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Abstract 

The canopy of trees plays an important role in the ecological system of forest. Its cover, distribution, structure are highly relevant to 

the function of water cycling, carbon storage, and climate modulating of forest. At individual level, accurate tree crown masks are the 

bases to acquire precise locations, distribution, and structural parameters of canopy. Therefore, accurate individual tree crown (ITC) 

segmentation has become a key topic of forestry that supports elaborate forest monitoring, biodiversity assessment, and ecological 

analyses. With the rapid development remote sensing and easy accessibility of the high-resolution earth observation data, fine-

grained canopy observation at individual tree level has been feasible in practice. And, deep learning technologies have achieved 

impressive performances on the tasks of instance segmentation which promote the accuracy of ITC delineation dramatically. This 

research aims to fully explore the performance of the SOTA instance segmentation networks, i.e., accuracy, generalization, and 

transferability, on the task of ITC segmentation. Especially, the performance of the large model, e.g., Segment Anything Model 

(SAM), is estimated as well. Comprehensive datasets for ITC segmentation with considerate quality, quantity, and diversity is 

adopted for network training and testing. Multiple ITC segmentation methods are developed by training the SOTA instance 

segmentation networks by datasets. The precision of the ITC segmentation method is evaluated based on standardized metrics. And, 

the generalization and transferability are estimated by comparing the segmentation results from testing sets that contains data from 

various forest types and scenarios. The method with the best performance is the network with HTC baseline and CB-ResNet50 

backbone that trained by early-stop scheme, and its AP50 and AP75 achieves 40.98% and 21.25%, respectively. 

1. Introduction

Forest plays an important role on the earth in carbon cycling 

(Mo et al., 2023; Pan et al., 2011) , climate adaption (Alkama 

and Cescatti, 2016), biological diversity, and ecological 

function (Thomas A. Spies, 1998). As one of the most essential 

organisms to absorb the anthropogenic CO2 emission, its 

structure, distribution, and function impact the global carbon 

cycle and climate adaptation (Alkama and Cescatti, 2016). And, 

forest is the largest terrestrial carbon pool, large carbon sinks in 

tree biomass and forest soil of the forest (Dixon et al., 1994; 

Pan et al., 2011). Besides, the forest participates in the climate 

land-atmosphere exchange of energy and water vapor of the 

forest offers significant biological impacts to the macro-climate 

and micro-climate (De Frenne et al., 2019). Due to the 

increasing requirements of the larges-scale spatially continuous 

models of global forest biomass, the satellite-based remote 

sensing for earth observation has become an important measure 

for global forest carbon assessment (Mo et al., 2023)and 

biophysical climate impact estimation (Alkama and Cescatti, 

2016).  

The high-resolution earth observation remote sensing is 

expected to achieve the fine-grained and large-scale forest 

analysis at individual tree level and replacing the labour-

exhausted in-situ field investigation (X. Liang et al., 2022). As 

the crucial part that decide the tree grows, function, and value, 

accurate assessment of the tree-level canopy characteristics, e.g., 

cover, density, quantity, horizontal distribution, provides central 

information for forest understanding. The 2D imagery by aerial- 

and satellite-based platforms offer the bird-view data of the 

forest upper canopy in efficient way. And, the ITC 

segmentation aims to generate masks delineating the canopy of 

each tree. At the individual tree level, accurate ITC masks is the 

base to extract accurate canopy characteristics. Therefore, fine-

grained ITC segmentation method is one of the most valuable 

topics for elaborate forest analysis and understanding. The 

existed method could be grouped as machine-learning- (ML-) 

and deep-learning- (DL-) based methods.  

Selecting an appropriate algorithm is the key point to develop a 

ML-based ITC segmentation method, e.g., valley following,

region growing, watershed segmentation etc. Considering the

contours of the outliers of ITCs were similar to the valleys

between mountains, the valley following method was applied on

the aerial grey-level image to delineate the ITC from the

background vegetation (Gougeon, 1995). To improve the

accuracy of the ITC segmentation, the lidar-based canopy

height model (CHM) and multispectral data were integrated for

the valley following method (Leckie et al., 2003). (Hyyppa et

al., 2001) utilized the regional-maximum-based region growing

method based on the laser-derived airborne CHM. (Wang,

2003) achieved ITC segmentation based on high-resolution

aerial images using the watershed segmentation guided by

treetops. However, the ML-based methods are poor in

robustness and generalization and required priors for manually

designed parameters.

