteristics of the 

observed data. As a result, it is highly adaptable for 

interpolating feature maps in satellite-ground scenarios. The 

specific implementation process of Kriging interpolation is as 

follows: 

 

Variogram Fitting: Based on the attribute values and spatial 

coordinates of known points, a variogram model is established. 

The variogram describes the spatial correlation between sample 

points, typically modeled using a Gaussian function. 
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Semi-Variogram Calculation: The semi-variogram is computed 

to quantify the differences between known points, determining 

the spatial correlation between sample points in the feature map. 

 

Kriging Weight Calculation: Using the attributes, spatial 

coordinates, and semi-variogram of known points, the spatial 

weights between unknown points and known points are 

calculated. 

 

Attribute Value Prediction: The attribute values of unknown 

points are predicted using the attribute values of known points 

and the Kriging weights, employing the ordinary Kriging 

method. 

 

Through this process, fire type probabilities from the feature 

atlas are obtained: 

  

 ( ) ( ) ( ) ( ) 2 1 1 2 2, , , , , , , ,i i n nF x y t p t p t p  =    ,   (7) 

 

In the expert system, feature atlas confidence f  and image 

detection confidence 1 f−  are combined to confirm fire types: 

  

 ( )  ( )  3 , , " , " (1 ) 1 (1 )i i n n i n i nF x y t p f c p f c p= = − + − − ,   (8) 

 

This fusion mechanism effectively reduces false alarms and 

improves detection accuracy. 

 

During on-board operations, detected fire types from image 

detection, feature atlas, and expert system fusion 
1 2 3, ,F F F  are 

downlinked. Ground validation adjusts the feature atlas 

confidence f , enabling on-board model updates. 

 

4. Experimental Validation 

To comprehensively evaluate the system's performance, 

multiple sets of comparative experiments were designed. The 

experimental data were sourced from GF-4 satellite on-board 

imagery, covering various scenarios such as forests and 

grasslands, with a time span encompassing all four seasons. On 

each remote sensing image, 150 fire points were randomly 

added. To simulate real fire conditions, each fire point's 

temperature was randomly generated within the range of 500–

1200 K, and its area was randomly set between 2–250 m². 

 

 

Figure 6. Detection result (SCR = 2). 

 

In terms of detection accuracy, the proposed method achieved a 

mean Average Precision (mAP) of 92.3% on the test set. 

Compared to existing methods, it maintained high accuracy 

while significantly reducing the false alarm rate to less than 3%. 

 

Real-time performance tests indicated that the system's 

processing latency was less than 10 seconds, with a data 

throughput of only 0.105 Gbit, meeting the requirements for on-

board real-time processing. Environmental adaptability tests 

demonstrated that the system's detection accuracy fluctuated by 

less than 5% under different seasonal and diurnal conditions, 

showcasing strong robustness. 

 

 
Figure 7. Forest Fire Patrol Plan for Northeast China's Forest 

Regions. 

 

Taking China's largest Northeast Forest Region (covering 

309,400 km², accounting for 37% of China's forest area) as an 

example, the proposed design can complete fire patrol and early 

warning for the entire region in 253 seconds. This significantly 

enhances the satellite's operational efficiency, enabling multiple 

daily patrols of key forest areas. 

 

Process Time 

Single-area imaging 3s 

10s 

10s 

 

45s 

 

3*6+45*5+10=253s 

On-board detection 

Data downlink 

Satellite maneuvering (in 

parallel with downlinking 

and processing.) 

Total  

Table 1. Timeliness 

 

5. Conclusion 

This paper proposes an on-board fire detection method that 

integrates expert systems with neural networks, with the main 

innovations including: 

 

Construction of a Multi-Spectral Band Optimization Model: 

Through signal-to-clutter ratio analysis and target detectability 

evaluation, the optimal detection spectral bands were 

determined, significantly enhancing target detection 

performance. 

 

Design of a Lightweight Detection Network Architecture: 

Utilizing an improved MobileNetV2 as the backbone, combined 

with the Mish activation function and a multi-task loss function, 

a balance between detection accuracy and real-time 

performance was achieved. 

 

An expert system fusion mechanism was developed: by 

utilizing the semantic consistency among categories extracted 

from feature maps to interferometrically correct the confidence 

of output results, the false alarm rate was effectively reduced, 

and the system's robustness was improved. 
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Experimental results demonstrate that this method outperforms 

existing methods in terms of detection accuracy, real-time 

performance, and environmental adaptability, providing a new 

technical approach for real-time fire detection on satellites. 
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