The performance of the DL-based instance segmentation 

methods has surpassed the ML-based method in computer 

vision. Therefore, several instance segmentation networks have 

been applied to the task of ITC segmentation based on high 

resolution images and promoted its development, e.g., Mask R-

CNN (He et al., 2017), Cascade Mask R-CNN(Cai and 

Vasconcelos, 2021), BlendMask (Chen et al., 2020), etc. The 
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DL-based ITC segmentation methods not only achieves better 

performance, but also relies on less priority of the manually 

designed parameters compared with the ML-based methods. 

(Gan et al., 2023) developed an ITC segmentation method, 

Dectree2, based on the Mask R-CNN using UAV-acquired 

RGB imagery. To enhance the texture information extraction, 

(Zhu et al., 2024) designed a Transformer-based contextual 

aggregation module to distinguish the texture differences 

between canopies. (Xie et al., 2024) integrated the RGB and 

CHM to segment the individual Chinese fir canopy using Mask 

R-CNN. Due to the high response of the vegetation on NIR, 

(Sani-Mohammed et al., 2022) utilized the Mask R-CNN to 

achieve standing dead tree segmentation based on the airborne 

images with R, G, and NIR. To release the burden of the ITC 

labelling, (Dersch et al., 2024) proposed a novel semi-

supervised learning (SSL) scheme for Mask R-CNN training. 

And, the SSL-based method achieves ITC segmentation based 

on airborne images with R, G, B, and CHM. Except for Mask 

R-CNN, other networks worked well in the task of ITC 

segmentation. (Sun et al., 2022) adopted Cascade Mask R-CNN 

for ITC segmentation based on airborne RGB images in urban 

area. And, BlendMask achieved better performance than Mask 

R-CNN in ITC segmentation based on UAV images (Zhou et 

al., 2023). However, most of the existed ITC segmentation 

methods were applied on only one study site. Hence, their 

transferability and generalization are unclear.  

 

With the rapid development of the deep learning technology in 

computer vision, several SOTA networks have achieved better 

performance in instance segmentation, e.g., Hybrid Task 

Cascade (HTC) (Chen et al., 2019), Mask DINO (Li et al., 

2023), SAM (Kirillov et al., 2023). Their performances in ITC 

segmentation are worth for a fully exploration, i.e., accuracy, 

transferability, generalization. However, there is few research 

achieve it. Therefore, this research aims to:  

 

(1) develop effective ITC segmentation methods by training 

SOTA instance segmentation networks with comprehensive 

datasets; 

 

(2) explore the performance of the SOTA instance segmentation 

networks on the task of ITC segmentation, i.e., accuracy, 

generalization, and transferability; 

 

(3) conclude the key factors that impact the performance. 

 

2. Methodology 

2.1 Study Site and Dataset 

The dataset used for this research was released by the ISPRS 

Individual Tree Crown Segmentation Contest, 2024 (Liang et 

al., 2024). In general, the rich diversity of study site and 

sufficient quantity of data are prominent features of this dataset. 

The detailed information is shown in Table 1. 

 

The study sites cover a wide range around the world. The high-

resolution remote sensing images in dataset were collected from 

11 study sites located in 9 countries, i.e., Canada, Malaysia, 

Panama, China, America, Kenya, Norway, German, and 

Australia. The wide spatial distribution of the study sites 

enables the dataset cover data from various climate zones and 

multiple forest type. The climate zones cover tropical, sub-

tropical, and temperate zone. And, the forest types include 

deciduous forest, evergreen broad-leaf forest, mix forest, rain 

forest, boreal forest, and savanna woodland. Besides, both of 

the natural and urban forest are covered. Since the imageries 

from different study are collected under different conditions, 

e.g., platform, sensor, flight height, date, and light, data with 

different quality and resolution are included in the dataset. The 

ground sample distances (GSDs) of the images range from 2 to 

10 cm. The diversity of data from multiple study sites is 

expected to evaluate the generalization and transferability 

between methods. 

 

Since the deep-learning-based instance segmentation model is 

data-driven, datasets with adequate images annotation were 

necessary. Therefore, comprehensive datasets were established 

and provided to the participants of the contest for model 

training and performance evaluation, i.e., precision, 

generalization, transferability. There are more than 1,100 high-

resolution remote sensing images of  pixels and more than 

600,00 ITC masks in the datasets. To maintain the reliability of 

the annotation, the ITC masks were labelled manually based on 

visual interpretation and checked by forest experts. Besides, the 

annotations were stored and organized based on MS COCO 

Format, which is a standardized data format for detection and 

instance segmentation. The data from 11 study sites were 

grouped into 11 sub-datasets. The training, validation, and 

testing sets contain data from dataset 1-9, 3-5, and 3-11, 

respectively and without overlap. 

 

No. Area 
Resolution 

(cm) 

Dataset 

Train Validate Test 

1 Canada 2.0 1691 － － 

2 Malaysia 10.0 331 － － 

3 Panama 4.5 1200 275 600 

4 China 10.0 400 100 200 

5 China 2.0 1721 441 786 

6 China 3.0 1234 － 346 

7 America 5.0 184 － 100 

8 Kenya 10.0 300 － 200 

9 Norway 2.0-7.0 206 － 100 

10 German 2.0 － － 468 

11 Australia 2.0 － － 200 

Total － － 7267 816 3000 

Table 1.  The detailed information of the dataset released by 

the ISPRS Individual Tree Crown Segmentation 

Contest, 2024 (Liang et al., 2024). 

 

2.2 Instance Segmentation Networks 

The instance segmentation network aims to inference masks 

that delineating the boundaries of the targeting object. The 

general architecture of the network is composed of backbone, 

neck, initial prediction module, and heads. They achieve feature 

maps extraction, multi-scale feature fusion, initial prediction, 

and results inference, respectively.   

 

The initial prediction module, which is the key part of detection 

and instance segmentation networks, locate the targeting object 

and extract their context feature initially. According to the 

forms of the initial predictions, the SOTA networks could be 

divided into 3 categories, i.e., proposal -based, query-based, and 

prompt-based network. The proposal-based networks, e.g., 

Masks R-CNN, and Cascade Mask R-CNN generate the masks 

based on the rectangular proposals that bounding the targets. 

The query-based networks, e.g., Mask DINO, inference the 

masks based on the query that embed the positional and content 

information in implicit representation. The prompt-based 

networks, e.g., SAM, are compatibility to multiple explicit 
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prompts indicating the locations and rough area, i.e., points, 

bounding boxes, and masks. 

 

2.2.1 Proposal-based Network 

The proposal-based networks generate the bounding boxes and 

masks by box and mask heads for the target object in parallel 

based on the rectangular proposals. 

 

Mask R-CNN, which is one of the most popular baselines of 

proposal-based instance segmentation network, is the 

combination of Faster R-CNN and FCN-based mask head. The 

region proposal network (RPN) generates dense rectangular 

proposal based on the feature map from backbone and a set of 

pre-defined anchor boxes. The redundant proposals are removed 

by non-maximum suppression (NMS), then the box and mask 

head refine the reminding proposals to bounding boxes and 

generate a mask within the region of each proposal, respectively. 

To improve the bounding box refinement, Cascade R-CNN 

introduce the cascade box head. It is composed of a sequence of 

box heads that refine the proposals from RPN progressively. 

The Cascade Mask R-CNN adds mask heads within the box 

head and generate masks based on the refined proposals. 

However, there is no interaction between the mask head in the 

Cascade Mask R-CNN. To refine the mask progressively by the 

cascade heads, HTC pass the feature map from previous mask 

head to the succeeding one for feature fusion. Besides, a 

semantic head is added to provide semantic feature to each 

mask head.  

 

The accuracy of the results generated by the proposal network is 

limited by the quality of proposals. Besides, the NMS that 

removes the redundant proposals is no optimizable by network 

training. The improper hyper-parameters of NMS will cause 

reduplicative or omissive segmentation. The setting of anchor 

and NMS impact the accuracy and generalization of the network. 

 

2.2.2 Query-based Network 

The query-based networks generate the bounding boxes and 

masks based on the initial predictions with implicit 

representation. The end-to-end object detection with 

Transformer (DETR) is the first query-based detection network 

(Carion et al., 2020). It generates the bounding boxes based on 

learned query that is composed of positional and content 

embedding. The query-based network is composed with a 

backbone, and Transformer-based encoder and decoder. The 

queries are initialized by the noise that follows standardized 

normal distribution, and updated based on the embedding from 

encoder. Then, the decoder maps the queries to bounding boxes. 

To enhance the convergence, the denoise training is proposed 

by DN-DETR  (Li et al., 2022). DETR with improve denoising 

anchor boxes (DINO) introduces the contrastive denoising 

training to stabilize the training scheme using both positive and 

negative queries. And, the mixed query selection enhances both 

the positional and content embedding learning. 

 

Mask DINO is the combination of DINO and Mask2Former. 

The feature embedding from encoder is recovered to the pixel-

wise feature map based on up-sampling and the feature from 

backbone. Then, masks are generated based on the dot-

production of query and pixel-wise feature map. The query-

based requires no prior of pre-defining the initial prediction. 

However, it must generate queries of specified quantity due to 

the batch training. The quantity of queries should be higher than 

the number of the target in input image, and redundant query are 

filtered by the probability score. Therefore, the hyper-parameter 

of the query quantity will impact the recall of the results and the 

generalization of the network. Besides, the training of query-

based networks is more difficult to converge than proposal-

based networks.  

 

2.2.3 Prompt-based Large Model 

Prompt is the general concept of all forms of explicit initial 

prediction, i.e., point, box, mask. SAM is a generic 

segmentation network that generates masks for target based on 

the prompts. It consists of a ViT encoder, prompts encoder, and 

decoder. The encoder extracts feature from the input images, 

prompt encoder learns an embedding from for each prompt, and 

the decoder generate masks based on the feature and prompt 

embeddings. SAM was trained by a large dataset, SA-1B, which 

consist of 11M images and 1.1B high-quality segmentation 

masks. The images are collected from licensed and privacy 

protecting sources with virous scenes, high resolution, and good 

quality. The masks are generated by the segmentation anything 

data engine in three stages, i.e., model-assisted manual, semi-

automatic, and fully automatic annotation stage. There are 

99.1% of the masks are generated fully automatically. The rich 

diversity and quantity of dataset enable the SAM with powerful 

generalization that can be transferred to any new images zero-

shot with impressive performance. The initial predictions of the 

proposal- and query-based network are generated by the module 

in network; however, the prompts should be input to the 

prompt-based network. In the data engine, the assisted-manual 

stage provides point prompts by manually clicking the 

foreground and background object points; the semi-automatic 

stage provides box prompts with high confidence generated by a 

trained detector; the fully automatic stage provides a point-grid 

as points prompts to the network. 

 

2.3 Individual Tree Crown Segmentation Model 

Developing an efficient ITC segmentation method includes 2 

main stages, i.e., instance segmentation network establishment, 

ITC segmentation model training, reliable estimation of the 

results. This research has made a comprehensive benchmark to 

explore the performance of the SOTA instance segmentation 

network on the task of ITC segmentation. And, a proper training 

scheme is figured out.  

 

According to the results of the benchmark, the network with the 

baseline of HTC and backbone of CB-ResNet50 (T. Liang et al., 

2022) that trained by early-stop scheme is chosen as the ITC 

segmentation model. The architecture of the network is shown 

in Figure 2. The CB-ResNet50 composite 2 ResNet50 by dense 

higher-level composition (DHLC).  

 

 
Figure 2. The network architecture of the ITC segmentation 

model 
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3. Experiments and Discussions 

3.1 Experiment 

A comprehensive benchmark was made by this research. There 

are 4 SOTA baselines of the instance segmentation are 

evaluated, i.e., Cascade Mask R-CNN, HTC, Mask DINO, and 

SAM. Besides, the backbone is one of the most important 

modules that impact the performance of the network. ResNet-50, 

which is a popular backbone for benchmarking, is adopted as 

the backbone to execute the experiment to explore the 

performance of the baselines. Besides, the backbone ResNet50, 

CB-ResNet50, and CB-Swin-b are compared. Since SAM is a 

heavy-pretrained network, it is estimated by the fully automatic 

mask generation function based on the original pre-trained 

model. The accuracy, generalization, and transferability of the 

SOTA networks are evaluated based on the standardized metrics 

and dataset. 

 

3.2 Evaluation Metrics 

3.3 ITC Results 

The ITC masks generated by the HTC, Mask DINO, and SAM 

are shown in the Figure 3.  

 

D gt 
Network 

HTC Mask DINO SAM 

3 

    

4 

    

5 

    

6 

    

7 

    

8 

    

9 

    

10 

    

11 

    

Figure 3.  The ground truth and inference ITC masks in testing 

phase. D represents the dataset, and gt represents the 

ground truth. The red polygons are the inference 

masks. 

 

The segmentation errors include duplicate, over-, under-, and 

miss-segmentation. The duplicate segmentation represents the 

phenomenon that multiple masks were generated for same ITC. 

The over- and under-segmentation indicate that one ITC is 

segmented to multiple masks and multiple ITC are grouped into 

one mask, respectively. The miss-segmentation represents that 

no mask is generated for one ITC. According to Figure 3, the 

quality of the inference masks is impacted by multiple factors. 

 

There is great difference of the inference masks between SAM 

with the other networks, i.e., HTC, and Mask DINO. SAM 

suffers from severe problems of miss- and under-segmentation. 

Most of the masks from SAM are fragments, and it fails to 

discriminate ITC and other foreground objects. The disparity 

between the inference masks from HTC and Mask DINO is not 

evident. The cascade head HTC tends to generate more 

duplicate predictions slightly. 

 

The approximation and completeness between the inference 

masks and ground truth in Dataset 3, 5, 6, 7, 9 are better than 

the other. This phenomenon is probably caused by the disparity 

between resolution and image quality. The resolution of the 

images in Dataset 4 and 8 is lower, i.e., 10 cm. While, the 

resolution of the images in other datasets are all higher than 5 

cm, i.e., 4.5, 2, 3, 5, 2-7 cm.  

 

The accuracy of the inference masks in Dataset 10 and 11 is the 

worst. The data in Dataset 10 and 11 is not included in the 

training set. Therefore, the performances on these two datasets 

represent the transferability of the networks. Since the forest 

scenes of Dataset 10 contain more similarity with the datasets in 

training set, i.e., Dataset 3, 5, and 9, its transferability is better 

than Dataset 11. 

 

3.4 Evaluation Metrics 

To estimate the performance of the ITC segmentation methods, 

metrics were adopted to evaluate the accuracy of the ITC masks 

generated by the methods, i.e., Average Precision (AP), 

Precision (P), and Recall (R), shown in (1)-(3). 

 
(1) 

 

 
(1) 

 
(2) 
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(3) 

where TP, FP, FN indicate True Positive, False Positive, and 

False Negative, respectively.  

 

Intersection over union (IoU) represents the ratio of the union 

over intersection between inference mask and ground truth. An 

inference mask whose IoU and probability score exceed specific 

threshold will be considered as TP. Higher the threshold of 

probability score is, higher the Precision is and lower the Recall 

is, and vice versa. The P-R curve represents the relationship 

between Recall and Precision, and AP is the integration of the 

P-R curve. 

 

The AP 50 and AP75 are commonly used metrics to evaluate 

the performance of the detection and instance segmentation 

network. They represent that the true positives take 0.5 and 0.75 

as the IoU threshold, respectively. This research considers both 

metrics, and the values of the SOTA methods are shown in 

Table 2. 

 

Network 
AP50 AP75 

Baseline Backbone 

SAM ViT 8.36 4.62 

CM R-CNN 

ResNet50 

34.50 16.51 

Mask DINO 34.92 16.92 

HTC 

36.81 17.46 

CB-ResNet50 40.98 21.25 

CB-Swin-b 40.32 19.14 

Table 2.  The average precision of inference masks in testing 

set that generated by SOTA ITC segmentation 

method. CM R-CNN represents Cascade Mask R-

CNN. 

 

The network with HTC baseline and CB-ResNet50 achieve the 

best performance. And, both of the HTC and CB-ResNet50 

outperformed than the other networks in the comparison 

experiments, respectively. HTC baseline gains the highest AP50 

and AP75 compared with Mask DINO and Cascade Mask R-

CNN. And, the CB-ResNet50 gains higher AP50 and AP75 than 

ResNet50 and CB-Swin-b using HTC as network baseline. 

Although Transformer-based backbone is considered that the 

performance has surpassed the ConvNet in multiple tasks, e.g., 

ResNet, the CB-ResNet50 gain higher scores. 

 

To further evaluate the detailed performance of best performed 

network in different datasets, the values of AP50 and AP75 are 

shown in Table 3 and Figure 4.  

 

 AP50 AP75 

Mean 40.98 21.25 

Dataset 

3 59.82 35.48 

4 20.22 9.20 

5 49.94 23.44 

6 65.40 44.93 

7 64.65 36.05 

8 36.03 15.03 

9 47.41 19.92 

10 21.25 5.48 

11 4.07 1.70 

Table 3.  The average precision of the inference masks of 

each dataset in testing set that generated by the 

network with HTC baseline and CB-ResNet50. 

 

 
Figure 4.  The average precision of the inference masks of 

each dataset in testing set that generated by the 

network with HTC baseline and CB-ResNet50.   

 

There is great disparity between AP50 and AP75 of different 

datasets. The impacts from data and forest scene affect the 

performance of the ITC segmentation methods are more 

dramatically than the network architecture. The network gains 

the highest AP50 in Dataset 6 and 7. The images from these 

datasets contains high resolution, good quality, sufficient light, 

low density and clear boundary of ITC.   

 

3.5 The Impact of Training Scheme 

The training scheme impact the performance of the ITC 

segmentation model. The changing tendencies of loss and 

overall AP50 during the training process are monitored, as 

shown in Figure 5 and Table 4.  

  
(a) (b) 

 

Figure 5.  The changing tendency of the loss and overall AP50 

during training. (a) illustrate the tendency of loss, 

and (b) illustrate the tendency of overall AP50. 

 

Epoch Backbone loss AP50 AP75 

100 CB-R50 0.53 31.11 16.01 

128 CB-Swin-b 0.47 28.86 14.61 

4 CB-R50 1.75 40.98 21.25 

25 CB-Swin-b 1.57 40.32 19.14 

Table 4.  The average precision from the model trained by 

different epoch 

 

The descent loss dose not lead constant accuracy improvement, 

even, redundant trainings (too many epochs) might damage the 

performance. This phenomenon represents that the 

generalization of the networks is required to be improved. 

Model fine-tuning based on early-stop training scheme helps the 

networks perform the best. The HTC baseline with CB-

ResNet50 and CB-Swin-b achieved the best in epoch 4 and 25, 

respectively. CB-Swin-b requires more epoch to converge and 

reach the top because its architecture is more complex than CB-

ResNet50.  
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4. Conclusion 

This research made a comprehensive benchmark of SOTA 

methods in the tasks of ITC segmentation. The network with 

HTC baseline and CB-ResNet50 backbone achieves the best 

performance. And, the experiment results show that the 

resolution, image quality, forest type impact the quality of the 

inference masks significantly. The images with high resolution, 

good quality, and clear boundary between ITC are tended to 

generate better ITC segmentation results. Besides, the training 

scheme impact the performance of the ITC segmentation model 

greatly. Model fine-tuning by early-stop training scheme lead 

better performance, which means the generalization of the 

SOTA networks is required to be improved. And, the low 

performance in Dataset 10 and 11 represent the improvement 

potential of the transferability. 
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